

Article Single crystal FLIM characterization of clofazimine loaded in silica-based mesoporous materials and zeolites

Lorenzo Angiolini¹, Boiko Cohen^{1,*} and Abderrazzak Douhal^{1,*}

- ¹ Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain; Lorenzo.Angiolini@uclm.es
- * Correspondence: Boyko.Koen@uclm.es (B.C.); abderrazzak.douhal@uclm.es (A.D.); Tel.: +34-925-268800 (ext. 5571) (B.C.); +34-925-265717 (A.D.)

Received: 20 April 2019; Accepted: 10 June 2019; Published: 12 June 2019

Supplementary material

Figure S1. (A) Absorption and (B) emission spectra of CLZ in a DCM solution and interacting with the indicated silica materials $(4.3 \times 10^{-5} \text{ M})$ in DCM suspensions. The excitation wavelength for the emission spectra was set at 470 nm.

Figure S2. FTIR spectra of **(A)** CLZ alone, **(B)** CLZ loaded in Al-MCM-41 and the empty Al-MCM-41supporta and **(C)** CLZ loaded in NaX and empty HY zeolite.

Figure S3. (**A**) FLIM image, (**B**) emission spectra, and lifetime decays normalized to the maximum of intensity and collected using (**C**) a 510-570 nm bandpass filter I and (**D**) a 700 nm longpass filter II upon excitation at 470 nm of CLZ@Al-MCM-41 (4.3×10^{-5} M). The labelling in (B)-(D) corresponds to that in (A).

Figure S4. (**A**) FLIM image, (**B**) emission spectra, and lifetime decays normalized to the maximum of intensity and collected using (**C**) a 510-570 nm bandpass filter I and (**D**) a 700 nm longpass filter II upon excitation at 470 nm of CLZ@NaY (4.3×10^{-5} M). The labelling in (B)-(D) corresponds to that in (A).

Figure S5. Single crystals emission spectra of (**A**) CLZ@SBA-15; (**B**) CLZ@MCM-41; (**C**) CLZ@Al-MCM-41; (**D**) CLZ@NaX; (**E**) CLZ@NaY; (**F**) CLZ@NH4Y (4.3 × 10⁻⁵ M) observed upon excitation at 470 nm.

Figure S6. Averaged emission spectra upon excitation at 470 nm of CLZ-loaded single crystals (1 \rightarrow 6: Al-MCM-41, NH4Y, MCM-41, NaY, NaX, SBA-15; 4.3 × 10⁻⁵ M).

Particle	I700/I600	Average
F1 1 (1)	0.50	
F1 2	0.59	
F1 3	0.85	
F2 1	1.70	
F2 2 (3)	0.76	
F2 3	0.74	
F3 1 (4)	1.12	0.92
F3 2 (6)	1.02	
F4 1 (2)	1.07	
F4 2	0.74	
F4 3	0.35	
F4 4 (5)	1.28	
F4 5 (7)	1.28	

Table S1. Ratio (I700/I600) of CLZ@SBA-15 (4.3 × 10-5 M) emission intensity maxima collected at 600nm and 700 nm upon excitation at 470 nm.

Table S2. Ratio (I700/I600) of CLZ@MCM-41 (4.3 × 10-5 M) emission intensity maxima collected at 600nm and 700 nm upon excitation at 470 nm.

Particle	I700/I600	Average
F1 1	0.61	
F1 2 (4)	1.14	
F1 3 (3)	0.40	
F1 4	1.34	
F1 5 (5)	0.35	
F1 6	1.06	
F2 1	1.19	
F2 2 (2)	1.39	
F2 3	1.55	1.08
F2 4	1.62	
F2 5	2.14	
F2 6	1.10	
F3 1 (1)	0.54	
F3 2	0.67	
F3 3 (6)	1.79	
F3 4	0.88	
F3 5	0.53	

Particle	I700/I600	Average
F1 1 (2)	1.16	
F1 2	0.73	
F1 3	1.24	
F1 4	1.11	
F1 5	0.80	
F1 6	0.95	
F2 1	0.47	
F2 2	0.62	
F2 3	0.95	0.98
F2 4 (1)	0.40	
F2 5 (5)	0.39	
F3 1 (3)	1.00	
F3 2 (6)	1.35	
F3 3	1.64	
F3 4 (4)	1.25	
F3 5	1.29	
F3 6	1.29	

Table S3. Ratio (I700/I600) of CLZ@Al-MCM-41 (4.3×10^5 M) emission intensity maxima collected at600 nm and 700 nm upon excitation at 470 nm.

