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Abstract: Chronic hepatitis B virus (HBV) infection represents a worldwide public health concern
with approximately 250 million people chronically infected and at risk of developing liver cirrhosis
and hepatocellular carcinoma. Nucleos(t)ide analogues (NUC) are the most widely used therapies
for HBV infection, but they often require long-lasting administration to avoid the risk of HBV
reactivation at withdrawal. Therefore, there is an urgent need to develop novel treatments to shorten
the duration of NUC therapy by accelerating virus control, and to complement the effect of available
anti-viral therapies. In chronic HBV infection, virus-specific T cells are functionally defective, and this
exhaustion state is a key determinant of virus persistence. Reconstitution of an efficient anti-viral T
cell response may thus represent a rational strategy to treat chronic HBV patients. In this perspective,
the enhancement of adaptive immune responses by a checkpoint inhibitor blockade, specific T cell
vaccines, lymphocyte metabolism targeting, and autologous T cell engineering, including chimeric
antigen receptor (CAR) and TCR-redirected T cells, constitutes a promising immune modulatory
approach for a therapeutic restoration of protective immunity. The advances of the emerging
immune-based therapies in the setting of the HBV research field will be outlined.
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1. Background

Hepatitis B virus (HBV) is a DNA virus belonging to the Hepadnaviridae family, which includes
hepatotropic viruses. The HBV virion consists of an external lipoprotein envelope and an internal
protein nucleocapsid with icosahedral symmetry, containing the viral genome and the DNA polymerase.
The HBV genome is a partially double-stranded circular DNA molecule with four partially overlapping
open reading frames encoding structural and non-structural viral proteins: the core antigen (HBcAg),
representing the structural component of the viral capsid; the e antigen (HBeAg), a non-structural
protein that is secreted into the serum of the infected host; the large, medium, and small envelope
glycoproteins containing PreS1, PreS2 and HBs antigenic reactivities; the DNA polymerase with reverse
transcriptase and ribonuclease functions, and the HBV x antigen (HBx), expressing transcription
regulatory properties. Following hepatocyte infection, the nucleocapsid is transported into the nucleus,
where the viral DNA is converted into a covalently closed circular DNA (cccDNA) in the form of a
mini-chromosome which acts as a template for the synthesis of genomic and subgenomic transcripts.
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Importantly, cccDNA represents a reservoir for virus persistence into the hepatocyte nucleus [1]. HBV
DNA fragments can integrate into the host genome, and this event, although not necessary for virus
replication, can promote carcinogenesis [2].

Hepatitis B virus infection has been considered by the World Health Organization (WHO) to
be a major public health burden because of the high rate of deaths and clinical sequelae, despite the
availability of a prophylactic vaccine.

It is estimated that 250 million people worldwide are chronically infected with the hepatitis B
virus and at risk of developing liver cirrhosis and hepatocellular carcinoma [3]. Chronic HBV infection
can result in a wide range of clinical conditions, associated with variable degrees of HBV control,
ranging from chronic viremic patients carrying huge quantities of antigen in their blood and liver,
to immune subjects with occult persistence of trace amounts of virus within the liver and without
detectable antigenemia. Specifically, five phases have been identified in its natural history, on the
basis of the patients’ serological profile and liver inflammation: (i) HBeAg-positive chronic infection
(previously referred to as the “immune tolerance phase”); (ii) HBeAg-positive chronic hepatitis; (iii)
HBeAg-negative chronic hepatitis (previously referred collectively to as the “immune activation
phase”); (iv) HBeAg-negative chronic infection (previously referred to as “inactive carriers”); and (v)
HBsAg-negative “occult HBV infection”, with antibodies to HBcAg (anti-HBc), with or without
detectable antibodies to HBsAg (anti-HBs), that in case of immunosuppression can lead to HBV
reactivation [4].

At present, treatment of chronic HBV infection (CHB) is mainly based on third generation
nucleos(t)ide analogue (NUC) therapy, which targets the reverse transcriptase activity of the HBV
polymerase, without significant occurrence of viral resistance. NUC are orally administered and well
tolerated; they are very effective in suppressing HBV replication, induce biochemical and histological
improvement [5,6], and allow a partial restoration of virus-specific T cell responses [7].

Loss of HBsAg is observed in less than 10% of patients after five years of therapy, thus often
requiring long-term administration to avoid virus reactivation at therapy discontinuation [5,6]. This
is due to the persistence of cccDNA in the nucleus of infected hepatocytes, which is not affected
significantly by NUC therapies.

The alternative therapeutic option is based on interferon-alpha (IFN), but an HBV cure is achieved
in only 10–20% of IFN-treated patients and therapy is frequently associated with severe side effects [4,8].

Therefore, there is a clinical need for safe, novel treatments to shorten the duration of NUC therapy
by accelerating virus control, and to enhance the effect of current anti-viral therapies.

