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Abstract: The biochemical and functional differences between oxidative and glycolytic muscles
could affect human muscle health and animal meat quality. However, present understanding of the
epigenetic regulation with respect to lncRNAs and circRNAs is rudimentary. Here, porcine oxidative
and glycolytic skeletal muscles, which were at the growth curve inflection point, were sampled
to survey variant global expression of lncRNAs and circRNAs using RNA-seq. A total of 4046
lncRNAs were identified, including 911 differentially expressed lncRNAs (p < 0.05). The cis-regulatory
analysis identified target genes that were enriched for specific GO terms and pathways (p < 0.05),
including the oxidation-reduction process, glycolytic process, and fatty acid metabolic. All these
were closely related to different phenotypes between oxidative and glycolytic muscles. Additionally,
810 circRNAs were identified, of which 137 were differentially expressed (p < 0.05). Interestingly,
some circRNA-miRNA-mRNA networks were found, which were closely linked to muscle fiber-type
switching and mitochondria biogenesis in muscles. Furthermore, 44.69%, 39.19%, and 54.01% of
differentially expressed mRNAs, lncRNAs, and circRNAs respectively were significantly enriched in
pig quantitative trait loci (QTL) regions for growth and meat quality traits. This study reveals a mass
of candidate lncRNAs and circRNAs involved in muscle physiological functions, which may improve
understanding of muscle metabolism and development from an epigenetic perspective.

Keywords: long non-coding RNAs; oxidative muscle; glycolytic muscles; pig

1. Introduction

Skeletal muscle accounts for approximately 40% of the total body mass in mammals [1], and
is heterogeneous in nature. Based on the heterogeneous characteristic of movement rates and
metabolic types, skeletal muscle fibers are broadly classified into different isoforms. For example,
fast-twitch muscles, characterized by glycolytic metabolism and transient contractions, are generally
referred to as white muscles. In contrast, slow-twitch muscles with more myoglobin, oxidative
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enzymes, and enduring of continuous movement, are called red muscles [2]. Regarding movement,
the heterogeneity of muscle fibers allows muscles to work for various motor tasks, such as body posture,
locomotion, jumping and kicking [3]. In terms of metabolism, fiber type diversification may also be
linked to whole body metabolism of plasma glucose, which agrees with previous studies that have
shown that slow-oxidative muscle fibers were more powerful than fast-glycolytic fibers in absorbing
glucose from blood [4]. Increasing the composition ratio of fast-glycolytic fibers may contribute
to insulin resistance and type-2 diabetes [5,6]. Other differential phenotypes of internal structures
(mitochondria volume, myoglobin, and lipid content) and extracellular surroundings (capillary density
and arteriole responsiveness) in heterogeneous muscle fibers also contribute to differential metabolic
activities, such as ATP consumption and regeneration [7,8], gluconeogenesis [9,10], lactate, and fatty
acid transport [11,12].

The diversity in contraction physiology and metabolic activity of different fiber types results not
only in widely biological functions, but also in differential susceptibility to certain muscle diseases [13].
For example, Webster et al. (1988) showed that glycolytic fibers were much more susceptible to
degeneration than oxidative fibers in duchenne muscular dystrophy (DMD) patients [14], which
also agreed with the fact that glycolytic fibers were more susceptible to dystrophy characterized
in facioscapulohumeral muscular dystrophy (FSHD), congenital fiber-type disproportion (CFTD),
myotonic dystrophies type 2 (DM2), and aging-induced sarcopenia patients [15–18]. Although it’s well
known that muscle diseases often affect particular fiber types, the underlying molecular mechanisms
involved with the phenotype remain largely unclear. Furthermore, heterogeneous muscle fibers are
also closely related to the process of muscle converting to meat in animals, thereby influencing the meat
quality. For example, the composition ratio of glycolytic muscle fiber is negatively associated with
pH45 value (45 min postmortem), and oxidative muscle fiber is negatively associated with drip loss [19].
It’s well known that the diversity of muscle metabolic activities is closely related with human muscle
diseases and animal meat quality. However, different muscles have consistent DNA sequences because
they originate from the same zygote. Therefore, epigenetic regulation is the main mechanism underlying
different phenotypes [20]. With the development of high throughput sequencing techniques, more
and more sequencing methods are being used to explore the genetic mechanisms underlying diverse
biological functions between oxidative and glycolytic muscles. For example, mRNA transcriptome,
microRNA transcriptome, and DNA methylome were used to identify novel regulatory factors which
are involved with the diverse phenotypes [20–22]. Moreover, recent reports have shown that long
noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) may play important roles in various
biological processes, including cell differentiation and development, and also in some diseases [23–26].
However, little is known about the biological functions and molecular mechanisms of lncRNAs and
circRNAs in regulating diverse biological characteristics between oxidative and glycolytic muscles.
Our previous study found that muscle tissues have maximum global transcriptional activity at the age
of growth curve inflection point (maximum metabolism rate) [27]. Therefore, in this study, to explore
the maximum non-coding RNA transcriptome difference between oxidative and glycolytic muscles,
pigs were used as a model to identify distinct lncRNAs and circRNAs between oxidative and glycolytic
muscles at growth curve inflection point. It’s well known that pigs are an ideal biomedical model for
metabolic studies because their physiology, metabolism, and organ sizes are similar to humans [28].
We believe this study will uncover enormous novel signaling pathways related to biochemical and
functional differences between oxidative and glycolytic muscles, and will also provide important
insights into muscle disease pathologies and potential treatments.

