
 International Journal of 

Molecular Sciences

Review

Post-Translational Modifications of Proteins Have
Versatile Roles in Regulating Plant
Immune Responses

Junjie Yin, Hong Yi, Xuewei Chen and Jing Wang *

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Major
Crop Diseases and Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China;
yinjunjie4154@163.com (J.Y.); hy190607@163.com (H.Y.); xwchen88@163.com (X.C.)
* Correspondence: jingwang406@sicau.edu.cn

Received: 13 May 2019; Accepted: 6 June 2019; Published: 8 June 2019
����������
�������

Abstract: To protect themselves from pathogens, plants have developed an effective innate immune
system. Plants recognize pathogens and then rapidly alter signaling pathways within individual cells
in order to achieve an appropriate immune response, including the generation of reactive oxygen
species, callose deposition, and transcriptional reprogramming. Post-translational modifications
(PTMs) are versatile regulatory changes critical for plant immune response processes. Significantly,
PTMs are involved in the crosstalk that serves as a fine-tuning mechanism to adjust cellular responses
to pathogen infection. Here, we provide an overview of PTMs that mediate defense signaling
perception, signal transduction in host cells, and downstream signal activation.
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1. Introduction

Plants are exposed to diverse types of pathogen during their lifetimes. To protect themselves from
pathogen threats, plants have evolved effective immune systems that mediate microbe interactions.
Several molecules are involved in plant immune systems. Pathogen-associated molecular patterns
(PAMPs) are members of a large group of microbial molecules that include lipooligosaccharides of
gram-negative bacteria, bacterial flagellin, elongation factor thermo unstable, glucans and glycoproteins
from oomycetes, chitin from the fungal cell wall, and RaxX from Xanthomonas oryzae pv. oryzae (Xoo) [1,2].
Once PAMPs are recognized by plant cells, PAMP-triggered immunity (PTI), which is the first layer in
plant innate immunity, is activated.

PAMPs are detected by pattern-recognition receptors (PRRs), which are normally surface-localized
receptor kinases or receptor proteins [3,4]. However, only a handful receptor-like kinases (RLKs)
and receptor-like proteins (RLPs) have been identified as being PRRs that perceive ligands in plants.
A typical RLK should contain an extracellular domain (ECD) to bind the extracellular molecules,
a transmembrane domain, and an intracellular kinase domain to activate signal transduction in
cells [5]. In contrast, the intracellular domains of RLPs are very short and lack kinase activity [6,7].
The ECDs have various structures, including leucine-rich repeat (LRR) domains, lysin motifs, lectins,
and epidermal growth factor-like domains. RLKs and RLPs can be divided into multiple subfamilies
on the basis of ECDs [8]. As soon as the molecules are recognized by PRRs, the generation of
reactive oxygen species (ROS), transcriptional reprogramming, and downstream gene activation occur
subsequently [9–11].

Some evolved pathogens secrete effectors into the apoplast or directly into the cytoplasm
of host cells, which can suppress PTI [12,13]. Conversely, plant cultivars have developed a
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family of polymorphic intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that
recognize particular effectors directly or indirectly, and induce the second major immune layer,
called effector-triggered immunity (ETI), in order to stop pathogen growth [14,15]. The immune
response elicited by ETI is very strong, typically accompanied with the programmed cell death of
plant cells at the infection site, representing a hypersensitive response (HR) [16,17]. NLR receptors
are structurally similar, containing an N-terminal coiled-coil or Toll-interleukin receptor domain, a
central nucleotide-binding and a C-terminal LRR domain. The effectors recognized by NLR receptors
are highly variable microbial molecules [18,19]. Therefore, the resistance mediated by ETI is predicted
to be less durable and more specific than that of PTI.