HBV-specific T cells in chronic hepatitis B are scarce and functionally defective and this exhaustion
state is a key determinant of virus persistence. Typically, HBV specific T lymphocytes are deeply
dysfunctional in untreated chronic patients, while subjects who are able to control HBV infection
spontaneously following an acute infection display a vigorous and broad antigen-specific T cell
response [9]. Such T cell impairment has been described in animal models of chronic virus infection
to be characterized by a progressive and hierarchical loss of antiviral T cell functions, ranging from
functional inhibition to physical deletion, depending upon the quantity of antigenic peptides and the
duration of T cell exposure to a high antigen load [10].

Further features of exhausted virus-specific CD8 T cells are represented by the up-regulation
of multiple co-inhibitory receptors, transcriptional, metabolic and epigenetic defects and the lack of
protective T cell memory generation [10].

Additionally, inhibitory mechanisms contributing to T cell dysfunction in chronic hepatitis B
comprise nutrient depletion in the hepatic microenvironment, the expansion of negative regulatory T,
NK and myeloid-derived suppressor cells (gMDSC), and the effect of suppressive cytokines [11–13].

Moreover, different subsets of virus-specific CD8 cells with different levels of exhaustion can
co-exist in the same chronically infected host, suggesting that the overall exhausted CD8 T cell
population is heterogeneous in terms of phenotypic, functional and transcriptional profiles and
capacity to express antiviral function [10].
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Based on these lines of evidence, correction of anti-viral T cell defects and boosting virus-specific
T-cell responses once T cells have reacquired their capacity to respond efficiently to antigen stimulation
represents a rational strategy to cure chronically HBV infected patients. New immunotherapeutic
approaches for chronic hepatitis B are currently in clinical development, designed to improve the rate
of HBsAg loss and anti-HBs seroconversion in CHB subjects, compared to what is currently achievable
with nucleos(t)ide analogues alone.

This review will focus on the current knowledge about the emerging immune-based therapeutic
strategies in chronic hepatitis B virus infection, including immune checkpoint inhibition, metabolic
T cell targeted therapies (Figure 1), therapeutic T cell vaccination and autologous T cell engineering,
including chimeric antigen receptor (CAR) and TCR-redirected T cells (Figure 2).
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Figure 1. Hepatitis B virus- (HBV)-specific T cell restoration. Different mechanisms can simultaneously
operate to inhibit the anti-viral T cell function, including the suppressive effect of the liver environment
amplified by inflammation and the high levels of antigenemia. Exhausted T cells are characterized by
upregulation of multiple inhibitory receptors (e.g., PD-1, 2B4, LAG-3, CTLA-4, CD160, TIM-3, TIGIT),
repressive transcriptional reprogramming (e.g., Tbet and TCF1 downregulation, Eomes and Blimp1
upregulation), broad metabolic alterations (impaired FAO, ROS overproduction and mitochondrial
dysfunction), defective T cell effector function (low cytokine production and reduced cytolytic function
and proliferation) and memory development. Thus, promising approaches focused on restoring
HBV-specific immunity are currently under investigation for chronically HBV infected patients, such as
checkpoint blockade and metabolic modulation.
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Figure 2. Gene transfer-based strategies as new tools for immune therapy in hepatic tumors and
chronic HBV infections. (a) Patient-derived CD8 T cells can be modified to express antitumor/antiviral
T cell receptors (TCRs) or chimeric antigen receptors (CARs). The infusion of genetically modified
T cells targeting specific peptide/HLA complexes or non-processed antigens on the surface of the
infected liver cells provides the immune system with functionally efficient CD8 T cells of the desired
specificity. (b) Schematic representation of an engineered CD8 T-cell with re-directed specificity against
a specific HBV epitope. T cells are purified from chronic patients, engineered by electroporation of
HBV-specific TCR-expressing vectors and reinfused in the patient. Modified α and β chains of the
TCR complex allow high affinity recognition of HLA class I dependent viral or tumor epitopes to
reconstitute functional specific immunity. (c) CAR T cell engineering is based on the transduction of
autologous T cells with an expression vector coding for a chimeric antigen receptor, consisting of an
antibody binding fragment (that allows for recognition of conformational antigens, such as HBsAg
expressed on the hepatocyte membrane), fused with CD28 transmembrane and CD3zeta intracellular
domains, which can mediate constitutive signaling leading to effector T cell activation and HLA class I
independent antigen recognition.

2. Checkpoint Inhibitors

First reported in chronic Lymphocytic Choriomeningitis Virus (LCMV) infection, the up-regulation
of co-inhibitory receptors, or immune checkpoints, has then been widely described as a common
hallmark of exhausted CD8 T cells in different chronic infection and tumor models. Indeed, gene
expression profiling and functional T cell analysis of virus-specific CD8 T cells from chronically
LCMV-infected mice led to the characterization of the role played by PD-1 and other highly co-expressed
inhibitory molecules, such as 2B4, CTLA-4, Tim-3, Lag-3, TIGIT, BTLA, CD160, PSGL1, in promoting a
dysfunctional phenotype in exhausted antigen-specific CD8 T cells [10]. Later on, the evidence that
an efficient antiviral function of exhausted T cells could be reconstituted by blockade of inhibitory
pathways promoted expectations on immunotherapy as a potential treatment for chronic infections
and cancer. However, while antibodies interfering with PD-1 and its ligands (e.g., anti-PD-1 or PD-L1),
both in monotherapy or in combination with other checkpoint targeting, such as CTLA-4, showed
some efficacy in cancer treatment [14,15], clinical trials are still very limited in the field of chronic viral
infections. In HIV infection, the PD-1 blockade is believed to facilitate virus latency reversal in CD4+ T
cells [16]; however, so far only a study has been conducted in ART-suppressed patients with a single
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low-dose anti-PD-L1 administration leading to HIV-specific T cell improvement in a proportion of
subjects, without effect on residual viremia as detected by “single-copy assay (SCA)” [17]. Additionally,
in patients with chronic hepatitis C virus (HCV) infection a modest antiviral effect was observed by a
single anti-PD-1 dose treatment [18].