2. Results and Discussion

2.1. Sigmoidal Growth Curve of Qingyu Pigs

In a classical growth development sigmoidal curve, the mammalian postnatal growth rate
continues to increase slowly until it reaches the maximum at growth inflection point; it then decreases
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asymptotically [29]. Our previous study has shown that pigs have higher global transcription and
translation activities at inflection point than that at non-inflection point [27]. Therefore, to explore the
maximum diversity of global transcriptome between oxidative and glycolytic skeletal muscles, logistic
function was used to fit the growth curve of Qingyu pigs and predict the growth inflection point [30].
According to the growth data from 126 female Qingyu pigs ranging from birth to 400 days of age,
we found that logistic models had a good fit with a typical sigmoidal curve (Figure 1 and Supplementary
Table S1); the goodness of fit reached 0.97 (Supplementary Table S1). As shown in Figure 1A, Qingyu
pigs reached the inflection point of the growth curve at the age of 177.96 days (Supplementary Table
S2). Compared to commercialized pig breeds (such as Durocs), Qingyu pigs reached their inflection
point later, but were similar with other Chinese native breeds [29,31]. This agreed with the fact that
native pig breeds have a lack of long-term artificial selection for the purpose of improving growth rate.
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Figure 1. Growth curve of Qingyu pigs. (A) Sigmoidal curve fitted using logistic model, n = 126.
(B) Daily gain of Qingyu pigs fitted by using a logistic equation, n = 126.

2.2. Differences in Phenotypic Traits between Oxidative and Glycolytic Skeletal Muscles

Based on the revealed inflection point, oxidative and glycolytic skeletal muscles of Qingyu pigs
were sampled at 178 days of age for further phenotypes and transcriptome analysis. As shown in
Figure 2A,B, the composition of oxidative myofiber in psoas major muscle (PMM) was approximately
three times that of longissimus dorsi muscle (LDM). This result agreed with a previous report that LDM
and PMM were typical glycolytic and oxidative muscle tissue, respectively [32]. In Figure 2C, the
color of LDM had a higher L* (measure of lightness) and a lower a* (measure of redness) than that
of PMM; this agrees with previous studies showing that oxidative fibers contained approximately
50% more myoglobin than glycolytic fibers [33]. Moreover, compared with PMM, LDM had a lower
mitochondrial DNA content and a lower glucose and triglyceride concentration (Figure 2D–F). LDM,
however, had a higher glycogen and lactic acid content (Figure 2G,H). Those phenotypes were closely
related to different mechanisms of glycolysis and oxidative phosphorylation between oxidative and
glycolytic muscles. Previous studies have shown that oxidative muscles produced ATP by oxidative
mitochondrial processes, and contributed to the sustainability of muscle contractile activity for a long
time without showing fatigue. However, glycolytic muscles were easily fatigued because they relied
upon glycolytic processes to generate ATP rapidly, which was responsible for glycogen and glucose
metabolism leading to lactate accumulation in muscles [2]. Additionally, the diverse lipid contents and
the capacity of plasma glucose uptake in different myofiber types were also linked to the development
of obesity and type-2 diabetes [34,35]. Therefore, considering the consistent DNA sequence of oxidative
and glycolytic muscles from the same donor, the diversity ofmetabolic properties may be significantly
regulated by epigenetic regulatory factors, such as lncRNAs and circRNAs.
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Figure 2. Different phenotypic indexes between oxidative (PMM) and glycolytic (LDM) skeletal muscles.
(A) ATPase staining identifies slow-twitch (Type I) muscle fiber (dark color) and fast-twitch (Type II)
muscle fiber (light color) in LDM and PMM, n = 8. (B) The muscle fiber types ratio (Fast/Slow) between
LDM and PMM, n = 8. (C) The color of fresh samples of LDM and PMM, n = 8. (D) Mitochondrial DNA
copy number per cell in LDM and PMM, n = 8. (E–H) The concentration of glucose, triglyceride, lactate,
and glycogen in LDM and PMM, respectively, n = 8. Data are means ± SEM. Statistical significance was
calculated by Student’s t-test. Significant difference levels: * p < 0.05, ** p < 0.01.