Post-translational modifications (PTMs) of proteins are universal events in cell signaling networks,
regulating protein stability, localization, activity levels, and interactions that help substrate proteins
enter different pathways in order to activate signaling transduction [20]. At present, various types
of PTMs have been identified. For, example, phosphorylation is a famous PTM that prefers to target
the hydroxyl groups of hydroxyl amino acids, such as threonine (Thr), serine (Ser) and tyrosine (Tyr),
but can also target unusual residues, such as hydroxy-proline [21]. It is a reversible process that
regulates signal transduction in eukaryotic cells. Ubiquitination is a PTM that modulates protein
stability or activity and plays important roles in various aspects of plant growth and development,
including embryogenesis, floral development, plant senescence and disease resistance [22,23]. A group
of small Ub-like modifiers (SUMOs) can target lysine residues of proteins to initiate SUMOylation [24].
SUMOylation significantly influences the transcriptional and epigenetic landscape in order to enhance
stress tolerance and development [25]. In addition, cysteine proteases mediated by PTMs can cleave the
peptide bonds of substrates, leading to the target’s rapid degradation [26]. Protein N-glycosylation may
be a PTM that can remove glucose and some specific mannose resides in the endoplasmic reticulum [27].
Moreover, these PTMs are not independent and participate in crosstalk. In most cases, the initiation
of a PTM is dependent on other PTMs interacting with the same protein. Here, we present recent
progress in understanding PTMs in plant immune-related networks, which play important roles in
mediating signal exchanges between microbes and hosts that eventually control associations.

2. Many Protein Effectors Function through PTMs of Host Proteins in Plant Cells

Effectors are typically secreted from pathogens and then translocate into host tissues and cells to
mediate their interactions with hosts [28]. Recent advances suggest that effectors can be divided into
non-protein and protein effectors. Non-protein effectors consist of chemical and sRNA effectors [29].
During the infection process, pathogens can secret a large array of chemical effectors, such as some
toxins and hormones, to affect protein biosynthesis, fate and delivery [30–34]. Pathogen-derived
sRNA effectors have important roles in host–microbe interactions. sRNA effectors can regulate
the expression of multiple host genes involved in plant immunity through either transcriptional or
posttranscriptional gene silencing [35–37]. However, the detailed molecular mechanisms of non-protein
effectors remain elusive. Based on a working model, protein effectors are generally classified into two
distinct groups: apoplastic protein effectors and cytoplasmic effectors. Apoplastic protein effectors
work in the extracellular spaces of host tissues and are involved in immune evasion, host cell wall
degradation and host proteolytic activity inhibition. Cytoplasmic effectors disrupt the activity of host
proteins involved in various cellular signal regulatory processes [38]. In recent years, studies have
been conducted to elucidate the functions of PTMs triggered by effectors.

The host proteins’ stability may be destroyed by effectors. The effector AvrPtoB is secreted from
Pseudomonas syringae (P. syringae) pv. tomato DC3000 and contains a plant U-box (PUB) type E3 ubiquitin
ligase domain in its carboxyl terminus. AvrPtoB interacts with diverse host proteins through its
N-terminal region and ubiquitinates them, including some receptor kinases such as Pto, Fen, Flagelin
Sensing 2 (FLS2), Chitin Elicitor Receptor Kinase 1 (CERK1), BRI1-associated receptor kinase1 (BAK1)
and Bti9 [39–43], transcriptional coactivators, such as nonexpressor of pathogenesis-related (PR) genes 1
(NPR1) [44], and mitogen-activated protein kinase (MAPK) kinase (MAPKK), such as MKK2 [45].
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AvrPtoB manipulates the host’s ubiquitin system and induces the degradation of its targets in order to
suppress plant immunity, providing a typical model of effector-triggered host protein degradation.
Several other effectors, like XopL, XopK and XopAE from different Xanthomonas strains, also have the
E3 ubiquitin ligase activity that is required for ETI and full virulence [46,47]. XopD, another type III
effector from Xanthomonas euvesicatoria, carries a C-terminal SUMO protease domain that can process
the precursor of the small ubiquitin-related modifier SUMO or remove SUMO from its target proteins.
Tomato ethylene response factor (ERF) SIERF4 is a substrate of XopD. XopD directly targets SIERF4 in
the subnuclear foci to deSUMOylate, causing SIERF4 destabilization and ethylene production inhibition,
which is required for ethylene-mediated immunity and symptom development [48]. In addition to
SUMO protease activity, XopD has nonspecific DNA-binding activity within its helix-loop-helix domain
and transcriptional repression ability within its two conserved ERF-associated amphiphilic motifs [49].
Some studies suggested that XopD can target some transcription factors, such as myeloblastosis 30
(MYB30), in order to inhibit transcriptional activity through its helix-loop-helix domain [50].