In the setting of chronic HBV infection, co-inhibitory molecule expression and its role in T cell
exhaustion has been the object of many in vitro and in vivo investigations, documenting also in this
context the up-regulation of multiple checkpoints on both circulating and intrahepatic virus-specific
CD8 T cells, with maximal expression of PD-1 and 2B4 on liver-infiltrating lymphocytes [19–24].
In addition, the overexpression of several checkpoint ligands, such as PD-L1 on circulating monocytes
and B cells and on intrahepatic non parenchymal cells, or the TIM-3 ligand galectin-9 on liver resident
Kupffer cells [21,25,26], can likely contribute to T cell exhaustion maintenance. Moreover, exhausted
HBV-specific T cells also appear more prone to apoptosis, as shown by the up-regulation of the death
receptor TRAIL-2 and the pro-apoptotic mediator BIM [27–29]. Interestingly, high PD-1 levels have
been associated to antiviral dysfunction also in HBV-specific CD4 cells [30], and more recently in
virus-specific B cells from chronic HBV patients [31,32]. In addition, recent studies reported that the
co-expression of inhibitory checkpoints with several other molecules, such as transcription factors and
differentiation/activation/survival markers (e.g., Tbet, Eomes, TCF1, CD127, KLRG1, CD38, Bcl2) can
allow to define distinct cell subsets with various degrees of terminal differentiation and functional
impairment, with specificity for different viral epitopes, such as HBV core and polymerase [33–36].
Such phenotypic heterogeneity has already been demonstrated to account for a variable sensitivity to
functional restoration interventions in other models of T cell exhaustion [37–40] and is expected to
represent the rationale for the identification of reliable predictors of outcome also in the context of
immune therapies for chronic HBV infection.

Although many in vitro studies showed that the PD-1/PD-L1 blockade can induce some
improvement in both the T and B cell arms of the cellular immunity, with a more efficient effect on the
intrahepatic than on the peripheral compartment [19,31,32,41,42], it has become evident that the PD-1
blockade alone is not sufficient to completely reverse the immune function impairment in chronic HBV
infection [20,21,24,29,43]. Therefore, in order to further improve its efficacy, the PD-1 blockade has been
tested in association with other regulatory pathway manipulations, such as TIM-3, CTLA-4, 2B4, CD137,
or with IL-12, showing variable degrees of T cell response restoration [44]. Interestingly, a synergistic
effect of OX40 (CD134) stimulation with a PD-L1 blockade has been reported to significantly augment
IFN-gamma and IL-21 producing HBV-specific CD4 T cells in vitro [45].

Preclinical experiments in the woodchuck model of chronic hepatitis virus (WHV) infection showed
that the association of the PD-L1 blockade with nucleoside analogue treatment and therapeutic DNA
vaccination boosted virus-specific immunity, leading to suppressed viral replication and anti-WHs
antibody seroconversion in two out of three tested animals [46]. A more recent study described
an improved control of viremia and antigenemia induced in three of 11 naturally WHV-infected
woodchucks when anti-PD-L1 was associated to nucleoside analogue treatment, with durable antiviral
effects after therapy withdrawal in two of them [47].

Only a single dose anti-PD-1 (Nivolumab) phase 1 trial has so far been performed in NUC
treated, virally suppressed HBeAg negative chronic HBV patients. Reduction of HBsAg titers was
detected only in a limited proportion of patients, with a total and persistent HBsAg loss in one of
them. No severe adverse events were reported but no further effects were observed on HBsAg decline,
and potentiation of antiviral T cell responses by the addition of a therapeutic vaccine containing
core envelope and x antigens was not able to stimulate cell-mediated HBV-specific responses [48].
Given the wide variability in the efficacy of checkpoint inhibition in both in vitro and in vivo studies,
the complexity of the individual response to the treatment is currently being investigated, with the
aim of identifying the fraction of patients who could more likely benefit from immunotherapies.
Genetic and epigenetic factors, which can contribute to the variable individual checkpoint expression
and to the development of the T cell exhaustion state, have been recognized [49]. In this regard,
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heritable de novo DNA methylation programs that affect the T cell function and persist upon the PD-1
blockade with possible resistance to immune modulatory treatments and to reversal of exhaustion
have been described in mouse models of chronic virus infection [50]. Since exhausted T cells undergo
deeply altered transcriptional regulatory programs [51,52], a combination of epigenetic drugs, such as
FDA-approved DNA demethylating agents, with an immune checkpoint blockade has already been
tested and demonstrated to be effective in improving anti-tumor immunotherapy [50].