2.3. Identification of mRNAs, lncRNAs, and cricRNAs in Oxidative and Glycolytic Skeletal Muscles

As shown in Table 1, a total of 540,198,540 raw reads (81.02 gigabases) were generated from the
6 cDNA libraries, representing approximately 34× coverage of the complete pig genome (Sus scrofa
11.1). After discarding adaptor sequences and low-quality reads, approximately 58.98–63.15% of all
reads were uniquely and symmetrically mapped to the pig chromosomes (Figure 3): 29.68–31.76%
and 29.30–31.39% of all reads were mapped to sense strand and antisense strand, respectively
(Supplementary Table S4). Meanwhile, 0.72–1.10% of back-spliced junction reads were obtained for
further circRNA identification (Supplementary Table S3). In this study, only the transcript expressed
in all three biological replicates can be classified as the kind of expressed transcript, and used for
subsequent analysis. Consequently, 15,667 and 15,777 known mRNA transcripts expressed in oxidative
and glycolytic muscle were identified, respectively. A total of 3663 and 3539 novel lncRNA transcripts
were identified from oxidative and glycolytic muscle, respectively. A total of 766 and 776 novel circRNA
transcripts were identified from oxidative and glycolytic muscle, respectively (Figure 3).

Table 1. Summary of transcriptome data.

Sample Raw Data
(Reads)

Clean Data
(Reads)

Data Size
(Gb)

Clean Data
Q20 (%)

GC Content
(%)

rRNA
Reads (%)

LDM_1 90164014 89626552 13.52 96.75 52.52 0.56
LDM_2 89601234 89357710 13.44 96.88 50.84 0.26
LDM_3 89028092 88835098 13.35 96.75 53.75 0.21
PMM_1 90586046 90269524 13.59 96.77 51.7 0.33
PMM_2 90321580 89987360 13.55 96.44 51.41 0.35
PMM_3 90497574 90141574 13.57 96.5 51.46 0.38
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Figure 3. The distribution of sequenced reads and expressed transcripts in muscles. The left panel
represented genome-wide distribution of sequenced reads in pig chromosomes. The right panel of
Venn diagrams represented all the numbers of expressed mRNAs, lncRNAs, and circRNAs between
LDM and PMM.

To further explore the global transcriptional changes, a total of 810 differentially expressed
mRNAs were identified between oxidative and glycolytic skeletal muscles, including 265 highly
expressed genes in LDM and 545 highly expressed genes in PMM (Figure 4A). Also, 911 differentially
expressed lncRNAs were identified from oxidative and glycolytic muscles, including 789 highly
expressed lncRNAs in LDM, and 122 highly expressed lncRNAs in PMM (Figure 4B). In addition,
137 differentially expressed circRNAs between oxidative and glycolytic muscles were identified,
comprising 12 highly expressed circRNAs in LDM, and 125 highly expressed cricRNAs in PMM
(Figure 4C). The heat map of hierarchical clustering analysis indicated that all differentially expressed
mRNAs, lncRNAs, and circRNAs were highly reproducible (Figure 4). These results prove the high
reproducibility and reliability of transcriptome profiling performed in the present study.
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2.4. Function Enrichment Analysis of Nearest Neighbor Genes of Differentially Expressed lncRNAs

In the present study, a total of 4046 lncRNAs were obtained from pig skeletal muscles, most of
which were defined as intergenic lncRNAs (80.48%) (Supplementary Table S4 and Figure S1). To explore
differential features between lncRNAs and mRNAs, the average expression levels of 4046 lncRNAs
and 16,374 mRNAs were estimated as log10 (FPKM + 1). This showed that the average expression
level of lncRNAs was lower than that in mRNAs (Figure 5A), which was similar to previous findings
in pig adipose tissues [36]. In addition, we found that lncRNAs with an average length of 754 bp and
2.8 exons were shorter than mRNAs with an average length of 2453 bp and 8.9 exons (Figure 5B,C).
This was in accordance with previous studies showing that lncRNAs were shorter in length and had
fewer exons than protein coding transcripts [37,38]. Furthermore, it revealed that the average length of
the predicted ORFs in the lncRNAs was 70.83 bp. However, the average length of mRNA ORFs was
463.65 bp (Figure 5D), which agreed with a previous study reported the typical characterization of
lncRNAs [39]. These results suggest that the identified lncRNAs in the present study are highly reliable.
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Figure 5. Comparison of genomic features of mRNAs and lncRNAs. (A) Expression levels of total
mRNAs and lncRNAs using log10 (FPKM + 1). (B) The transcript length of mRNAs and lncRNAs.
The x axis represents the length of transcripts, and the y axis represents the composing proportion.
(C) Distribution of exon numbers of mRNAs and lncRNAs. (D) Distribution of open reading frames
(ORFs) lengths in mRNAs and lncRNAs.