Table S4. Ratio (I700/I570) of CLZ@NaX (4.3 × 10⁻⁵ M) emission intensity maxima collected at 570 nmand 700 nm upon excitation at 470 nm.

Particle	I700/I570	Average
F1 1 (4)	0.25	0.33
F1 2	0.44	
F1 3 (2)	0.30	
F2 1	0.67	
F2 2 (5)	0.23	
F2 3 (3)	0.31	
F2 4 (7)	0.36	
F3 1	0.28	
F3 2 (1)	0.20	
F3 3	0.26	
F3 4 (6)	0.34	
F4 1	0.36	
F4 2	0.28	
F4 3	0.31	

	•	
Particle	I700/I570	Average
F1 1 (5)	0.55	
F1 2	0.29	
F1 3 (7)	0.28	
F2 1 (4)	0.60	
F2 2	0.33	
F2 3 (1)	0.76	
F2 4 (3)	0.39	
F2 5	0.55	
F3 1	0.38	0.61
F3 2	0.60	
F3 3	1.31	
F3 4	1.20	
F3 5 (6)	0.91	
F4 1	0.62	
F4 2	0.30	
F4 3	0.81	
F4 4 (2)	0.43	

Table S5. Ratio (I₇₀₀/I₅₇₀) of CLZ@NaY (4.3×10^{-5} M) emission intensity maxima collected at 570 nm and 700 nm upon excitation at 470 nm.

F4 4 (2)

Particle	I700/I570	Average
F1 1 (7)	0.56	
F1 2 (6)	0.52	
F1 3	1.46	
F1 4	1.16	
F1 5	0.85	
F1 6 (1)	0.83	
F2 1	0.93	
F2 2	1.38	
F2 3 (5)	0.73	
F2 4 (4)	0.40	0.84
F2 5	0.75	
F2 6 (3)	0.85	
F2 7	1.06	
F3 1	0.78	
F3 2	0.54	
F3 3 (2)	0.92	
F3 4	0.65	
F3 5	0.78	
F3 6	0.88	

Table S6. Ratio (I700/I570) of CLZ@NH4Y (4.3 × 10-5 M) emission intensity maxima collected at 570 nmand 700 nm upon excitation at 470 nm.

Material	Peak	Position (nm)	FWHM (cm ⁻¹)	Amplitude (%)
	1	535	1483	7
	2	572	1143	6
5BA-15	3	605	2047	51
	4	696	1026	36
	1	532	1418	7
	2	572	1452	10
MCM-41	3	605	2003	50
	4	697	911	33
	1	539	1041	4
	2	572	1060	9
AI-MCM-41	3	605	1916	54
	4	696	941	33
	1	535	1746	16
NT N	2	572	1082	16
NaX	3	605	2324	54
	1 535 1483 2 572 1143 3 605 2047 4 696 1026 1 532 1418 2 572 1452 3 605 2003 4 697 911 1 539 1041 2 572 1060 3 605 1916 4 696 941 1 535 1746 2 572 1082 3 605 2324 4 699 1417 1 535 2007 2 572 1026 3 605 2343 4 701 1262 1 535 1782 2 572 999 3 605 2651 4 700 1228	1417	14	
	1	535	2007	21
	2	572	1026	8
Nar	3	605	2343	48
	4	701	1262	23
	1	535	1782	6
N II I 4N/	2	572	999	7
NH4Y	3	605	2651	61
	4	700	1228	27

Table S7. Deconvolution results of the averaged emission spectra of the indicated CLZ@silica
composites $(4.3 \times 10^{-5} \text{ M})$ collected upon excitation at 470 nm.

Table S8. Values of time constants (τ_i), normalized (to 100) pre-exponential factors (a_i), fractionalcontributions ($c_i = \tau_{iai} / \Sigma \tau_{iai}$) and standard deviations (σ_i) of the multiexponential function used tofit the fluorescence lifetime decays of CLZ@MCM-41 composites (4.3×10^{-5} M) collected using theindicated filters, upon excitation at 470 nm.