Although promising, the clinical use of an immune checkpoint blockade may however be
limited by potential side effects [53]. These may be particularly related to a generalized immune
activation induced by checkpoint blockade, which could give rise to autoimmune events, as well
as to increased liver inflammation, that might lead to several degrees of unwanted consequences,
including hepatitis exacerbation, as reported in HBsAg-positive cancer patients [54–56]. Moreover,
a recent study performed in HBsAg-transgenic (tg) mice upon TIGIT-inhibition showed that therapeutic
HBsAg vaccination further induced inflammation and hepatocellular carcinoma (HCC) in a CD8 T
cell-dependent manner [57]. These data underscore the risks of interventions affecting hepatic immune
tolerance, in view of the evidence that recurrent immune-mediated liver damage can contribute to the
development of cirrhosis and HCC [58].

3. Metabolic Modulation

T cell differentiation, activation and function, as well as memory generation, require dynamic
metabolic adaptations in order to cope not only with different biosynthetic and energetic cellular
demands, but also with changes in nutrient availability due to T cell migration from one tissue to the
other [59]. Thus, it is becoming increasingly clear that the immune cell metabolism ultimately shapes
the immune response. Many studies have so far been devoted to understanding the interdependence
between T cell metabolism and function in order to identify metabolic modulation strategies relevant
to therapeutic applications in different clinical fields where T cell exhaustion is pathogenetically
relevant [60]. An example of a mitochondrial manipulation influencing T cell dynamics has been
provided by the effect of mitochondrial fusion-promoting drug treatment in improving the cell fitness
and function of adoptively transferred anti-tumor CD8 T cells in mice [61]. Moreover, a dysregulated
metabolism has been described in the mouse model of LCMV infection where early metabolic
alterations precede the onset of severe T cell dysfunction [62], with suppression of both glycolysis and
mitochondrial respiration associated with significant transcriptional changes. Virus-specific CD8 T cells
containing abnormally large, depolarized mitochondria with a subverted ultrastructure and increased
ROS production persisted also in advanced stages of exhaustion and were enriched in the more
terminally differentiated PD1hiEomeshi CD8 T cell subset. A PD1 blockade could partially relieve such
metabolic alterations, mostly in PD1int cells, in line with previous reports demonstrating the influence
of inhibitory receptor signaling on T cell metabolism [63]. Overexpression of the transcriptional
co-activator PGC-1α can reverse the dysregulated mitochondrial phenotype and can significantly
increase T cell polyfunctionality. The same approach has also been applied to rescue exhausted
tumor-infiltrating lymphocytes, with a positive effect of PGC1α over-expression on glucose uptake,
glycolysis and mitochondrial dysregulation, as well as on anti-tumor functions [64,65].

Similarly to what is described in tumors, nutrient competition and restriction in the tumor
microenvironment as well as the inhibitory effects of accumulated metabolites [66] represent factors
responsible for T cell dysfunction also in the infected liver, where amino acid depletion caused by their
consumption by a number of infiltrating cells has been described as part of the immunosuppressive
environment [11,67]. The decrease in arginine levels by the granulocytic subset of myeloid-derived
suppressor cells (gMDSC) producing arginase I, has been shown to be one way of depriving T cells
of this essential amino acid, transiently in acute HBV patients and more persistently in chronically
infected individuals, particularly in the infection phases without overt immunopathology, such as in
immunotolerant and inactive patients [13]. This finding has been further confirmed by partial CD8 cell
functional reconstitution following in vitro arginine replenishment [68]. The inflamed hypoxic hepatic
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environment may also contribute to the significant GLUT-1 up-regulation observed in exhausted
HBV-specific CD8 T cells, that have been described as being heavily dependent on glucose up-take and
glycolysis for energy production, because of their limited capacity to use oxidative phosphorylation,
in comparison with more functional CMV-specific CD8 cells. As in LCMV, also in chronic HBV infection
virus-specific CD8 T cells display abnormally large, depolarized, dysfunctional mitochondria, that
can be rescued by IL-12 addition to the culture medium [69]. Mitochondrial dysfunction with a high
proportion of depolarized mitochondria and excessively high ROS levels has also been supported
in chronic hepatitis B by a genome-wide transcriptome study of virus-specific CD8 cells, showing
an extensive downregulation of genes coding for different mitochondrial components of the electron
transport chain (ETC), fatty acid and amino acid metabolism and heme biosynthesis [70]. Among the
reported down-regulated genes in exhausted HBV-specific CD8 cells, those coding for the mitochondrial
membrane fusion protein OPA1, the mitochondrial enzyme CPT-1α, and the costimulatory receptor
CD28 could represent factors affecting the correct T cell differentiation, in consideration of their
demonstrated role in metabolic plasticity and functional memory in T cell development [61,71,72].