Lots of research projects have shown that lncRNAs may act in cis-regulation and affect the gene
expression of their chromosomal neighborhood within 10 kb of upstream and downstream [40,41].
Therefore, to investigate the possible functions of lncRNAs on muscle physiology, protein-coding
genes were searched in 10-kb upstream and downstream of all the identified differentially expressed
lncRNAs. We found that 453 lncRNAs were significantly differentially expressed between LDM and
PMM, which were transcribed closely to (<10 kb) 481 differentially expressed mRNAs. Gene Ontology
(GO) analysis of the cis lncRNA target genes was performed to explore their functions. We found
that 75 GO terms were significantly enriched (p < 0.05), and the top ten enriched terms included
“oxidation-reduction process”, “glycolytic process”, “fatty acid metabolic process”, and “GTPase
activator activity” (Figure 6A). Previous studies have shown that glycolytic muscles have a lower
oxidative capacity, ATP synthesis efficiency, and mitochondria content than oxidative muscles [2,42].
This agrees with the results of enriched GO terms related to “ATP binding”, “response to oxidative
stress”, “oxidoreductase activity”, and “electron carrier activity” in the present study (Figure 6A).
Interestingly, we also found genes pyruvate kinase isoenzyme M2 (PKM2) and hexokinase 2 (HK2), both of
which were annotated with a glycolytic process-related GO term (GO:0006096). PKM2 and HK2 are the
predominant genes encoding rate-limiting enzymes that catalyze the glycolysis reaction by degrading
glycogen [42]. All these also were supported by the phenotypes of LDM, which have a higher glycogen
and lactate content than PMM (Figure 1G,H). These results suggest that glycolytic potential in muscles
may be regulated by actions of lncRNAs on these neighboring protein-coding genes. Additionally,
our previous studies found that GTPase superfamily (Ras, Rac, Rho, Rab, and Ran) regulated different
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phenotypic traits between oxidative and glycolytic skeletal muscles through signaling cascades and
feedback loop regulation [20]. Here, we found a significantly enriched GO term related to “Rho protein
signal transduction” (GO:0035023) and “GTPase activator activity” (GO:0005096) (Figure 6A).

Int. J. Mol. Sci. 2019, 20, x 8 of 19 

 

found that GTPase superfamily (Ras, Rac, Rho, Rab, and Ran) regulated different phenotypic 
traits between oxidative and glycolytic skeletal muscles through signaling cascades and 
feedback loop regulation [20]. Here, we found a significantly enriched GO term related to “Rho 
protein signal transduction” (GO:0035023) and “GTPase activator activity” (GO:0005096) 
(Figure 6A). 

Potential targets of lncRNAs in cis-regulatory relationships were predicted using pathway 
analysis, which showed that the top ten Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways were related to “fatty acid metabolism”, “PPAR signaling pathway”, “oxidative 
phosphorylation”, and “glycolysis” (Figure 6B). Previous studies have found that triglyceride 
concentration (7 mM vs. 4.2 mM) and lipid droplets (0.5% vs. 0.1%) in slow (oxidative) fibers 
are lower than that in fast (glycolytic) fibers [43,44]. Here, we found genes, including fatty acid 
translocase (FAT/CD36) and fatty acid-transport protein 6 (FATP6), were annotated to “fatty 
acid biosynthesis” pathway (ko.00061). These two genes were proven to regulate the process 
of transferring fatty acid from serum into muscle [45]. The PPAR signaling pathway was 
involved in the regulation of PPARβ-PGC1α signaling cascade, which is the most crucial 
network responsible for fiber-type switching [34]. Therefore, these findings indicate that 
lncRNAs play an important role in cis-regulating different phenotypic traits between oxidative 
and glycolytic skeletal muscles. 

 

Figure 6. Functional enrichment analysis of differentially expressed cis lncRNA target genes 
between LDM and PMM. (A) Gene Ontology (GO) terms and (B) KEGG pathways enriched 

Figure 6. Functional enrichment analysis of differentially expressed cis lncRNA target genes between
LDM and PMM. (A) Gene Ontology (GO) terms and (B) KEGG pathways enriched for neighboring
target genes of DE lncRNAs (cis-regulation). Benjamin-corrected modified Fisher’s exact test was used
to calculate the p values.

