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Abstract: Alzheimer’s disease (AD) is the leading cause of dementia worldwide. The extracellular
deposits of Amyloid beta (Aβ) in the brain—called amyloid plaques, and neurofibrillary
tangles—intracellular tau aggregates, are morphological hallmarks of the disease. The risk for
AD is a complicated interplay between aging, genetic risk factors, and environmental influences.
One of the Apolipoprotein E (APOE) alleles—APOEε4, is the major genetic risk factor for late-onset
AD (LOAD). APOE is the primary cholesterol carrier in the brain, and plays an essential role in
lipid trafficking, cholesterol homeostasis, and synaptic stability. Recent genome-wide association
studies (GWAS) have identified other candidate LOAD risk loci, as well. One of those is the triggering
receptor expressed on myeloid cells 2 (TREM2), which, in the brain, is expressed primarily by
microglia. While the function of TREM2 is not fully understood, it promotes microglia survival,
proliferation, and phagocytosis, making it important for cell viability and normal immune functions
in the brain. Emerging evidence from protein binding assays suggests that APOE binds to TREM2
and APOE-containing lipoproteins in the brain as well as periphery, and are putative ligands for
TREM2, thus raising the possibility of an APOE-TREM2 interaction modulating different aspects of
AD pathology, potentially in an isoform-specific manner. This review is focusing on the interplay
between APOE isoforms and TREM2 in association with AD pathology.

Keywords: Alzheimer’s disease (AD); Apolipoprotein E (APOE); triggering receptor expressed on
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1. Introduction

Alzheimer’s disease (AD) is the leading cause of dementia worldwide and accounts for 60–80% of
all cases [1]. AD is characterized by senile plaques made of β-amyloid peptide (Aβ) and neurofibrillary
tangles of hyperphosphorylated tau protein. There are two types of AD: Early-onset familial AD,
and late-onset AD (LOAD); LOAD accounting for approximately 95% of all AD cases [2,3]. Familial AD
accounts for a small percentage of all cases and occurs exclusively through gene mutations in amyloid
precursor protein (APP), or presenilins (PSEN1, PSEN2) that increase the production of Aβ [2,3], or the
ratio between longer (Aβ42) and shorter Aβ peptides. These mutations follow a pattern of Mendelian
inheritance and result in symptom manifestation before the age of 65 [4]. In contrast, LOAD has no
known causative gene mutations, however, genome-wide association studies (GWAS), and whole
exome sequencing have identified over 30 AD risk loci [5]. Over half of those have been implicated in
innate immune response including Apolipoprotein E (APOE) and triggering receptor expressed on
myeloid cells 2 (TREM2) [6–9].

In humans, the APOE gene resides on chromosome 19 and has three alleles with different allele
frequencies: APOEε2, 5–10%; APOEε3, 65–70%; and APOEε4, 15–20% [10]. APOE is a 299 amino
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acid protein, is a major cholesterol carrier in the circulation and the only cholesterol transporter in
the brain [11]. In mouse models for AD, the human isoforms APOE2 and APOE3 have the ability
to bind and clear Aβ more efficiently compared to APOE4 [12]. The physiological role of APOE in
lipid trafficking is crucial as lipids play an essential role in immune regulation through cell signaling,
membrane fluidity, and serve as ligands for a number of immune receptors [13]. TREM2 is a cell surface
receptor on myeloid cells, and through its interaction with protein tyrosine kinase binding protein
(TYROBP), TREM2 activation initiates a multitude of pathways that promote cell survival [14,15],
proliferation [16], chemotaxis, and phagocytosis [15–21], making it vital for normal immune function.
The most common TREM2 variant, R47H (arginine to histidine at position 47), impairs ligand binding
and increases the risk of developing AD by approximately 4-fold [6,8]. TREM2 has the ability
to recognize a variety of ligands, many of them on the surface of apoptotic cells, phospholipids,
glycolipids, and lipoproteins including low-density lipoprotein (LDL) and high-density lipoproteins
(HDL), Clusterin (APOJ) and APOE [22–24]. Emerging evidence suggests that TREM2 can bind to and
is a putative receptor for APOE [22–24], thus raising the possibility of an APOE-TREM2 interaction
modulating AD pathogenesis. This review focuses on the interplay between APOE isoform and
TREM2 and their association with AD.