Filter (nm)	Sample	τ1 (ns)1	a 1 (%)	c 1 (%)	τ ₂ (ns) ²	a2 (%)	c ₂ (%)	τ ₃ (ns) ²	a3 (%)	c ₃ (%)
510-570	F1 1	0.1	52	10	0.7	42 (87)	54 (60)	3.2	6 (13)	36 (40)
	F1 2 (4)	0.1	44	8	0.6	48 (86)	54 (58)	2.7	8 (14)	38 (42)
	F1 3 (3)	0.1	40	6	0.7	52 (86)	58 (62)	2.7	8 (14)	36 (38)
	F1 4	0.1	55	9	0.8	38 (84)	48 (53)	3.7	7 (16)	43 (47)
	F1 5 (5)	-	-	-	0.7	81	53	2.6	19	47
	F1 6	-	-	-	0.6	84	53	2.7	16	47
	F2 1	0.1	46	9	0.6	48 (88)	55 (60)	2.9	6 (12)	36 (40)
	F2 2 (2)	0.1	7	1	0.7	77 (82)	50 (50)	3.2	16 (18)	49 (50)
	F2 3	0.1	52	7	0.9	41 (85)	47 (51)	4.8	7 (15)	46 (49)
	F2 4	0.1	50	8	0.6	39 (77)	37 (40)	2.9	11 (23)	55 (60)
	F2 5	0.1	33	4	0.8	54 (81)	50 (52)	3.1	13 (19)	46 (48)
	F2 6	-	-	-	0.8	76	41	3.6	24	59
	F3 1 (1)	0.1	52	9	0.7	41 (86)	49 (53)	3.6	7 (14)	42 (47)
	F3 2	0.1	52	8	0.7	40 (83)	44 (48)	3.8	8 (17)	48 (52)
	F3 3 (6)	0.1	46	8	0.7	47 (87)	55 (60)	3.1	7 (13)	37 (40)
	F3 4	-	-	-	0.6	81	50	2.6	19	50
	F3 5	0.1	53	9	0.7	40 (84)	47 (52)	3.4	7 (16)	44 (48)
700	F1 1	0.1	39	6	0.8	43 (71)	49 (52)	1.8	18 (29)	45 (48)
	F1 2 (4)	-	-	-	0.8	61	43	1.7	39	57
	F1 3 (3)	0.1	64	14	0.9	29 (82)	55 (64)	2.2	7(18)	31 (36)
	F1 4	-	-	-	1	78	62	2.2	22	38
	F1 5 (5)	0.1	69	14	0.9	21 (67)	40 (46)	2.1	10 (33)	46 (53)
	F1 6	-	-	-	1	55	39	1.9	45	61
	F2 1	-	-	-	0.7	69	49	1.6	31	51
	F2 2 (2)	-	-	-	0.8	72	51	1.9	28	49
	F2 3	-	-	-	1.1	80	67	2.2	20	33
	F2 4	-	-	-	1	87	75	2.3	13	25
	F2 5	-	-	-	1.3	85	75	2.4	15	25
	F2 6	-	-	-	1.3	84	71	2.8	16	29
	F3 1 (1)	0.1	28	4	0.7	55 (76)	53 (55)	1.8	17 (24)	43 (45)
	F3 2	0.1	33	4	0.9	55 (81)	62 (65)	2.1	12 (19)	34 (35)
	F3 3 (6)	-	-	-	1.0	81	66	2.1	19	34
	F3 4	0.1	21	2	1.2	61 (78)	64 (65)	2.2	18 (22)	34 (35)
	F3 5	0.1	51	8	0.7	42 (84)	48 (52)	3.4	7 (16)	44 (48)

 $^1\,\tau_1$ was fixed in the fit; 2 The error in lifetimes values is <10%.

Table S8. Values of time constants (τ_i), normalized (to 100) pre-exponential factors (ai), fractional
contributions ($c_i = \tau_i a_i / \Sigma \tau_i a_i$) and standard deviations (σ_i) of the multiexponential function used to
fit the fluorescence lifetime decays of CLZ@Al-MCM-41 composites (4.3×10^{-5} M) collected using the
indicated filters, upon excitation at 470 nm.