Potential targets of lncRNAs in cis-regulatory relationships were predicted using pathway
analysis, which showed that the top ten Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
were related to “fatty acid metabolism”, “PPAR signaling pathway”, “oxidative phosphorylation”,
and “glycolysis” (Figure 6B). Previous studies have found that triglyceride concentration (7 mM
vs. 4.2 mM) and lipid droplets (0.5% vs. 0.1%) in slow (oxidative) fibers are lower than that in fast
(glycolytic) fibers [43,44]. Here, we found genes, including fatty acid translocase (FAT/CD36) and
fatty acid-transport protein 6 (FATP6), were annotated to “fatty acid biosynthesis” pathway (ko.00061).
These two genes were proven to regulate the process of transferring fatty acid from serum into
muscle [45]. The PPAR signaling pathway was involved in the regulation of PPARβ-PGC1α signaling
cascade, which is the most crucial network responsible for fiber-type switching [34]. Therefore, these
findings indicate that lncRNAs play an important role in cis-regulating different phenotypic traits
between oxidative and glycolytic skeletal muscles.
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2.5. Function Analysis of Differentially Expressed circRNAs between Oxidative and Glycolytic Muscles

Recently, many studies have shown that circRNA expressions could be regulated by linear
transcripts derived from host genes [46,47]. Therefore, to explore the mechanism of circRNAs in
regulating muscle physiology, circRNA host genes were used to perform a function enrichment analysis
using DAVID software. The top ten significantly over-represented gene ontology (GO) terms were
related to “motor activity”, “transition between fast and slow fiber”, and “ATP metabolic process”
(Figure 7). The top ten significantly enriched KEGG pathway were related to “PPAR signaling”,
“calcium signaling”, and “fatty acid metabolism” (Figure 7). These results were highly consistent
with the cis-regulatory function of lncRNAs, and also strongly related with different phenotypic
traits between LDM and PMM. This implied that circRNA host genes may have important biological
functions by regulating circRNA expressions. Interestingly, we found that differentially expressed
circRNA153, circRNA41, and circRNA69 were transcribed from MYH1 (coding MyHC-2X protein),
MYH7 (coding MyHC-β protein), and MYH2 (coding MyHC-2A protein) gene, respectively. These
results suggest that the three circRNAs may play important roles in regulating fiber type heterogeneity
in muscles.
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Previous researchers have found circRNAs served as miRNA sponges which could negatively
regulate the expression levels of miRNAs by competing endogenous RNA (ceRNA) networks [48,49].
Here, potential targets of circRNAs were predicted based on the complementary seed sequences
of miRNAs (2–8 bp). The top ten differentially expressed circRNAs between LDM and PMM were
shown in Table 2, and only one circRNA was up-regulated in LDM. On the basis of bioinformatics
analysis, two of the ten cicrRNAs, circRNA290 and circRNA9210, were found to share binding sites
with seed sequences of miR-23a and miR-27b. Interestingly, previous studies have shown miR-23a and
miR-27b could reduce the composition ratio of slow myosin heavy chain isoform by targeting myocyte
enhancer factor 2C (MEF2C) and forkhead box j3 (Foxj3), respectively [50,51]. In consistent with previous
findings, circRNA290 and circRNA9210, which targeted with miR-23a and miR-27b and also decreased
the expression of miR-23a and miR-27b, resulting in increasing expressions of target genes (MEF2C and
Foxj3) (Figure 8), were highly expressed in PMM. Interestingly, the expression pattern of these genes
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agreed with the phenotype of PMM, which has a higher slow-oxidative myofiber proportion than
LDM. These results suggest that circRNA290-miR27b-Foxj3 and circRNA9210-miR-23a-MEF2C networks
have a potential role in regulating fiber-type switching. Additionally, previous study has found
SIRT1 (target of miR-217 [52]) could induce mitochondrial biogenesis by deacetylation of PGC-1α [53].
As shown in Figure 8, the expression pattern of circRNA41-miR-217-SIRT1 network in LDM and PMM
was consistent with the phenotype of high mitochondria content in PMM (Figure 2D). Overall, these
findings indicate that circRNAs are a critical factor in regulating physiological function in muscles by
competing endogenous miRNAs.

Table 2. The top ten differentially expressed circRNAs between LDM and PMM.

Accession Fold Change
(LDM/PMM) Host Gene Sponge miRNAs

ciRNA290 −16.97 PAN2 miR-133a, miR-150, miR-221, miR-23a,
miR-23b, miR-27a, miR-27b, miR-30b

circRNA8413 −7.08 AQP4 miR-9823
circRNA17323 −5.94 C11orf70 miR-9859
circRNA16211 −5.38 PANK1 miR-22, miR-339, miR-339, miR-676
circRNA5396 −5.28 PANK1 miR-22, miR-676

circRNA10701 4.99 SLC6A20 miR-2320, miR-4335, miR-885
ciRNA41 −4.07 MYH7 miR-217

ciRNA296 −4.00 CCDC88A miR-421
circRNA12969 −3.82 CLIP4 miR-221, miR-23a, miR-23b, miR-27a,

circRNA9210 −3.77 CLIP4 miR-133a, miR-145, miR-150, miR-23a,
miR-23b, miR-27a, miR-27b
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2.6. QTL Enrichment Analysis of Differentially Expressed Transcripts