In addition to ubiquitinating host proteins for degradation, some effectors belong to a family of
cysteine proteases that proteolytically cleave their targets, leading to the targets’ rapid degradation.
AvRpt2 was one of the first cytoplasmic effectors that was demonstrated to act as a cysteine protease [51].
After being secreted from bacteria and delivered into host cells, AvRpt2 is auto-cleaved and enters
an active state. The activated AvRpt2 interacts with, and directly cleaves RPM1-interacting protein 4
(RIN4), generating two cleavage products that are suppressors of PTI [52,53]. Several putative AvrRpt2
homologs in sequenced bacterial genomes may have similar functions on their targets [54]. Cytoplasmic
receptor-like protein kinases (RLCKs) belong to a subgroup of RLKs that possess cytoplasmic kinase
domains but lack extracellular ligand-binding domains. Studies of RLCK-associated components
and targets indicate that RLCKs regulate various downstream signaling nodes to set a complex array
of defense responses against microbial pathogens [55]. Some effectors suppress plant immunity by
blocking the functions of RLCKs. The P. syringae effector AvrPphB was identified as a cysteine protease
protein, which cleaves PBL1-like protein kinases belonging to the subfamily of RLCK VII and inhibits
PTI signaling [56].

Phosphorylation is an important process in the activation of immune responses upon ligand
binding. Effector XopAU is a catalytically active protein kinase conserved in various Xanthomonas
species. XopAU can directly associate and phosphorylate MAPKK/MEKK2, contributing to the
development of disease symptoms in pepper plants [57]. Unlike XopAU, effector proteins HopAI1
and HopAO have been identified as phosphatases that reduce the phosphorylation of their substrates.
HopAI1 is another widely conserved P. syringae effector in both plant and animal bacterial pathogens
that can inactivate MAPKs by removing the phosphate group through its unique phosphor-threonine
lyase activity, resulting in enhanced disease susceptibility in plants [58]. Tyrosine phosphatase,
HopAO1 can directly interact with FLS2 and EF-TU receptor (EFR). Consistent with these interactions,
HopAO1 leads to a reduction in the phosphorylation of FLS2 and EFR upon ligand treatment [59].

During the process of plant-pathogen co-evolution, plants have evolved multiple receptors to
recognize different effectors and activate plant defense responses. The effectors detected by ‘matching’
resistance proteins (named R protein) may also be avirulence (AVR) proteins [60]. AvrPto is a bacterial
avirulence protein that confers disease resistance to tomato carrying the PtoR gene. Upon delivered
into plant cells, AvrPto can localize at the plasma membrane and recruit two LRR-RLKs, FLS2 and
EFR. Binding of AvrPto to FLS2 and EFR can inhibit their kinase activities, blocking downstream
phosphorylation signal transduction [61]. Xanthomonas campestris pv. campestris type III effector
AvrAC is an auridylyltransferase that adds uridine 5′-monophosphate to, and conceals, conserved
phosphorylation sites in PBL2′s activation loop [62]. Uridylylated PBL2 (PBL2UMP) acts as a ligand
to initiate an ETI response [63]. However, under natural selection, avirulence genes seem to change
rapidly, allowing pathogens to diversify their effectors and escape recognition by the plant R genes.
Therefore, studying the molecular mechanisms of Avr proteins and R proteins is a challenge.
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3. PTMs of Receptor Complexes Initiate Plant Immune Signaling

Pathogen recognition by PRRs results in the activation of signaling pathways that induce defense
reactions. Most known PRRs can recruit other LRR-RLKs to form a receptor complex. The binding
of PAMPs to the extracellular domains of the PRRs leads to the dimerization or oligomerization of
receptors and co-receptors, causing phosphorylation dynamics in host cells [20].