Filter (nm)	Sample	τ1 (ns)1	a 1 (%)	c 1 (%)	τ ₂ (ns) ²	a2 (%)	c ₂ (%)	τ ₃ (ns) ²	a3 (%)	c 3 (%)
510-570	F1 1 (2)	0.1	51	10	0.6	42 (87)	50 (56)	3.1	7 (13)	40 (44)
	F1 2	-	-	-	0.5	88	57	2.8	12	43
	F1 3	0.1	70	24	0.5	28 (93)	48 (64)	4	2 (7)	28 (36)
	F1 4	-	-	-	0.7	87	59	3.2	13	41
	F1 5	-	-	-	0.6	88	55	3.5	12	45
	F1 6	0.1	59	10	0.8	35 (85)	46 (52)	4.2	6 (15)	44 (48)
	F2 1	0.1	42	5	0.8	45 (78)	46 (48)	3	13 (22)	49 (52)
	F2 2	0.1	46	7	0.7	46 (86)	50 (54)	3.5	8 (14)	43 (46)
	F2 3	0.1	73	25	0.5	24 (90)	43 (57)	3.4	3 (10)	32 (43)
	F2 4 (1)	0.1	41	5	0.9	48 (82)	49 (51)	3.9	11 (18)	46 (49)
	F2 5 (5)	0.1	47	7	0.8	44 (84)	53 (57)	3.2	8 (16)	40 (43)
	F3 1 (3)	0.1	54	10	0.7	40 (86)	51 (56)	3.2	7 (14)	39 (44)
	F3 2 (6)	0.1	58	10	0.7	36 (84)	44 (49)	3.9	7 (16)	46 (51)
	F3 3	0.1	64	14	0.6	30 (83)	39 (45)	3.5	6 (17)	47 (55)
	F3 4 (4)	0.1	61	12	0.7	32 (83)	44 (49)	3.6	4 (17)	44 (51)
	F3 5	0.1	69	22	0.5	27 (88)	44 (56)	2.8	4 (12)	34 (44)
700	F1 1 (2)	-	-	-	1.0	98	94	3.0	2	6
	F1 2	-	-	-	0.7	86	72	1.7	14	28
	F1 3	-	-	-	0.6	79	63	1.3	21	37
	F1 4	0.1	27	4	0.8	58 (79)	60 (63)	1.8	15 (21)	36 (37)
	F1 5	-	-	-	0.8	79	60	2	21	40
	F1 6	-	-	-	0.8	87	73	1.9	13	27
	F2 1	0.1	48	7	1.1	49 (95)	83 (89)	4	3 (5)	10 (11)
	F2 2	0.1	43	6	1	51 (90)	72 (77)	2.6	6 (10)	22 (23)
	F2 3	-	-	-	0.5	82	65	1.2	18	35
	F2 4 (1)	0.1	77	27	0.6	17 (76)	36 (50)	1.9	6 (24)	37 (50)
	F2 5 (5)	0.1	71	18	0.8	22 (74)	44 (54)	2.0	7 (26)	38 (46)
	F3 1 (3)	0.1	22	3	0.9	68 (88)	74 (76)	2.0	10 (12)	23 (24)
	F3 2 (6)	0.1	25	3	0.8	63 (83)	68 (70)	1.7	12 (17)	29 (30)
	F3 3	-	-	-	0.6	88	65	1.5	12	35
	F3 4 (4)	0.1	30	6	0.6	62 (88)	69 (74)	1.6	8 (12)	25 (26)
	F3 5	0.1	23	5	0.5	64 (83)	62 (65)	1.3	13 (17)	33 (35)

 $^{1}\tau_{1}$ was fixed in the fit; 2 The error in lifetimes values is <10%.

Table S10. Values of time constants (τ_i), normalized (to 100) pre-exponential factors (a_i), fractionalcontributions ($c_i = \tau_i a_i / \Sigma \tau_i a_i$) and standard deviations (σ_i) of the multiexponential function used tofit the fluorescence lifetime decays of CLZ@SBA-15 composites (4.3×10^{-5} M) collected using theindicated filters, upon excitation at 470 nm.

Filter (nm)	Sample	τ ₁ (ns) ¹	a 1 (%)	c 1 (%)	τ ₂ (ns) ²	a2 (%)	c2 (%)	τ ₃ (ns) ²	a3 (%)	c ₃ (%)
510-570	F1 1 (1)	0.1	43	8	0.6	48 (84)	54 (59)	2.2	9 (16)	38 (41)
	F1 2	-	-	-	0.5	82	52	2.2	18	48
	F1 3	0.1	36	5	0.8	54 (83)	54 (57)	3	10 (17)	41 (43)
	F2 1	0.1	50	11	0.6	45 (91)	61 (69)	2.8	5 (9)	28 (31)
	F2 2 (3)	0.1	49	11	0.6	47 (91)	61 (69)	2.9	4 (9)	28 (31)
	F2 3	0.1	41	9	0.5	52 (89)	58 (64)	2.2	7 (11)	33 (36)
	F3 1 (4)	0.1	53	11	0.6	42 (89)	55 (62)	3.0	5 (11)	34 (38)
	F3 2 (6)	0.1	44	9	0.6	51 (91)	64 (71)	2.6	5 (9)	27 (29)
	F4 1 (2)	0.1	50	12	0.5	45 (90)	56 (64)	2.5	5(10)	32 (36)
	F4 2	0.1	39	6	0.7	51 (85)	56 (59)	2.6	10 (15)	38 (41)
	F4 3	0.1	39	7	0.6	54 (89)	62 (67)	2.3	7 (11)	31 (33)
	F4 4 (5)	0.1	58	16	0.5	38 (91)	52 (62)	2.9	4 (9)	32 (38)
	F4 5 (7)	0.1	37	7	0.6	56 (89)	64 (69)	2.1	7 (11)	29 (31)
700	F1 1 (1)	0.1	46	7	0.9	42 (78)	57 (61)	2.0	12 (22)	36 (39)
	F1 2	0.1	25	3	0.8	52 (69)	47 (49)	1.9	23 (31)	50 (51)
	F1 3	-	-	-	1	72	57	2	28	43
	F2 1	-	-	-	0.9	80	68	1.7	20	32
	F2 2 (3)	-	-	-	0.9	80	68	1.7	20	32
	F2 3	0.1	37	6	0.8	49 (78)	59 (63)	1.7	14 (22)	35 (37)
	F3 1 (4)	0.1	23	3	0.8	60 (79)	60 (62)	1.7	17 (21)	37 (38)
	F3 2 (6)	-	-	-	0.9	71	58	1.6	29	42
	F4 1 (2)	0.1	21	2	0.8	58 (73)	55 (56)	1.7	21 (27)	43 (44)
	F4 2	0.1	44	6	1	42 (76)	57 (61)	2	14 (24)	37 (39)
	F4 3	0.1	81	32	0.6	14 (74)	34 (50)	1.7	5 (26)	34 (50)
	F4 4 (5)	-	-	-	0.7	70	52	1.5	30	48
	F4 5 (7)	-	-	-	1	71	58	1.8	29	42

