

Supplementary material

Experimental Approaches and Computational Modeling of Rat Serum Albumin and Its Interaction with Piperine

Gabriel Zazeri ¹, Ana Paula Ribeiro Povinelli ¹, Marcelo de Freitas Lima ² and Marinônio Lopes Cornélio ^{1,*}

- ¹ Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, CEP 15054-000, São José do Rio Preto, SP, Brazil; gabriel.zazeri@unesp.br (G.Z.), ana.povinelli@unesp.br (A.P.R.P.)
- ² Departamento de Química, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, CEP 15054-000, São José do Rio Preto, SP, Brazil. marcelo.f.lima@unesp.br
- * Correspondence: m.cornelio@unesp.br

Figure S1 shows that methanol did not influenced RSA fluorescence signal. In this way, the fluorescence quenching observed when piperine was added to the system was due to the molecule.

Figure 1. RSA fluorescence intensity at 340nm varying methanol concentrations. [RSA]=4µM, [methanol]:0 - 14µL. In these experiments temperature remained at 288K, and RSA was excited at 295nm.

Figure S2 shows that piperine did not have strong influence in the fluorescence decay.

Figure S1: Time-dependent fluorescence decay of (a) RSA and (\rightarrow g) in the RSA: Piperine stoichiometries 1:0.5, 1:1, 1:1.5, 1:2, 1:2.5 and 1:3.

Time-dependent fluorescence decay was fitted using multiexponencial decay (Equation 10). The best fit was obtained with two lifetimes τ_1 and τ_2 (Table S1). The average time (τ_{avg}) was calculated by Equation 11 considering the contributions, α_1 and α_2 , of each component.

RSA : Piperine	α_1	τ1 (ns)	α2	τ ₂ (ns)	τ _{avg} (ns)
1:0	0.09	1.20	0.91	6.67	6.43
1:0.5	0.09	1.13	0.91	6.50	6.41
1:1	0.1	1.16	0.9	6.48	6.37
1:1.5	0.11	1.07	0.89	6.43	6.32
1:2	0.12	0.98	0.88	6.35	6.24
1:2.5	0.12	0.88	0.88	6.28	6.17
1:3	0.14	0.92	0.86	6.29	6.16

Table S1: Tryptophan lifetime in different stoichiometries RSA:Piperine.

The stability of RSA secondary structures at 288, 298 and 308K was verified by circular dichroism experiments (Figure S3 and Table S2).

Figure S2: Circular Dichroism of RSA at 288K, 298K and 308K. [RSA]=4 μM

Circular dichroism experiments also showed that piperine did not cause major structural change in RSA (Figure S4 and Table S2).

Figure S3: Circular Dichroism of RSA with piperine (1:6) and 1.2% of methanol at 288K, 298K and 308K. [RSA]= 4μ M.

Table 2. Main composition of secondary structures of RSA pure at 288K, 298K and 308K.And RSA:Piperine(1:6) with 1.2% at 288K, 298K and 308K.

Amostra	α-helix	Turns	Random Coil
RSA 288K	63%	17%	16%
RSA 298K	63%	17%	17%
RSA 308K	62%	17%	19%
RSA+Pip 288K	63%	20%	12%
RSA+Pip 298K	63%	20%	14%
RSA+Pip 308K	60%	20%	17%

Figure S4 presents the sequence alignment of RSA and ESA (PDB: 5HOZ). The sequences present 73% of similarity, which makes the use of comparative modeling possible.