One of the best characterized PRRs is the Arabidopsis LRR–RLK FLS2, which can recognize
the bacterial PAMP flagellin (flg22 epitope) [9]. After flg22 perception, FLS2 forms a receptor
complex with another LRR-RLK BAK1 and enters an activated state [64] (Figure 1). BAK1 is required
for the immune responses mediated by multiple PRRs other than FLS2 [65]. The ligand-induced
PRR-BAK1 complex formation can initiate phosphorylation/dephosphorylation between BAK1 and its
interacting partners. Different phospho-patterns of BAK1 are associated with different RLKs, suggesting
a phospho-code-based dichotomy of BAK1 functions in plant development and PRR-mediated
immunity [66,67]. The activated PRR-BAK1 complex’s formation could initiate trans-phosphorylation
between the receptor complex and receptor-like cytoplasmic kinases (RLCKs), such as Botrytis-induced
kinase1 (BIK1). BIK1 can phosphorylate many PRRs and BAK1, and BIK1 is phosphorylated by
BAK1 [46,68]. Phosphorylated BIK1 then directly interacts and phosphorylates NADPH oxidase,
respiratory burst oxidase homolog protein D (RBOHD) and the phosphorylation of serine residues
39, 339, and 343 (S39, S339, S343) on RBOHD can modulate the ROS level [69,70]. BIK1 is not the
only RLCKs involved in PRR-mediated immune signaling. Like BIK1, PTI-compromised receptor-like
cytoplasmic kinase (PCRK) 1 and PCRK2 can interact with FLS2, and the flg22 treatment triggers
PCRK2 phosphorylation to activate immune responses [71].
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Figure 1. Ligand perception activates FLS2-mediated plant immunity. In the absence of flg22, BIK1
associates separately with FLS2 and BAK1 in an inactive state. Ligand perception induces rapid
FLS2–BAK1 receptor complex formation and probably transphosphorylation, which further activates
downstream intracellular immunity signaling.

CERK1 is a Lys-RLK containing three extracellular LysM motifs and an intracellular Ser/Thr
kinase domain, which is required for chitin- and peptidoglycan (PGN)-induced defense signaling [72].
In Arabidopsis, CERK1 works together with lysin motif receptor kinase 5 (LYK5), forming a receptor
kinase complex to perceive chitin, and mutations in LYK5 result in a significant reduction in the
chitin response [73]. Autophosphorylation of CERK1 triggered by chitin perception is essential for
the activation of downstream responses. Like FLS2, some RLCKs, such as PBL27, are substrates of
CERK1 that are required to transduce phosphorylation signals in plant immunity [74]. Unlike CERK1
in Arabidopsis, CERK1 in rice (Oryza sativa) cannot bind chitin molecules directly, despite the presence
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of extracellular LysM motif. Chitin elicitor-binding protein (CEBiP) is another LysM protein in the
rice chitin receptor complex that can bind chitin with a high affinity [75]. Several RLCK VII members
are immediate downstream signaling components of OsCERK1, including OsRLCK57, OsRLCK185,
OSRLCK107, OsRLCK118 and OsRLCK176. OsRLCK118, OsRLCK176, and OsRLCK185 also emerged
as substrates of other PRRs, including lysin motif-containing protein (LYP4), LYP6, and SPL11 cell-death
suppressor2 [55,76], suggesting that the phosphorylation signaling triggered by PAMPs is transduced
from PRRs located on the cell surface to cell cytoplasmic proteins dependent on these RLCKs.

Interactions between E3 ligase proteins and the kinase domains of RLKs appear to be a common
feature of the regulation of various plant processes, including plant immunity. For example, two
E3 ligases, PUB12 and PUB13, interact with the FLS2–BAK1 receptor complex, and the interaction
between PUB12/13 and FLS2 is induced by flg22. PUB12 and PUB13 are substrates of BAK1, and the
phosphorylation of PUB12/13 mediated by BAK1 is essential for the ubiquitination of FLS2 by PUB12/13.
PUB12 and PUB13 ubiquitinate FLS2 for degradation, and flg22-triggered immunity responses are
potentiated in the pub12 and pub13 mutants [77]. PUB12 and PUB13 ubiquitinate the brassinosteroid
(BR) hormone receptor BRI1, which is important for the endocytosis and degradation of BRI1, a scenario
that has been suggested for FLS2 [47]. In addition, PUB13 also ubiquitinates another chitin receptor
LYK5. In the pub13 mutant, the protein levels of LYK5 are constitutively enhanced [78]. XA21 is a rice
RLK protein that confers resistance to Xoo. A RING-type E3 ubiquitin ligase, XA21-Bingding Protein3
(XB3), binds to the kinase domain of XA21 through an ankyrin repeat domain. XB3 is also a substrate
for XA21 Ser and Thr kinase. Reducing the expression of Xb3 increases resistance to Xoo and decreases
the XA21 protein level, indicating that Xb3 is necessary for the full accumulation of the XA21 protein
and for Xa21-mediated resistance [79]. Like PRR activation, the ubiquitin-mediated regulation of PRRs
is crucial for preventing the excessive or prolonged activation of immune responses.