In this context, mitochondria-targeted antioxidants, by neutralizing the excess ROS production,
resulted in high in vitro response rates, as shown by significant improvement of mitochondrial
depolarization and ETC protein expression, as well as HBV-specific T cell cytokine production and
viability, not only at peripheral but also at intrahepatic level [70]. Considering the multifaceted
roles played by mitochondria in a number of cellular processes, all of which can ultimately impact
on T-cell proliferation and the effector function, mitochondrial modulation should be considered in
the perspective of immune-modulatory strategies targeting multiple dysregulated cellular processes.
It can be an alternative or complementary approach to the checkpoint blockade in order to restore
T cell function and responsiveness to antigen stimulation and render HBV-specific T cells efficiently
responsive to boosting vaccination.

4. Therapeutic Vaccination

Since the spontaneous resolution of HBV infection is accompanied by immune reconstitution,
stimulation of HBV-specific B and T-cell immunity by therapeutic vaccination in the context of a chronic
infection represents a rational approach to overcoming immune tolerance. Therapeutic vaccination
is an attractive field of research, nevertheless different therapeutic vaccine attempts in hepatitis B
have so far been unsuccessful. To date, several formulations have been tested both in animal models
and humans, and different categories of immunogens have been developed, including protein- or
peptide-based, DNA- and viral vector-based vaccines. Many different vaccine therapies for chronically
HBV infected patients have already been evaluated in clinical trials [73–76] (Table 1) and some of them
are discussed below.
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Table 1. Therapeutic Hepatitis B vaccines in clinical trials.

Vaccine Name Vaccine Composition Antiviral Treatment Estimated
Enrollment Phase Trial Registration Findings Available References

TG1050

Adeno vector
encoding core,

polymerase, envelope
fusion protein

Add-on therapy to
Tenofovir or

Entecavir (>2 years)
48 Ib NCT02428400 Completed; results not

reported

GS-4774
Heat-inactivated yeast
containing S, core, X

proteins

Add-on therapy to
NUCs (>1 years) 178 II NCT01943799 Completed; no significant

HBsAg reduction [77]

Combined with
Tenofovir 195 II NCT02174276 Completed; no significant

HBsAg reduction [78]

Theravax
(DV-601)

S, core proteins,
Iscomatrix adjuvant

Combined with
Entecavir 14 Ib NCT01023230 Completed; anti-viral

response observed [79]

ABX203
S, core proteins,

Add-on therapy to
NUCs 261 IIb/III NCT02249988 Recruitment completed;

results not reported

Vaccine versus
Peg-IFN 160 III NCT01374308

Recruitment completed;
superior reduction of the

viral load in Vaccine group
[80]

Yeast-derived
Immune

Complexes, YIC

HBsAg-hepatitis B
immunoglobulin
(HBIG); Alum as

adjuvant

Untreated CHB
patients 450 III

Recruitment completed; no
difference between YIC

group and placebo group in
obtaining antiviral response

[81]

HBsAg-hepatitis B
immunoglobulin

(HBIG);
YIC versus alum alone

Combined with
Adefovir 44 Pilot clinical study

Recruitment completed;
anti-viral response observed

in YIC group (rate of
HBeAg seroconversion)

[82]

HepTcellTM Peptides + IC31®

adjuvant
Add-on therapy to

NUCs 60 I NCT02496897 Recruitment completed;
results not reported

ePA-44 Multi-Peptides (HBV +
tetanus toxoid)

Combined with
Entecavir 378 II NCT01326546

Recruitment status
unknown; results not

reported

INO-1800 DNA plasmids
encoding S and core

Add-on therapy to
NUCs 90 I NCT02431312 Recruitment completed;

results not reported
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Table 1. Cont.

Vaccine Name Vaccine Composition Antiviral Treatment Estimated
Enrollment Phase Trial Registration Findings Available References

HB-110
DNA plasmids

encoding HBs, PreS1,
HBc, HBpol

Combined with
Adefovir 27 I NCT00513968

Recruitment completed; no
significant rate of HBeAg

seroconversion
[83]

Combined with
Entecavir 9 I NCT01641536 Recruitment completed;

results not reported

HB02 VAC-ADN DNA vaccine
encoding preS/S

Add-on therapy to
NUCs 70 I/II NCT00536627

Recruitment completed; no
change in relapse rate or
decrease of virological

breakthrough after therapy
discontinuation

[84,85]

pSG2.HBs/MVA.HBs

DNA vaccine
encoding HBsAg +
modified vaccinia

virus Ankara (MVA)

Alone or combined
with Lamivudine 77 IIa ISRCTN

ISRCTN67270384
Recruitment completed; no
antiviral response observed [86]

CVI-HBV-002 DNA vaccine
encoding S

Add-on therapy to
NUCs 36 I/II NCT02693652

Recruitment status
unknown; results not

reported

HPDCs-T
immune therapy

HBsAg activated
dendritic cells

Combined with
Peg-IFN or NUCs 450 I/II NCT01935635

Recruitment status
unknown; results not

reported
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Since adenoviruses have emerged to provide optimal stimulation to the T cell compartment,
some strategies have been designed to exploit such properties. Among viral vector-based vaccines,
TG1050 consists of a non-replicative adenovirus 5 vector encoding a unique fusion protein composed
of modified core, polymerase and selected domains of the envelope proteins. Injection of TG1050 was
able to induce a robust T cell response and to exert an antiviral effect in HBV-persistent mice [87]. It is
currently under evaluation in a Phase Ib study in chronic patients with inhibition of HBV replication
induced by antiviral therapy (NCT02428400).