RSA ESA(5HOZ)	1 1	EAHKSEIAHRFKDLGEQHFKGLVLIAFSQYLQKCPYEEHIKLVQEVTDFAKTCVADENAE DTHKSEIAHRFNDLGEKHFKGLVLVAFSQYLQQCPFEDHVKLVNEVTEFAKKCAADESAE ::***********************************	60 60
RSA ESA(5HOZ)	61 61	NCDKSIHTLFGDKLCAIPKLRDNYGELADCCAKQEPERNECFLQHKDDNPNLPPFQRPEA NCDKSLHTLFGDKLCTVATLRATYGELADCCEKQEPERNECFLTHKDDHPNLPKL-KPEP ***********************************	120 119
RSA ESA(5HOZ)	121 120	EAMCTSFQENPTSFLGHYLHEVARRHPYFYAPELLYYAEKYNEVLTQCCTESDKAACLTP DAQCAAFQEDPDKFLGKYLYEVARRHPYFYGPELLFHAEEYKADFTECCPADDKLACLIP :* *::***:* .**:**:********************	180 179
RSA ESA(5HOZ)	181 180	KLDAVKEKALVAAVRORMKCSSMORFGERAFKAWAVARMSORFPNAEFAEITKLATDVTK KLDALKERILLSSAKERLKCSSFONFGERAVKAWSVARLSOKFPKADFAEVSKIVTDLTK ****:**: *::::::::::::::::::::::::::::	240 239
RSA ESA(5HOZ)	241 240	INKECCHGDLLECADDRAELAKYMCENQATISSKLQACCDKPVLQKSQCLAEIEHDNIPA VHKECCHGDLLECADDRADLAKYICEHQDSISGKLKACCDKPLLQKSHCIAEVKEDDLPS ::***********************************	300 299
RSA ESA(5HOZ)	301 300	DLPSIAADFVEDKEVCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKC DLPALAADFAEDKEICKHYKDAKDVFLGTFLYEYSRRHPDYSVSLLLRIAKTYEATLEKC ***::****.***:**:*:*:*:***************	360 359
RSA ESA(5HOZ)	361 360	CAEGDPPACYGTVLAEFQPLVEEPKNLVKTNCELYEKLGEYGFQNAVLVRYTQKAPQVST CAEADPPACYRTVFDQFTPLVEEPKSLVKKNCDLFEEVGEYDFQNALIVRYTKKAPQVST ***.***** **: :* *******.***.**::*::***.****	420 419
RSA ESA(5HOZ)	421 420	PTLVEAARNLGRVGTKCCTLPEAQRLPCVEDYLSAILNRLCVLHEKTPVSEKVTKCCSGS PTLVEIGRTLGKVGSRCCKLPESERLPCSENHLALALNRLCVLHEKTPVSEKITKCCTDS ***** .*.**:**:**.***:*****************	480 479
RSA ESA(5HOZ)	481 480	LVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPDKEKQIKKQTALAELVKHKPKAT LAERRPCFSALELDEGYVPKEFKAETFTFHADICTLPEDEKQIKKQSALAELVKHKPKAT *.********* :** ***********************	540 539
RSA ESA(5HOZ)	541 540	EDQLKTVMGDFAQFVDKCCKAADKDNCFATEGPNLVARSKEALA KEQLKTVLGNFSAFVAKCCGAEDKEACFAEEGPKLVASSQLALA ::*****:*:*: ** *** * **: *** ***:*** *: ***	584 583

Figure S5: Rat serum albumin (RSA) and Equine serum albumin (ESA) sequence alignment with 73% of similarity.

The "PDBQT file of optimized piperine structure" shows the position of each atom in the optimized piperine structure and their respective charges. The structures and charges presented in this file were used in molecular docking and molecular dynamic calculations.