Protein N-glycosylation is another major PTM in eukaryotic cells. Most PRRs are transmembrane
glycoproteins that need to be transported by the secretory pathway to maturity and form their correct
destination targets on the plasma membrane. Endoplasmic reticulum quality control (ERQC) is a
pivotal process that assists these proteins to fold properly and avoid aggregation after they translocate
into the ER. The N-glycosylation/ERQC pathway is necessary for the biogenesis and functions of
several RLKs [80,81]. EFR is a typical example. EFR is specifically impaired in ERQC deficient mutants,
including stt3a, crt3, uggt, erd2b, and sdf2 [82–84]. Moreover, a single mutation at the conserved
N-glycosylation site (N143Q) in the EFR ectodomain results in the loss of its ability to bind its ligand
and to mediate elf18-elicited oxidative bursts [81]. However, the FLS2-mediated PTI response is not
impaired in these ERQC mutants, suggesting that the folding of some PRRs is more complicated.

4. PTMs of RLCK–MAPK Are Required for Immune Signal Transduction

MAPK cascades represent signaling modules important for diverse intracellular immune responses
in both PTI and ETI in plants [85]. A classic MAPK cascade has a set of three sequentially acting protein
kinases, a MAPK, a MAPK kinase (MAPKK, MKK or MEK) and a MAPK kinase kinase (MAPKKK or
MEKK), within which phosphorylation signals are transduced linearly from MAPKKK to MAPK [86].
Two MAPK cascades are activated by PRRs (Figure 2). One cascade is composed of the MAPKKK
MEKK1, the two MAPKKs MKK1 and MKK2, and the MAPK MPK4. The other cascade consists
of MAPKKK3 and MAPKKK5, the two MAPKKs MKK4 and MKK5, and the two MAPKs MPK3
and MPK6.

The first MAPK cascade, MEKK1-MKK1/2-MPK4 negatively regulates plant cell death and
immunity. In mekk1, mkk1/2 and mpk4 mutants, programmed cell death and defense responses are
constitutively activated [87–90]. MAPKKs, MKK1 and MKK2 can directly interact with both MEKK1
and MPK4 to form a special MAPK cascade. MPK4 is the substrate of MKK1/2 in vitro and in vivo, and
MEKK1 and MKK1/2 are essential for the flg22-mediated activation of MAPK4 [88,90]. Interestingly,
kinase inactivated MEKK1 (MEKK K361 M) rescues the autoimmune phenotype of mekk1 and restores
the flg22-induced activation of MPK4, suggesting that the MEKK1-activated MEKK1-MKK1/2-MPK4
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pathway is independent of its kinase activity [90]. Arabidopsis SH4-Related3 functions as a transcriptional
repressor and may be a substrate of MEKK1-MKK1/2-MPK4. It negatively regulates a large subset
of flg22-induced genes through its ERF-associated amphiphilic repression motifs [91]. Another
MAPK cascade, MAPKKK3/5-MKK4/5-MPK3/6 may be activated by the PRRs. It plays a far more
important role in plant immunity by regulating defense hormones and phytoalexin synthesis and
signaling, defense-related gene expression, ROS bursts and stomatal immunity [85]. Unlike the
MEKK1-MKK1/2-MPK4 cascade, increasing evidence indicates that the MAPKKK3/5-MKK4/5-MPK3/6
cascade acts as positive regulator of defense responses. The MPK3/6 activation triggered by multiple
patterns are greatly inhibited in mapkkk3 mapkkk5 double mutants but slightly reduced in mapkkk3 and
mapkkk5 single mutants [74,92,93]. Recently, other MAPK cascades have been found to play important
roles in plant immunity. MKKK7 is a FLS2-interacting kinase and is rapidly phosphorylated on two
different serine residues upon flg22 treatment. The mpkkk7 mutant exhibits enhanced MPK6 activity,
increased expression of defense genes, and increased ROS production [94]. The cascades mediated by
MAPKKK7 remain elusive.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 17 
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Figure 2. RLCKs and MAPK cascades function downstream of diverse PRRs to activate plant
immune signals. Ligand perception induces rapid immune receptor complex formation and
transphosphorylation. Several RLCK VII members rapidly become phosphorylated, which further
activates evolutionarily conserved mitogen-activated protein kinase (MAPK) signaling modules, thereby
activating pathway-specific transcription factors to activate plant immunity.
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In addition to the PTMs of MAPK cascades mediated by effectors, several phosphatases
that negatively regulate these MAPK cascades have been reported. Dual-specificity MAP kinase
phosphatases (MKPs), such as MKP1 and MKP2, dephosphorylate both conserved Thr and Tyr residues
of the MAPK activation loop, leading to the full inactivation of the MAPKs [95–97]. Furthermore, it is
suggested that an efficient negative feedback loop exists between MKPs and MAPKs during PAMP
responses and bacterial resistance [96]. Members of the protein phosphatase 2C (PP2C) family, AP2C1
and AP2C5, are classified as phosphor-Ser/Thr phosphatases that target a specific phosphor-Thr in the
MAPK activation loop and negatively regulate PTI responses [98]. Loss of AP2C1 function results in an
increased activation of MPK3, -4 and -6 in response to flg22 and elf18 treatments as well as enhanced
callose deposition and bacterial resistance.