Previous studies have reported that heterogeneous muscle fibers were closely related to animal
economic traits, such as meat quality and growing development [54,55]. To explore the differentially
expressed transcripts related to pig growth and meat quality traits, an enrichment analysis was
performed with these differentially expressed mRNAs, lncRNAs, and circRNAs though BLAST
analysis with a high confidence and narrowed (<2 Mb) QTL interval. As shown in Table 3, 362 (44.69%)
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differentially expressed mRNAs had a significant enrichment in QTL regions. For example, CPT2
was localized to chromosome 6 within the interval of QTLs for saturated fatty acid content. FNDC1
was localized to the interval of QTLs for drip loss (Supplementary Table S5). It was found that 357
(39.19%) differentially expressed lncRNAs had a significant enrichment in QTL regions. Most of
these enriched QTL regions were related to meat quality traits. One such gene was lncRNA4177,
which was localized to chromosome 13 within the interval of QTLs for water holding capacity, pH
45 min post-mortem, average daily gain, and average backfat thickness (Supplementary Table S6).
Furthermore, 74 (54.01%) differentially expressed circRNAs were identified to enrich in QTL regions
related to growth and meat quality traits. For example, circRNA227 was localized to chromosome 6
within the interval of QTLs for intramuscular fat content and loin muscle area. CircRNA11553 was
localized to the interval of QTLs for mean corpuscular hemoglobin content (Supplementary Table S7).
These observed results were consistent with the variant phenotypic characteristics between oxidative
and glycolytic skeletal muscles.

Table 3. Distribution of differentially expressed transcripts in chromosome and QTLs region.

Chromosome
DE Transcript Number in QTL Region/QTL Region Length (Mb)

mRNA LncRNA CircRNA

1 25/15.39 31/19.56 1/0.31
2 32/15.45 32/13.69 4/2.82
3 21/10.07 17/9.72 13/1.70
4 31/11.78 27/13.26 4/2.09
5 18/5.87 6/4.53 17/1.43
6 35/18.78 18/9.88 2/1.73
7 41/26.39 33/22.27 1/0.92
8 14/12.24 29/13.27 0/0
9 19/13.90 17/13.27 2/2.13

10 16/10.93 24/8.18 5/2.04
11 4/10.93 1/1.73 1/1.00
12 21/13.89 19/12.07 0/0
13 25/14.34 32/13.19 4/0
14 19/10.95 21/11.51 3/1.22
15 17/6.68 21/8.56 8/2.13
16 8/3.95 16/7.80 5/2.04
17 6/1.30 4/2.13 4/1.81
18 6/2.52 8/3.56 0/0
X 4/3.07 1/0.72 0/0

MT 0/0 0/0 0/0

The statistical significance was calculated by the χ2-test (p < 10−4). MT: mitochondria.

2.7. Validation of differentially expressed lncRNAs and circRNAs

To further validate the high throughput sequencing results in this study, three differentially
expressed lncRNAs and circRNAs were randomly selected to detect their expression patterns between
LDM and PMM by qPCR. As shown in Figure 9A,B, the qPCR results indicated that the expression
patterns of these lncRNAs and circRNAs were highly consistent between two methods. In addition,
convergent and discrete primers were designed to validate the identified circRNAs by bioinformatics
analysis. As shown in Figure 9C, only the discrete primers could amplify PCR products from circRNA
transcripts. For example, the circRNA154 amplified its junction region (363 bp) using discrete qPCR
primers, but no PCR product was amplified from linear transcripts (such as ACTB). These results
suggest that the RNA-Seq data and bioinformatics analysis pipeline used in the present study have a
high reliability.
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3. Materials and Methods

3.1. Ethics Statement

All the animal care and sample collection were approved by the Institutional Animal Care and
Use Committee of the College of Animal Science and Technology of Sichuan Agricultural University,
Sichuan, China, under permit No. DKY-B20131403 (Ministry of Science and Technology, China,
approved in 15 June 2004).

3.2. Animal Materials and Tissue Collection

In this study, a total of 126 female Qingyu pigs (Chinese native breeds, Bashan animal husbandry
technology co., LTD, Tongjiang, Sichuan, China) were fed from birth to 400 days old. The data of
growth traits at 19 time points were measured to calculate the inflection point of growth curve by
Logistic non-linear models [30]. In all stages, pigs had ad libitum access to feed (formulas shown in
Supplementary Table S8) and water, and were housed in the same farm environment. Meanwhile,
another 8 female pigs at inflection point (178 days old) were used to harvest longissimus dorsi muscle
(LDM, glycolytic skeletal muscle) samples from the core of the adjacent to the last rib, and psoas major
muscle (PMM, oxidative skeletal muscle) samples were obtained from the core of the adjacent to the
last 4 ribs. All samples were used for phenotypic traits analysis (n = 8), and 3 out of 8 samples were
randomly selected for lncRNA and circRNA transcriptome analysis. The 8 pigs were kept off feed but
given free access to water for 24 h, and then electrically stunned, exsanguinated, scalded, and rinsed.
All the samples were rapidly frozen in liquid nitrogen and stored at −80 ◦C until being used for RNA
and DNA extraction. All pig feed formulas meet or exceed the National Research Council (NRC, 1998)
recommendations for the different growth stages (Supplementary Table S8).
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3.3. Growth Curve Models