 $^{1}\tau_{1}$ was fixed in the fit; 2 The error in lifetimes values is <10%.

Table S11. Values of time constants (τ_i), normalized (to 100) pre-exponential factors (a_i), fractionalcontributions ($c_i = \tau_i a_i / \Sigma \tau_i a_i$) and standard deviations (σ_i) of the multiexponential function used tofit the fluorescence lifetime decays of CLZ@NaX composites (4.3×10^{-5} M) collected using theindicated filters, upon excitation at 470 nm.

Filter (nm)	Sample	τ 1 (ns)1	a 1 (%)	c 1 (%)	τ ₂ (ns) ²	a2 (%)	c2 (%)	τ ₃ (ns) ²	a3 (%)	c ₃ (%)
510-570	F1 1 (4)	0.1	62	17	0.6	34 (91)	55 (66)	3.0	4 (9)	28 (34)
	F1 2	0.1	71	20	0.6	26 (88)	45 (56)	3.5	3 (12)	35 (44)
	F1 3 (2)	0.1	63	17	0.6	33 (90)	53 (64)	3.0	4 (10)	30 (36)
	F2 1	0.1	52	10	0.7	40 (83)	50 (56)	2.7	8 (17)	40 (44)
	F2 2 (5)	0.1	65	20	0.5	32 (91)	49 (61)	3.2	3 (9)	31 (39)
	F2 3 (3)	0.1	60	16	0.6	37 (91)	57 (68)	2.9	3 (9)	27 (32)
	F2 4 (7)	0.1	64	18	0.6	32(91)	54 (66)	3.1	3 (9)	28 (34)
	F3 1	0.1	62	19	0.5	34 (89)	51 (63)	2.4	4 (11)	30 (37)
	F3 2 (1)	0.1	61	14	0.6	34 (86)	48 (56)	2.9	5 (14)	37 (44)
	F3 3	0.1	62	15	0.7	35 (91)	57 (67)	3.7	3 (9)	28 (33)
	F3 4 (6)	0.1	61	13	0.7	34 (87)	51 (59)	3.3	5 (13)	36 (41)
	F4 1	0.1	66	16	0.7	30 (87)	51 (61)	3	4 (13)	33 (39)
	F4 2	0.1	67	16	0.7	29 (88)	48 (57)	3.9	4 (12)	36 (43)
	F4 3	0.1	60	14	0.7	36 (90)	58 (68)	3.1	4 (10)	28 (32)
700	F1 1 (4)	-	-	-	0.4	87	67	1.3	13	33
	F1 2	0.1	58	23	0.4	38 (92)	59 (77)	1.3	4 (8)	18 (23)
	F1 3 (2)	0.1	43	11	0.5	53 (92)	68 (76)	1.8	5 (8)	21 (24)
	F2 1	0.1	43	11	0.5	51 (89)	65 (73)	1.5	6 (11)	24 (27)
	F2 2 (5)	0.1	44	12	0.5	52 (94)	70 (80)	1.9	4 (6)	18 (20)
	F2 3 (3)	0.1	39	9	0.5	55 (90)	67 (74)	1.6	6 (10)	24 (26)
	F2 4 (7)	0.1	47	14	0.5	48 (92)	70 (81)	1.6	4 (8)	16 (19)
	F3 1	0.1	41	10	0.5	52 (88)	64 (71)	1.5	7 (12)	26 (29)
	F3 2 (1)	0.1	48	13	0.5	48 (92)	66 (76)	1.8	4 (8)	21 (24)
	F3 3	0.1	52	16	0.5	44 (93)	66 (79)	1.7	4 (7)	18 (21)
	F3 4 (6)	0.1	61	21	0.5	36 (93)	61 (77)	2.1	3 (7)	18 (23)
	F4 1	0.1	48	14	0.5	47 (91)	66 (77)	1.5	5 (9)	20 (23)
	F4 2	0.1	57	20	0.4	38 (89)	56 (70)	1.4	5 (11)	24 (30)
	F4 3	0.1	60	20	0.5	37 (92)	62 (77)	1.8	3 (8)	18 (23)