To improve therapeutic vaccine efficacy, a novel approach called TherVacB based on a modified
vaccinia virus Ankara (MVA) vector expressing HBsAg and HBcAg has been proposed [88,89]. It was
shown to elicit strong polyclonal CD4 and CD8 T cell responses inversely correlated with antigen
levels, in HBVtg mice [76,89]. This strategy, currently at pre-clinical evaluation, has been designed as a
two-step approach, based initially on protein priming of HBV-specific CD4 T cell responses for CD8 T
cell help, and antibody production to lower HBsAg titers, followed by subsequent boosting by the
MVA vector in order to optimize the efficiency of activation and expansion of the HBV-specific CD8 T
cell response.

Among the candidate vaccines belonging to the protein-based category, GS-4774 consists of
a heat-inactivated, recombinant Sacchyaromyces cervisiae yeast that expresses HBsAg, Core and
x antigens [90]. The yeast component has been shown to have adjuvant properties and to reduce
frequency and inhibitory activity of T regulatory cells (Tregs) [91,92]. GS-4774 has been tested in
a phase 2 trial in virally suppressed CHB patients and more recently in naïve chronic patients in
combination with tenofovir [77,78]. In both studies GS-4774 did not induce clinically significant
reductions in HBsAg, although it could efficiently promote virus-specific CD8 T-cell responses breaking
T-cell tolerance in viremic HBeAg-negative patients [78]. The absence of clinical benefits, despite the
strong CD8-mediated immune modulatory effect, is probably due to the weaker CD4 T cell stimulation,
in view of the essential role played by CD4 T cells in inducing B cells and neutralizing antibodies.
Moreover, the partial restoration of envelope-specific T cell responses observed in this study could
represent another important cause of the vaccine failure in reducing HBsAg load, in line with the
concept that envelope-specific responses are associated with complete control of infection and anti-HBs
seroconversion [7].

Further novel protein-based vaccine candidates incorporating HBsAg and HBcAg and currently
in clinical trials are Theravax (DV-601), combined with a saponin-based ISCOMATRIX adjuvant [79],
and ABX203, administered by the intranasal route [80]. In addition, an innovative vaccination approach
consists of the yeast-derived HBsAg and human anti-HBs immunoglobulin complex combined with
alum adjuvant (HBsAg-HBIG) [81,82].

In general, these data support the idea that therapeutic vaccination based on a rational choice of
antigens and appropriate adjuvants/viral vectors should be able to induce multi-specific and broadly
cross-reactive HBV-specific CD4 and CD8 T cell responses associated with a restoration of T cell
reactivity to envelope, polymerase and core. The antigen choice represents a crucial point in the
immunization strategy, since probably the use of a therapeutic vaccine targeting only HBsAg may not
be optimal to achieve clinical and immunological success. Moreover, the role of adjuvant has emerged
as a further critical component to overcome different mechanisms of T cell dysfunction, in view also
of the recent evidence that vaccine-adjuvant systems may be utilized to induce beneficial epigenetic
modifications in the setting of anti-cancer treatment [93].

Among the new vaccines belonging to the peptide-based category at present in clinical trials,
HepTcellTM is composed of nine multi-epitope peptides including CD4 and CD8 T cell epitopes
targeting multiple HBV genotypes (NCT02496897), and ePA-44 consists of immunodominant epitopes
derived from PreS2 18-24 region, core-18-27 and tetanus toxoid (NCT01326546).

DNA-based vaccines have also been studied and some are currently in clinical trials [84–86].
One novel candidate is INO-1800, consisting of plasmids encoding HBsAg and a consensus sequence
of HBcAg, which is administered with or without INO-9112, a human IL-12 DNA plasmid [94]
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(NCT02431312). HB-110 is another new generation DNA vaccine containing plasmids encoding
HBs, PreS1, HBc, HBpol and IL-12 [83]. Both vaccines need to be administered by in vivo
electroporation. Interestingly this approach has been reported to enhance vaccine antigen expression
and immunogenicity. Moreover, IL-12 has been used as an adjuvant to rescue the antiviral function of
exhausted HBV-specific T cells [43].

In conclusion, some general considerations on therapeutic vaccination efficacy can be outlined.
First, an ideal approach should aim at achieving a functional restoration of CD4, CD8 T and B cell
responses, likely needed for long-term control of HBV infection. Furthermore, an important open issue
is also the optimization of therapeutic vaccination through the addition of other immune-modulators,
such as checkpoint inhibitors and metabolic modulators to overcome HBV-specific immune exhaustion.
Finally, lowering the antigen load before T cell boosting to minimize the risk related to hepatic flares
and to favor functional T cell restoration as well as an accurate selection of patients that could be
more likely to respond to immune modulation represent two further crucial aspects to consider in the
vaccine design strategy. With respect to the last point, a better characterization of T cell exhaustion
heterogeneity should help identify the patient populations with a prevalence of exhausted T cell
subsets that are better responsive to T cell revitalizing strategies and that could thus benefit more
substantially from immune modulatory interventions.