The growth curve model used in this study was Wt = A/(1 + Be − kt) [56]. In this model,
Wt represents the weight where the time point (t) was recorded; B is the growth curve line constant; k is
taken as the inherent relative growth rate at the start; A represents the maximum size; A/2 represents
the inflection point weight; lnB/k represents the inflection point age; kw/2 represents the maximum
daily gain. R2 is the degree of fitting, which is calculated by the equation of R2 = 1 − RSE/RST. In the
equation, RST represents the sum of squares of deviations RSE, and represents the residual sum
of squares.

3.4. Measurement of Phenotypic Traits

The myofiber type ratio was measured using ATPase staining as previously described [57].
Briefly, ATPase reactions were performed after acid (pH 4.6 for 2 min) and alkaline (pH 9.4 for 5 min)
pre-incubations, respectively. After staining, the fast-glycolytic fibers showed heavy coloring, whereas
slow-oxidative fibers showed light coloring. The myofiber type ratio was measured by the area
of glycolytic fibers divided by the area of oxidative fibers in 100 randomly chosen fields of vision.
The chosen fields were examined on serial cryosections, which were produced from 8 individuals.
Mean area of glycolytic fibers and oxidative fibers was deemed as the average area of myofiber.
To detect other metabolites, about 500 mg of frozen muscle sample was weighed and homogenized
in 500 mL of 0.9% saline, and then centrifuged at 4200× g for 10 min at 4 ◦C. The supernatant was
diluted 50 times for measuring Gly (glycogen, E07G0023), Glu (glucose, E07G0030), and LA (lactate,
E07L0004) content by using standard commercial kits from BlueGene Biotech Co., Ltd. (Shanghai,
China). Optical density (OD) at 450 nm was immediately measured utilizing an ELISA microplate
reader. Consequently, a calibration curve was constructed using OD values corresponding to each
concentration of the standard. To measure the triglyceride content in muscles, samples were prepared
according to previous descriptions [58]. The triglyceride concentration determined by commercial kits
(E07T0018, BlueGene Biotech Co., Shanghai, China) following the manufacturer’s instructions. Besides,
muscle color was measured with a Minolta chromameter (CR-300, Minolta Cam-era Co., Osaka, Japan)
at 45 min postmortem. The average of triplicate measurements was recorded, and the results were
expressed as CIELAB (Commission International de l’eclairage) lightness (L*) and redness (a*) values.
All the phenotypic traits were measured from 8 individual pigs at the age of 178 days (n = 8).

3.5. Transcriptome Library Construction and Sequencing

According to our previous study [59], total RNA was extracted from PMM and LDM using
TRIZOL (Invitrogen, Carlsbad, CA, USA), and further purified with RNeasy column (Qiagen, Valencia,
CA, USA) according to the manufacturer’s protocol. Total DNA was isolated from LDM and PMM for
the measurement of mtDNA copy number by using the DNeasy Blood & Tissue Kit (Qiagen, USA).
RNA integrity and concentration were analyzed with the Bioanalyzer 2100 (Agilent Technologies,
Foster City, CA, USA). Three biological replicates in each group were used to construct transcriptome
library. Briefly, only the RNA samples that had RNA Integrity Number (RIN) scores higher than 8
were used for further library construction. A total of 3 µg RNA per sample was used as input material
for RNA sample preparation. mRNAs and non-coding RNAs were enriched by removing rRNAs from
the total RNA with a commercial kit (Epicentre, Madison, WI, USA). By using the fragmentation buffer
(Ambion, Foster City, CA, USA), mRNAs and non-coding RNAs were fragmented into short fragments
(about 200–700 bp), then the first-strand cDNA was synthesized by random hexamer-primer using the
fragments as templates. Buffer, dNTPs, RNase H, and DNA polymerase I were added to synthesize
the second strand cDNA. The double strand cDNA was purified with QiaQuick PCR extraction kit
(Qiagen, USA) and then used for end-polishing. Sequencing adapters were ligated to the fragments;
then, the second strand was degraded using UNG (Uracil-N-Glycosylase) finally. The fragments were
purified by Agarose gel electrophoresis and enriched by PCR amplification. The library products were
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ready for sequencing analysis via Illunima HiSeqTM 4000, and 150 bp long paired-end reads were
generated. All the high-throughput sequencing data have been deposited in NCBI’s Gene Expression
Omnibus under GEO Series accession numbers GSE119137.