 $^{1}\tau_{1}$ was fixed in the fit; 2 The error in lifetimes values is <10%.

Table S12. Values of time constants (τ_i), normalized (to 100) pre-exponential factors (a_i), fractionalcontributions ($c_i = \tau_i a_i / \Sigma \tau_i a_i$) and standard deviations (σ_i) of the multiexponential function used tofit the fluorescence lifetime decays of CLZ@NaY composites (4.3×10^{-5} M) collected using theindicated filters, upon excitation at 470 nm.

Filter (nm)	Sample	τ 1 (ns)1	a 1 (%)	c 1 (%)	τ ₂ (ns) ²	a2 (%)	c ₂ (%)	τ ₃ (ns) ²	a3 (%)	c ₃ (%)
510-570	F1 1 (5)	0.1	88	49	0.5	11 (92)	30 (58)	4.1	1 (8)	21 (42)
	F1 3 (7)	0.1	74	31	0.5	24 (93)	51 (74)	2.4	2 (7)	18 (26)
	F2 1 (4)	0.1	88	49	0.4	11 (90)	25 (50)	3.8	1 (10)	26 (50)
	F2 2	0.1	60	14	0.6	36 (89)	51 (59)	3.3	4 (11)	35 (41)
	F2 3 (1)	0.1	85	40	0.6	13 (89)	35 (59)	3.5	2 (11)	25 (41)
	F2 4 (3)	0.1	81	38	0.5	16 (88)	37 (59)	2.4	3 (12)	25 (41)
	F2 5	0.1	86	32	0.8	11 (85)	34 (50)	4.7	2 (15)	34 (50)
	F3 1	0.1	86	45	0.5	13 (93)	34 (62)	4	1 (7)	21 (38)
	F3 2	0.1	87	54	0.4	12 (95)	30 (65)	4	1 (5)	16 (35)
	F3 3	0.1	84	42	0.5	15 (93)	38 (65)	3.7	1 (7)	20 (35)
	F3 4	0.1	84	46	0.4	15 (94)	33 (60)	4	1 (6)	21 (40)
	F3 5 (6)	0.1	78	39	0.4	21 (94)	42 (68)	2.8	1 (6)	19 (32)
	F4 1	0.1	83	36	0.5	15 (90)	33 (52)	4.1	2 (10)	31 (48)
	F4 3	0.1	87	33	0.7	11 (85)	30 (45)	4.7	2 (15)	37 (55)
	F4 4 (2)	0.1	88	36	0.7	10 (86)	30 (47)	4.8	2 (14)	34 (53)
700	F1 1 (5)	0.1	41	13	0.4	56 (95)	75 (87)	1.2	3 (5)	12 (13)
	F1 3 (7)	-	-	-	0.4	90	74	1.3	10	26
	F2 1 (4)	0.1	43	6	0.4	55 (96)	91 (96)	1.2	2 (4)	3 (4)
	F2 2	0.1	25	5	0.5	69 (91)	74 (78)	1.5	6 (9)	21 (22)
	F2 3 (1)	0.1	42	14	0.4	54 (93)	73 (85)	1.0	4 (7)	13 (15)
	F2 4 (3)	0.1	42	14	0.4	55 (95)	73 (85)	1.3	3 (5)	13 (15)
	F2 5	0.1	54	22	0.4	45 (98)	73 (94)	1.7	1 (2)	5 (6)
	F3 1	0.1	45	16	0.4	53 (97)	75 (89)	1.5	2 (3)	9 (11)
	F3 2	0.1	52	21	0.4	47 (98)	74 (93)	1.3	1 (2)	5 (7)
	F3 3	0.1	85	44	0.5	14 (93)	36 (65)	3.7	1 (2)	20 (35)
	F3 4	0.1	38	12	0.4	59 (96)	77 (88)	1.2	3 (4)	11 (12)
	F3 5 (6)	0.1	44	15	0.4	53 (94)	71 (83)	1.3	3 (6)	14 (17)
	F4 1	0.1	38	12	0.4	58 (94)	73 (83)	1.4	4 (6)	15 (17)
	F4 3	0.1	53	22	0.4	46 (99)	74 (95)	1.7	1 (1)	4 (5)
	F4 4 (2)	0.1	51	20	0.4	48 (98)	74 (92)	1.6	1 (2)	6 (8)