Upon PAMP recognition by RLK receptors, the receptor complex is activated, and immune signals
are transduced into the nucleus by MAPK phosphorylation cascades, resulting in transcriptional
reprograming for defense. As we just mentioned, RLCKs associate with, and rapidly become
phosphorylated, by immune receptor complexes upon PAMP perception. RLCKs may fill the gap
between the immune receptor kinase complex and the MAPK cascades [86,99]. In Arabidopsis, PBL27
associates with both CERK1 and MAPKKK5 on the plasma membrane. Chitin perception induces
the CERK1-mediated phosphorylation of PBL27, which in turn phosphorylates MAPKKK5, leading
to the activation of MPK3/6 through MKK4 and MKK5. The mapkkk5 mutant displays compromised
chitin-induced activation and disease resistance to Alternaria brassicicola [73,74,100,101]. Furthermore,
Bi et al. found that MAKKK3/5-MAPK3/6 MAPK kinase cascades can be activated by multiple PRRs
and confer resistance to bacterial and fungal pathogens in Arabidopsis [102]. Chitin induces the
phosphorylation of MAPKKK5, and MEKK1 is largely disrupted in the rlck vii-4 sextuple mutant.
The RLCKVII-4 member, PBL9, can phosphorylate MAPKKK5 at Ser-599, which is required for MAPK
activation and disease resistance [102]. The chitin-induced MAPK signaling pathway is conserved
in rice and Arabidopsis. In rice, upon chitin perception, OsCERK1 phosphorylates OsRLCK185, an
ortholog of PBL27 in Arabidopsis. Multiple MAPKKKs have been identified as substrates of OsRLCK185,
including OsMAPKKK11, OsMAPKKK18 and OsMAPKKKε [103,104].

5. PTM Modulates TF Activities in Plant Immunity

Transcriptional reprogramming in response to a pathogen challenge is regulated by a broad variety
of transcription factors (TFs) and cofactors in the nucleus. The study of TF regulatory mechanisms
mediated by PTMs has increased our knowledge regarding the action of plant immunity. Among the
58 identified TF families in higher plants, six appear to be involved in defense signaling (Table 1) [105].

Table 1. The major transcription factor (TF) families involved in plant defenses.

TF Families Descriptions

AP2/ERF The proteins in this family contain an AP2/ERF DNA-binding domain that consists of
three β-sheet strands followed by an α-helix motif [106].

bHLH This family is characterized by a basic-helix-loop-helix domain containing an N-terminal
basic DNA-binding region and a C-terminal protein-interaction domain [107].

MYB This family is characterized by the presence of four repeat sequences, each containing
three α-helices [108]

NAC NAC TFs each contain a conserved DNA-binding domain on their N-termini and an
activation domain on their C-termini [109].

WRKY The WRKY TFs contain WRKY domains having the typical WRKYGQK sequence
followed by a zinc finger motif [110].

bZIP The bZIP proteins contain a basic region for DNA binding and a leucine zipper region for
protein dimerization [111]

The ubiquitin proteasome system is responsible for controlling the stability and transcriptional
activity levels of TFs involved in plant immunity. For example, MYB30 is a R2R3 MYB TF involved
in pathogen-induced HR and cell death. Plants with a reduced AtMYB30 expression level have a
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strongly compromised resistance to different bacterial strains [112]. A RING type E3 ubiquitin ligase,
MYB30-interacting E3 ligase1 (MIEL1), interacts with and ubiquitinates MYB30, leading to MYB30
proteasomal degradation and the downregulation of its transcriptional activity. The miel1 mutant
plants show stronger HR cell death symptoms than Col-0 wild-type plants at 64 h post-infection with
low dose of P. syringae pv. tomato DC3000 expressing the avirulence gene AvrRpm1. This is similar to
MYB30 overexpression plants [113,114]. In the AP2/ERF subgroup, another RING domain containing
E3 ligase mediates AtERF53 for proteolytic degradation [115]. Similarly, the protein levels of many
WRKY TFs are controlled by the ubiquitin proteasome system, including WRKY53 in Arabidopsis, and
OsWRKY6, OsWRKY11, and OsWRKY45 in rice [116–120].