3.6. Identification of mRNAs, lncRNAs, and circRNAs

As in our previous study [59], the clean data were obtained by removing reads containing adapters,
reads containing over 10 % of poly (N), and low-quality reads (>50 % of the bases had Phred quality
scores ≤ 10) from the raw data. All the downstream analyses were based on high quality clean data.
Pig reference genome and gene annotation files were downloaded from NCBI database (Sscrofa11.1,
NCBI). Paired-end clean reads were aligned to the reference genome using Tophat (version 2.1.1,
download site: http://ccb.jhu.edu/software/tophat/index.shtml) package, and parameters were set
as default. The mapped reads from each library were assembled with Cufflinks (version 2.1.1) to
construct and identify mRNA transcripts. Next, the data analysis was performed by filtering the
assembled novel transcripts from the different libraries to obtain putative lncRNAs following the
steps in the pipeline as follows. First, transcripts that were shorter than 200 nt in length, containing
fewer than 2 exons and fewer than three reads were excluded. Next, using the Coding-Non-Coding
Index (CNCI) [60] and Coding Potential Calculator (CPC) [61] to evaluate the coding potential of the
filtered transcripts. A transcript with a CNCI value lower than 0 and a CPC value lower than -1 was
taken to be an lncRNA. In this study, the find_circ software was used to identify circRNAs. Briefly,
the unmapped back-spliced junction reads were used to extend the anchor sequences by find_circ
software with default parameters [62]. Besides, identified circRNAs that expressed in at least two
samples were used for further analysis. The expression levels of mRNAs, lncRNAs, and circRNAs
were quantified by the value of fragments per kilobase of exon model per million fragments mapped
(FPKM). Differentially expressed mRNAs, lncRNAs, and cricRNAs were filtrated by Cuffdiff software
with parameters of p value < 0.05 and |log2 (fold change)| ≥ 1.

3.7. Functional Enrichment Analysis

LncRNAs have been shown to regulate the expression of neighboring genes (cis-acting
regulation) [63]. Therefore, coding genes were searched from 10-kb upstream and downstream
of all the identified differentially expressed lncRNAs; then, their functional roles were predicted as
follows. The names of the neighboring genes were used to form a gene list to input into DAVID
software (DAVID 6.8) for Gene Ontology (GO) analysis according to our previous study [59]. A Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the predicted target genes
was performed with KOBAS software using a hyper-geometric distribution test. GO terms and
KEGG pathways with Benjamin-corrected p value < 0.05 were considered to be significantly enriched.
Finally, differentially expressed transcripts were used to map pig QTL regions according to previous
descriptions [64]. QTL data were downloaded from the Pig Quantitative Trait Locus database
(PigQTLdb: http://www.animalgenome.org/QTLdb/pig.html) website. When a transcript has an
overlapping region with QTL (<2 Mb) regions (at least half length of the gene or the QTL), it was
defined as a QTL transcript.

3.8. Quantitative RT-PCR

The quantitative RT-PCR (Q-PCR) was performed according to our previously described study [59].
Briefly, SYBR Green Real-time PCR Master Mix (TaKaRa, Dalian, China) was used to perform the
reactions on CF96 Real-Time PCR Detection System (Bio-Rad). The 2−∆∆Ct method was used to
determine the relative mRNA abundance. ACTB, TBP, and TOP2B genes were simultaneously used as
internal gene for normalization. The ratio of mitochondrial genes (ATP6, COX2, and ND1) to nuclear
DNA single copy gene (GCG) within the same samples was used to calculate the relative mtDNA
copy number. All reactions were performed in triplicate. All PCR primer sequences are shown in
Supplementary Table S9.

http://ccb.jhu.edu/software/tophat/index.shtml
http://www.animalgenome.org/QTLdb/pig.html
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3.9. Statistical Analyses

All data were analyzed using Student’s t-test analyses in SPSS (21.0 version, SPSS, Inc., Chicago,
IL, USA). The significance level for the statistical analysis was p < 0.05. All data are presented in this
paper as means ± standard error of the mean (SEM).

4. Conclusions

In summary, we conducted a genome-wide diversity analysis of lncRNA and circRNA expression
in porcine oxidative and glycolytic skeletal muscles at growth curve inflection point (maximum
growth rate). Nine hundred and eleven differentially expressed lncRNAs and 137 differentially
expressed circRNAs were identified which were potentially associated with the glycolytic process,
oxidation-reduction process, ATP metabolic, and the transition of fiber types. These enriched
pathways were consistent with the different phenotypes between oxidative and glycolytic muscles,
such as mitochondrial content, proportion of fiber types, and glycolytic potential. We also found
that circRNA290-miR27b-Foxj3 and circRNA9210-miR-23a-MEF2C were two competing endogenous
networks which ware closely linked to muscle fiber-type switching. Interestingly, some differentially
expressed transcripts were significantly enriched in pig QTL regions related to traits of meat quality
and growing development. We believe that this study will contribute to the understanding of human
muscle health and animal meat quality.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/12/
2855/s1.
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