5. Adoptive Transfer of Genetically Engineered T Cells

To what extent T cell exhaustion can be overcome, and whether achievable functional restoration
is sufficient for HBV control are still open issues that need to be better addressed. In this setting,
T cell engineering technologies aimed at generating in vitro functionally efficient T lymphocytes, with
re-directed specificity against HBV, to be re-infused in the chronically infected host represent alternative
strategies to overcoming the possible inefficiency of immune modulatory therapies in the stimulation
of impaired HBV-specific T cell responses (Figure 2).

The vast majority of genetically engineered T cell adoptive transfer therapies have so far been
targeted to treat malignancies, such as lymphoma, leukemia and neuroblastoma [95,96]. Recent
reports indicate that adoptive cell transfer currently comprised of TCR-engineered and chimeric Ag
receptor (CAR)-T cells have the potential to treat a variety of other diseases including multiple sclerosis,
inflammatory intestinal diseases and autoimmune diseases [97–99]. Moreover, in the last few years
researchers have also considered extending T cell engineering to therapies for virus infections such
as HIV-1, CMV, HBV, HCV and SARS [100–107]. In this regard, clinical evidence of the potential
effectiveness of immune-modulatory strategies designed to strengthen HBV-specific T-cell responses
by adoptive transfer of engineered antigen-specific T lymphocytes are based on the observation that
virus-specific T cell administration through a bone marrow transplant from subjects who cleared HBV
infection spontaneously, to patients with chronic HBV infection, led to virus control [108]. Similarly,
liver transplantation in a patient with resolved HBV infection receiving a HBsAg positive graft resulted
in viral clearance [109]. Thus, adoptive T-cell therapy using autologous T cells genetically engineered
to express a canonical HLA class I restricted TCR, or a chimeric antigen receptor (CAR), targeting both
HBV and HCV chronic viral infections has been attempted [103–107]. In HBV infection, the re-directed
specificity of existing T cells by transfer of HBV-TCR genes has so far been tried in HBV transgenic mice
and in patients with relapses of HBV-related HCC [110,111]. Briefly, circulating T lymphocytes isolated
from CHB patients have been expanded and activated in vitro and then engineered using viral vectors
encoding HBV-specific TCR to redirect their specificity towards HBV. The modified and fully functional
T cells have then been re-infused into the chronically infected patients and through this technology
engineered lymphocytes have been able to recognize and lyse HBV infected hepatocytes. Importantly,
HBV-specific TCR reprogrammed T cells were capable not only of causing a drop of HBsAg produced
by HCC cells with integrated HBV-DNA in an HBsAg positive patient with hepatocellular carcinoma
(HCC) [110], they were also able to induce the reduction of pulmonary metastases in another case of
HBV-related HCC, that was negative for HBV antigen expression analysis by immunohistochemistry.
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In this latter study, short HBV-DNA fragments integrated into the HCC cells’ genome were sequenced
and used to select the HBV-specific TCRs for individualized engineered T cell immunotherapy [112].
HBV-specific TCR T cells are HLA-class I restricted; therefore, they can recognize viral peptides only in
the context of the appropriate presenting HLA molecule. An important advantage of this approach is
that HBV-specific TCR-T cells do not recognize circulating antigens and thus they are not inhibited
by the high quantity of soluble antigens typically present in the serum of CHB patients. Moreover,
T cells that transiently express HBV-specific TCR have been recently generated through messenger
RNA (mRNA) electroporation technology and adoptively transferred in HBV infected human liver
chimeric mice [113]. Thanks to their short life span, by this strategy engineered T cells have been
adoptively transferred in escalating doses, thus reducing the risk of potential liver toxicity and inducing
a progressive immune-mediated viremia reduction. In addition, as a safer approach to avoid the risk
of severe liver damage, the same researchers constructed TCR-reprogrammed, non-lytic T cells able to
produce low amounts of perforin and granzyme B but capable of limiting viral infection by activation
of the anti-viral cytidine deaminases APOBEC3 in HBV-infected hepatocytes [114].

As an alternative strategy, T cells able to recognize HBV-infected targets independently of
the patient HLA haplotype have been engineered using a chimeric antigen receptor (CARs) that
combines an HBV-specific antibody fragment with the co-stimulatory CD28 molecule and the CD3 zeta
intracellular domain. These chimeric receptors have been retrovirally delivered in primary human
T cells and by this technology they could recognize conformational, non-processed antigen on the
cell surface in an MHC class I-independent manner. In this regard, CAR T cells directed against the
HBsAg protein (S-CAR) enable primary human T cells to recognize and kill HBV infected hepatocytes
expressing HBsAg on their surface and to eliminate viral cccDNA in vitro [104]. Moreover, in an
HBV transgenic mouse model, CD8 T cells expressing the chimeric antigen receptor specific for HBV
envelope proteins were localized in the liver after adoptive transfer and were able to reduce HBV
replication [111]. However, a very recent study highlighted a limitation of the immunocompetent
transgenic mouse model, describing human S-CAR cell rejection by the murine immune system. This
hurdle has been recently overcome by specifically inducing tolerance against the human-derived CAR
domains, leading to persisting S-CAR cells with antiviral effect [115].