In response to pathogen attack, WRKYs are activated by MAPK cascades. WRKY33 is a substrate
of MPK3/MPK6. A mutation of MPK3/MPK6 phosphorylation sites in WRKY33 compromises its
ability to complement camalexin induction in the wrky33 mutant [121]. In another MAPK cascade,
MAPK4 substrate 1 (MKS1) acts downstream of MPK4 in a salicylic acid (SA)-dependent pathway.
MKS1 interacts with WRKY 25 and WRKY33, and it regulates gene expression by releasing these
TFs into the nucleus upon activation [122,123]. In tobacco, WRKY1 is a substrate of SA-induced
protein kinase (SIPK). SIPK works as a MAPK to phosphorylate WRKY1, which results in enhanced the
DNA-binding activity of WRKY1 to its cognate binding site, a W box sequence from the tobacco chitinase
gene CHN50 [124]. Phosphorylation may also be important for balancing rice yield and resistance.
The ideal plant architecture 1 (IPA1) gene encodes a kind of plant specific SQUAMOSA promoter-binding
protein-like (SPL) TF, also known as OsSPL14, which activates yield-related genes [125]. Upon pathogen
attack, IPA1 becomes phosphorylated at S163, which alters its DNA-binding specificity. IPA1(S163D)
preferentially binds the WRKY45 promoter and activates WRKY45 expression, leading to enhanced
resistance in Magnaporthe oryzae. However, IPA1 returns to the nonphosphorylated state within 48 h
post-infection in order to active genes related to growth and high yield. Furthermore, the protein
kinase regulating this process remains to be determined.

In addition to TFs, transcription cofactors play important roles in plant immunity. For example,
NPR1 is hypothesized to be a transcription cofactor, contributing to the establishment of systemic
acquired resistance (SAR), a mechanism of induced defense that is activated throughout a plant
after exposure to various elicitors. NPR1 may also repress ETI by promoting programmed cell
death (PCD) [126]. NPR1 is present as a homo-oligomer in a resting state that is dependent on its
intermolecular disulfide bonds between cysteine residues. As the SA concentration increases in plant
cells, NPR1 dissociates into mono molecules and is released into nuclei. NPR1 monomers in the nuclei
prefer to interact with TFs and confer immunity through transcriptional cascades, resulting in the
activation of PR genes and SA tolerance [127–129]. However, the expression of the PR1 gene can be
further upregulated in response to SAR induction in NPR1 cysteine mutants, such as npr1C82A-GFP
and npr1C216A-GFP, suggesting that PTMs are involved in regulating the activity of NPR1 [129].
The proteasome-mediated degradation of NPR1 is required for its role in modulating the transcription
of its targets. NPR1, containing a conserved broad-complex, tramtrack, and bric-à-brac/poxvirus, zinc
finger (BTB/POZ) domain, is a substrate of CUL3-based ubiquitin ligase. In the absence of pathogen
infection, the NPR4–CUL3-mediated degradation of NPR1 monomers is necessary to prevent the
excessive activation of SAR and maintain plant development [130,131]. Recently, studies indicated
that immune-induced transcriptome reprograming mediated by NPR1 requires the sequential actions
of multiple E3 and E4 ligases [131]. In addition to ubiquitination, SUMOylation mediated by SUMO3
is also a regulatory step involved in the proteasome-mediated degradation of NPR1 [132]. Moreover,
SUMOylation and phosphorylation work together to provide another regulatory layer that fine-tunes
NPR1′s transcriptional activity. There are four putative phosphorylation serine residues on NPR1,
Ser11, Ser15, Ser55 and Ser59. Under normal conditions, Ser55 and Ser59 of NPR1 are phosphorylated,
which completely destroys the interaction between NPR1 and SUMO3. Non-SUMOylated NPR1 prefers
to target WRKY70 to repress the expression of the PR1 gene [132–134]. Upon pathogen challenge,
Ser55 and Ser59 of NPR1 are rapidly dephosphorylated, allowing NPR1 to become SUMOylated.
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SUMOylated NPR1 can interact with TGA to promote the transcriptional activity of the PR1 gene [132].
Furthermore, SUMOylation is required for SA-induced phosphorylation of Ser11 and Ser15 in NPR1,
which accelerates the degradation of NPR1 facilitated by the NPR3–CUL3 E3 complex [132]. Interplay
between phosphorylation and SUMOylation represents a perfect working model for NPR1′s regulation
of plant immunity.