 1 τ_{1} was fixed in the fit; 2 The error in lifetimes values is <10%.

Table S13. Values of time constants (τ_i), normalized (to 100) pre-exponential factors (a_i), fractional contributions ($c_i = \tau_i a_i / \Sigma \tau_i a_i$) and standard deviations (σ_i) of the multiexponential function used to fit the fluorescence lifetime decays of CLZ@NH4Y composites (4.3×10^{-5} M) collected using the indicated filters, upon excitation at 470 nm.

Filter (nm)	Sample	τ 1 (ns)1	a 1 (%)	c 1 (%)	τ ₂ (ns) ²	a2 (%)	c ₂ (%)	τ ₃ (ns) ²	a3 (%)	c ₃ (%)
510-570	F1 1 (7)	0.1	79	45	0.4	20 (96)	46 (84)	2.1	1 (4)	9 (16)
	F1 2 (6)	0.1	76	41	0.4	23 (97)	49 (83)	2.7	1 (3)	10 (17)
	F1 3	0.1	87	57	0.4	12 (98)	33 (77)	4.8	1 (2)	10 (23)
	F1 4	0.1	90	55	0.5	9 (92)	26 (58)	4.1	1 (8)	19 (42)
	F1 5	0.1	83	56	0.3	16 (97)	33 (76)	2.9	1 (3)	11 (24)
	F1 6 (1)	0.1	92	57	0.5	7 (91)	23 (53)	4.7	1 (9)	20 (47)
	F2 1	0.1	87	58	0.4	12 (96)	32 (75)	3.2	1 (4)	10 (25)
	F2 2	0.1	85	56	0.4	14 (96)	36 (83)	1.8	1 (4)	8 (17)
	F2 3 (5)	0.1	88	53	0.4	11 (95)	28 (59)	4.8	1 (5)	19 (41)
	F2 4 (4)	0.1	91	46	0.4	18 (96)	40 (74)	3.2	1 (4)	14 (26)
	F2 5	0.1	84	56	0.4	15 (97)	39 (89)	1.5	1 (3)	5 (11)
	F2 6 (3)	0.1	88	57	0.4	11 (95)	29 (67)	3.9	1 (5)	14 (33)
	F2 7	0.1	93	51	0.7	6 (87)	25 (50)	4.7	1 (13)	24 (50)
	F3 1	0.1	92	50	0.6	7 (86)	23 (46)	4.4	1 (14)	27 (54)
	F3 2	0.1	91	50	0.5	8 (87)	22 (43)	4.5	1 (13)	28 (57)
	F3 3 (2)	0.1	89	58	0.4	10 (94)	27 (65)	3.4	1 (6)	15 (35)
	F3 4	0.1	91	50	0.5	8 (87)	22 (44)	4.2	1 (13)	28 (56)
	F3 5	0.1	84	53	0.4	15 (97)	39 (83)	3.2	1 (3)	8 (17)
	F3 6	0.1	87	43	0.5	12 (91)	30 (53)	4.5	1 (9)	27 (47)
700	F1 1 (7)	0.1	45	15	0.4	52 (95)	73 (86)	1.2	3 (5)	12 (14)
	F1 2 (6)	0.1	46	17	0.4	53 (98)	78 (94)	1.9	1 (2)	5 (6)
	F1 3	0.1	46	17	0.4	53 (98)	79 (94)	1.2	1 (2)	4 (6)
	F1 4	0.1	42	15	0.4	57 (98)	80 (94)	1.3	1 (2)	5 (6)
	F1 5	0.1	38	12	0.4	60 (96)	79 (90)	1.2	2 (4)	9 (10)
	F1 6 (1)	0.1	42	14	0.4	56 (96)	78 (91)	1.1	2 (4)	8 (9)
	F2 1	0.1	43	15	0.4	54 (95)	76 (89)	0.9	3 (5)	9 (11)
	F2 2	0.1	39	13	0.4	58 (96)	77 (89)	1.2	3 (4)	10 (11)
	F2 3 (5)	0.1	43	15	0.4	55 (97)	78 (91)	1.2	2 (3)	7 (9)
	F2 4 (4)	0.1	43	15	0.4	56 (98)	79 (93)	1.5	1 (2)	6 (7)
	F2 5	0.1	46	21	0.3	52 (96)	71 (90)	0.9	2 (4)	8 (10)
	F2 6 (3)	0.1	43	15	0.4	55 (97)	78 (92)	1.1	2 (3)	7 (8)
	F2 7	0.1	60	27	0.4	39 (99)	71 (98)	1	1 (1)	2 (2)
	F3 1	0.1	51	20	0.4	48 (99)	77 (97)	1.8	1 (1)	3 (3)