A different model for the study of HBsAg-CAR T cells has recently been generated in persistently
HBV-infected chimeric immunodeficient mice, harboring a humanized liver with viral cccDNA into
infected hepatocytes. HBV-DNA and HBsAg level reduction by transferred CAR T cells has been
reported, also in these animals [116].

Based on these observations, adoptive transfer of redirected T cells represents a potential
immune-modulatory approach for a therapeutic reconstitution of anti-viral protection.

In this perspective, there is a specific concern regarding the risk that, once re-administered to the
patient, engineered T cells may undergo functional inhibition by the same suppressive mechanisms
responsible for T cell exhaustion of endogenous antigen-specific lymphocytes. Indeed, adoptively
transferred T cells have been reported to display susceptibility to inhibitory co-receptor-mediated
exhaustion [117]. This issue has been addressed in cancer models through the association of checkpoint
blockade to CAR T cell therapy or by an engineered down-modulation of checkpoint inhibitor
expression on T cells [118]. A recent study describes the shRNA knockdown of PD-1 in TCR-redirected
T cells, as well as in intrahepatic lymphocytes from CHB and HCC patients, through a lentiviral vector
transduction. These engineered T cells demonstrated enhanced functionality in culture, and also in a
microfluidic model of 3D culture recreating some characteristics of the tumor microenvironment, such
as high PDL-1 expression. However, upon repetitive antigenic stimulation, PD-1 knock-down led to
a compensatory increase of alternative co-inhibitory receptors and to a phenotype with features of
apoptosis and senescence, thus demonstrating that engineered T cell therapy still needs to be further
refined in order to be highly effective [119].

Among different approaches studied to further improve genetically modified T cell therapy,
recent reports have highlighted the importance of modulating in vitro CAR-T cell metabolism before
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their transfer in vivo. Interestingly, given the growing understanding of metabolic dysregulation
as a key alteration in exhausted CD8 T cells, improving adoptive cellular immunotherapy through
metabolic preconditioning of CAR-T cells has currently being addressed in the setting of malignancies.
Interventions aimed at promoting memory T cell-like metabolism and oxidative phosphorylation
(OXPHOS), and at reducing aerobic glycolysis, have been attempted to optimize metabolic profiles of
immune T cells in vitro before adoptive transfer [66].

Although a growing number of studies are currently addressing engineered T cell therapy
challenges and potentials, at present its clinical management in the setting of chronic HBV infection
remains technically complex and difficult to apply for a large number of patients.

6. Final Remarks

Restoration of functionally efficient adaptive responses is believed to be a possible strategy to
control HBV infection in chronically infected patients, but the proof of principle that this can actually
be achieved in vivo is still lacking. There is evidence in different models of chronic virus infection that
a persistently elevated antigen load can inhibit T and B cell functions, but no data are available in
chronic HBV infection to support the notion that the decline of antigen can allow T and B cell functional
reconstitution. Despite this, inhibition of antigen production may actually represent the first possible
strategy to be put in place to reconstitute adaptive responses, in consideration of the high antigenemia
constantly present in chronically infected patients. To further amplify this effect, checkpoint blockade
and metabolic modulation have been proposed to make T cells more responsive to antigen boosting by
vaccination. Thus, a sequential or combined administration of different compounds with different
complementary effects on protective immune responses may be necessary to counteract the number of
inhibitory mechanisms that are known to be simultaneously operative in chronic HBV infection. This
may represent a problem for in vivo application because safety is the first requirement for novel HBV
therapies, especially in consideration of the optimal tolerability of available treatments. In addition, to
what extent dysfunctional T and B cells which have been exposed for decades to different inhibitory
mechanisms can be corrected is still an open issue and an insufficient cell functional reconstitution
may represent a major limit to the curative potential of immune modulatory therapies. In this
context, adoptive transfer of genetically engineered CD8 T cells produced in vitro either to recognize
HLA/peptide complexes in an HLA restricted manner, or HBV antigens in a HLA independent fashion
on infected liver cells, can allow to bypass the hurdle represented by functional T cell reconstitution.
These treatments are however practically very difficult to apply in clinics; and moreover, adoptively
transferred T cells may undergo the same suppressive effects triggered by the inflamed intrahepatic
environment, which contribute to inactivate autologous HBV-specific CD8 cells (such as inhibition by
PD-1/PD-L1 interaction), and may be associated with safety problems related to the size of cytotoxic T
cell infusion. A possible solution may be the silencing of the key intracellular co-inhibitory pathways
to relieve intrahepatic suppression and the amplification of the non-cytolytic potential of engineered
CD8 T cells, which would make an HBV cure more effective but less dangerous for the infected liver.
Thus, additional work is needed to find suitable solutions to limit the risk, improve the efficacy and
simplify the clinical application of adoptive transfer interventions on the one hand, and to characterize
better the features of T cell exhaustion on the other in the perspective of identifying more optimal
strategies to reconstitute fully protective antiviral T and B cell functions.
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