6. Conclusions

PTMs are essential tools in plant defense signaling that allow plants to fight against pathogen
invasions. Here, we have provided an overview of PTMs that modify components involved in plant
defense signaling. PTMs establish communication between pathogens and plants to alter cell signaling
at multiple nodes for the rapid reprogramming of the plant for defense responses (Figure 3). Within
the developed proteomic technologies, PTMs that occur at a low stoichiometry are easier to detect.
Their detection will accelerate our understanding of the regulatory mechanism of plant immunity
mediated by PTMs.

Plant growth is usually inhibited by an active immune response, resulting in yield penalties for
fighting pathogens. Plants with inactive immune responses may grow faster, but they will be more
susceptible to various diseases [135]. Balancing development and resistance is a major challenge in
crop breeding programs. PTMs, such as phosphorylation, may be involved in controlling the trade-off

between plant development and resistance [66,67,136]. Gaining an in-depth understanding of how
phosphorylation facilitates the balance between development and resistance, and whether other PTMs,
such as ubiquitination and N-glycosylation, regulate these processes will provide new strategies for
efficiently increasing plant resistance without fitness costs.
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Abbreviations

AP2C1 Arabidopsis PP2C-type phosphatase
AVR avirulence
BAK1 BRI1-associated receptor kinase1
BIK1 botrytis-induced kinase1
BR brassinosteroid
BTB/POZ broad-complex, tramtrack, and bric-à-brac/poxvirus, zinc finger
bZIP basic leucine zipper
CEBiP chitin elicitor-binding protein
CERK1 chitin elicitor receptor kinase 1
ECD extracellular domain
EFR EF-TU receptor
ETI effector-triggered immunity
ERF ET responsive TF
ER-QC endoplasmic reticulum-quality control
FLS2 Flagellin Sensing2
HR hypersensitive response
IPA1 ideal plant architecture 1
LRR leucine-rich repeat
LYK5 lysine motif receptor kinase 5
LYP4 lysin motif-containing protein 4
MAMPs microbe associated molecular patterns
MAPK mitogen-activated protein kinase
MAPKK/MKK/MEK MAPK kinase
MAPKKK/MEKK MAPK kinase kinase
MIEL1 MYB30-interacting E3 ligase1
MKS1 MAPK4 substrate 1
MYB myeloblastosis

NAC
no apical meristem, Arabidopsis transcription activation factor, cup-shaped
cotyledon

NLRs NOD-like receptors
NOD-like receptors nucleotide-binding oligomerization domain-like receptors
P. syringae Pseudomonas syringae
PAMPs pathogen associated molecular patterns
PBL2 PBS1-like protein 2
PCD programmed cell death
PCRK1 PTI compromised receptor-like cytoplasmic kinase1
PGN eptidoglycan
PP2C protein phosphatase 2C
PRRs PAMPs are detected by pattern-recognition receptors
PTI PAMP-/MAMP-triggered immunity
PTMs post-translational modifications
PUB plant U-box
RBOHD respiratory burst oxidase homolog protein D
R protein resistance protein
RLCKs receptor-like cytoplasmic kinases
RIN4 RPM1-interacting protein 4
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RLKs receptor-like kinases
RLPs receptor-like pro2teins
ROS reactive oxygen species
RKS1 resistance-related kinase 1
SAR systemic acquired resistance
Ser serine
SERKs somatic embryogenesis receptor kinases
SDS2 SPL11 cell-death suppressor 2
SIPK SA-induced protein kinase
SPL SQUAMOSA promoter-binding protein-like
SUMO small Ub-like modifier
Thr threonine
Tyr tyrosine
XB3 XA21-Bingding Protein3
Xoo Xanthomonas oryzae pv. Oryzae
ZAR1 HOPZ-activated resistance 1
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