F3 2	0.1	66	33	0.4	33 (99)	65 (97)	1.1	1 (1)	2 (3)
F3 3 (2)	0.1	44	16	0.4	54 (97)	78 (93)	1.1	2 (3)	6 (7)
F3 4	0.1	45	17	0.4	54 (99)	81 (97)	1.9	1 (1)	2 (3)
F3 5	0.1	43	15	0.4	55 (96)	75 (89)	1.3	2 (4)	10 (11)
F3 6	0.1	54	22	0.4	45 (98)	73 (93)	1.5	1 (2)	5 (7)

 $^1\,\tau_1$ was fixed in the fit; 2 The error in lifetimes values is <10%.

Figure S7. Lifetime decays normalized to the maximum of intensity of (**A**) CLZ@MCM-41 (4.3×10^{-7} M) and (**B**) CLZ@NaX (4.3×10^{-9} M) collected upon excitation at 470 nm.

Table S14. Values of time constants (i) and normalized (to 100) pre-exponential factors (ai) of themultiexponential function used to fit the fluorescence lifetime decays of CLZ@MCM-41 composites $(4.3 \times 10^{-7} \text{ M})$, collected using the indicated filters, upon excitation at 470 nm.

Filter (nm)	τ_2 (ns) ¹	a2 (%)	τ ₃ (ns) ¹	a3 (%)
510-570	0.5	80	4.2	20
	1.0	73	5.2	27
	0.9	73	6.0	27
	0.8	70	5.0	30
	1.0	72	4.7	28
	1.0	72	5.4	28
	0.9	77	6.0	23
	1.0	75	7.1	25
	0.8	72	5.4	28
	0.9	73	5.6	27
	0.6	87	2.6	13
	0.9	74	5.2	26
	0.8	73	5.2	27
	1.2	78	5.6	22
	0.8	67	4.2	33
700	0.4	86	2.1	14
	0.4	83	3.0	17
	0.9	100	-	-
	0.6	100	-	-
	1.0	100	-	-
	1.0	100	-	-
	0.8	100	-	-
	1.1	100	-	-
	1.0	100	-	-
	1.2	100	-	-
	0.6	82	1.9	18
	0.7	100	-	-
	1.3	100	-	-
	1.0	100	-	-
	0.8	100	-	-

¹ The error in lifetimes values is <10%.

Table S15. Values of time constants (i) and normalized (to 100) pre-exponential factors (ai) of the multiexponential function used to fit the fluorescence lifetime decays of CLZ@NaX composites (4.3 × 10⁻⁹ M), collected using the indicated filters, upon excitation at 470 nm.

Filter (nm)	$\tau_2 (ns)^1$	a2 (%)	τ ₃ (ns) ¹	a3 (%)
510-570	1.6	58	5.2	42
	0.9	64	4.5	36
	1.2	67	4.5	33
	1.6	79	6.4	21
	1.8	57	5.4	43
	1.5	62	5.2	38
	1.1	55	4.6	45
	1.2	72	5.0	28
	1.3	72	5.6	28
	1.3	66	4.3	34
	1.6	58	4.9	42
	1.6	76	6.0	24
	1.0	78	3.5	22
	1.4	67	5.3	33
	1.6	63	5.1	37
	1.5	72	5.7	28
	1.4	73	5.5	27
700	0.6	81	2.9	19
	1.0	100	-	-
	0.6	82	3.1	18
	1.6	76	6.0	24
	0.5	75	2.7	25
	0.5	81	3.0	19
	0.4	82	2.7	19
	0.5	86	2.8	14
	0.3	71	1.9	29
	0.7	84	3.2	16
	0.4	80	2.9	20
	0.6	84	3.4	16
	0.5	63	2.5	37
	0.5	84	2.9	16
	0.6	82	3.4	18
	0.6	82	3.1	18
	0.5	84	3.0	16

¹ The error in lifetimes values is <10%.