PDBQT file of optimized piperine structure

REMARK	0 active tors	ions:	:			
REMARK	status: ('A' for Active; 'I' for Inactive)					
REMARK	I between atoms: C_1 and C_9					
REMARK	I betwe	en at	toms: C_2 and C_12			
REMARK	I betwe	en at	toms: C_13 and C_14			
REMARK	I betwe	en at	toms: C_14 and N_16			
ROOT						
HETATM	1 C LIG	1	8.391 2.457 2.690 0.00 0.00 -0.182 C			
HETATM	2 C LIG	1	9.341 1.820 3.405 0.00 0.00 -0.203 C			
HETATM	3 C LIG	1	2.986 2.020 0.268 0.00 0.00 0.272 C			
HETATM	4 O LIG	1	4.153 2.854 0.205 0.00 0.00 -0.411 OA			
HETATM	5 O LIG	1	3.388 0.783 0.883 0.00 0.00 -0.405 OA			
HETATM	6 C LIG	1	5.074 2.272 1.039 0.00 0.00 0.378 A			
HETATM	7 C LIG	1	4.613 1.027 1.442 0.00 0.00 0.321 A			
HETATM	8 C LIG	1	6.295 2.758 1.434 0.00 0.00 -0.468 A			
HETATM	9 C LIG	1	7.091 1.944 2.275 0.00 0.00 0.183 A			
HETATM	10 C LIG	1	6.607 0.688 2.671 0.00 0.00 -0.238 A			
HETATM	11 C LIG	1	5.361 0.209 2.261 0.00 0.00 -0.341 A			
HETATM	12 C LIG	1	10.597 2.431 3.748 0.00 0.00 0.063 C			
HETATM	13 C LIG	1	11.581 1.813 4.428 0.00 0.00 -0.467 C			
HETATM	14 C LIG	1	12.840 2.515 4.769 0.00 0.00 0.664 C			
HETATM	15 O LIG	1	12.923 3.750 4.656 0.00 0.00 -0.699 OA			
ENDROO	Г					
BRANCH	14 16					
HETATM	16 N LIG	1	13.884 1.775 5.241 0.00 0.00 -0.238 N			
HETATM	17 C LIG	1	15.104 2.443 5.704 0.00 0.00 0.035 C			
HETATM	18 C LIG	1	16.311 2.062 4.844 0.00 0.00 0.058 C			
HETATM	19 C LIG	1	16.481 0.542 4.780 0.00 0.00 -0.032 C			
HETATM	20 C LIG	1	15.175 -0.131 4.347 0.00 0.00 0.088 C			
HETATM	21 C LIG	1	13.996 0.314 5.223 0.00 0.00 -0.053 C			
ENDBRANCH 14 16						
TORSDOF	0					

Figure S6 shows the theoretic Raman Spectrum calculated after the optimization of piperine by *ab initio* methods.

Figure S7: Piperine Raman spectrum calculated by *ab initio* methods.

Figures below present the stability of RSA during the 50ns of molecular dynamics when piperine was in different binding sites. The root mean square deviation (RMSD) and the radius of gyration (RG) revealed small structural fluctuations for RSA, regardless the site where piperine is in. The stability of the complex RSA-Piperine was verified by the distance from the center of geometry (COG) of piperine to COG of RSA.

Piperine in site 1

Figure S7: RMSD of RSA calculated from three simulations with piperine in Site 1 (RSA RMSD 1, 2 and 3), and the average of them (RSA RMSD Average).

Figure S8: RG of RSA calculated from three simulations with piperine in Site 1 (RSA radius of gyration 1, 2 and 3), and the average of them (RSA radius of gyration Average).

Figure S9: Distance from COG of RSA to COG of piperine (in site 1) calculated from three simulations (RSA-Piperine 1, 2 and 3) and the average of them (RSA-Piperine Average).

Piperine in site 2

Figure S10: RMSD of RSA calculated from three simulations with piperine in Site 2 (RSA RMSD 1, 2 and 3), and the average of them (RSA RMSD Average).

Figure S9: RG of RSA calculated from three simulations with piperine in Site 2 (RSA radius of gyration 1, 2 and 3), and the average of them (RSA radius of gyration Average).

Figure S102: Distance from COG of RSA to COG of piperine (in site 2) calculated from three simulations (RSA-Piperine 1, 2 and 3) and the average of them (RSA-Piperine Average).

Figure S11: RMSD of RSA calculated from three simulations with piperine in Site 3 (RSA RMSD 1, 2 and 3), and the average of them (RSA RMSD Average).

Figure S12: RG of RSA calculated from three simulations with piperine in Site 3 (RSA radius of gyration 1, 2 and 3), and the average of them (RSA radius of gyration Average).

Figure S13: Distance from COG of RSA to COG of piperine (in site 3) calculated from three simulations (RSA-Piperine 1, 2 and 3) and the average of them (RSA-Piperine Average).