2. APOE

2.1. APOE Structure and Isoforms

In the brain, APOE is secreted by glia, mainly astrocytes, and is lipidated by adenosine
triphosphate-binding cassette transporters A1 (ABCA1) and G1 (ABCG1) (Figure 1). ABCA1 transports
cholesterol and phospholipids to lipid-free APOE, thus forming discoidal HDL particles (reviewed
in [25,26]). The discoidal HDL particles are composed of 100 to 200 lipid molecules that are surrounded
by two apolipoprotein molecules [27]. Once sufficient cholesterol and phospholipids are available to
ABCA1, it undergoes a conformation change and forms a dimer. The lipidated dimers interact with
actin filaments on the plasma membrane, thereby immobilizing them until lipid-free apolipoprotein
directly binds to the ABCA1 dimer. Upon binding, the apolipoprotein accepts the lipids presented by
ABCA1 and forms a discoidal HDL particle leaving the ABCA1 dimer to dissociate back to a monomer
and begin the process again [27]. In the brain, APOE is primarily synthesized de novo and there
is a limited exchange between APOE circulating in the blood and the brain [28,29]. In humans,
APOE isoforms differ at either position 112 or 158 (Figure 1). APOE2 has cysteine (Cys) residues at
both positions 112 and 158, APOE3 has a Cys residue at 112 and an arginine (Arg) residue at 158,
and APOE4 has Arg residues at both positions [30]. All other mammals investigated so far have
a single APOE isoform with Arg at the residue equivalent to human APOE 112 [31].
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Figure 1. Role of Apolipoprotein E (APOE) in Alzheimer’s disease (AD). In humans, there are three 
APOE isoforms: APOEε2, APOEε3, and APOEε4. In the brain, APOE is secreted mainly by astrocytes 
and its lipidation is mediated by ABCA1. ABCA1 transports cholesterol and phospholipids to naïve 
APOE forming discoidal high-density lipid (HDL) particles. Lipid-rich APOE particles can interact 
with Aβ monomers and oligomers and bind to the low-density lipid (LDL) receptor family including 
LRP1, LDLR, VLDLR, and ApoER2 on both neurons and microglia, while also interacting with 
triggering receptor expressed on myeloid cells 2 (TREM2) only in microglia. 

APOE has two functional domains: An N-terminal domain, residues 136–150, and a C-terminal lipid-
binding domain, residues 244–272 [10,11]). The N-terminal domain forms a four-helix bundle [32] and the 
amino acid differences between isoforms alter the protein structure, thus leading to differential lipid and 
receptor binding. With a Cys residue at position 112, both APOE2 and APOE3 have the ability to form 
disulfide-linked hetero- and homodimers, while Arg at position 112 of APOE4 significantly impedes the 
binding [33]. The structural variation between isoforms due to amino acid Cys/Arg at position 158 impacts 
the receptor-binding domain of APOE and thus, the binding affinity to APOE receptors. The variation at 
position 112 plays a role in domain–domain interaction and affects lipid binding properties of APOE [34], 
thus explaining the binding preference of APOE4 for very low-density lipoproteins (VLDL) and APOE3 
to HDL [35]. Therefore, the stability and functional role of APOE is largely dependent on its ability to 
interact with lipids and its receptor binding properties. 

2.2. APOE Receptors 

APOE predominantly binds to receptors of LDL receptor family, which includes low-density 
lipoprotein receptor (LDLR), LDLR-related receptor 1 (LRP1), very-low-density lipoprotein receptor 
(VLDLR), and APOE receptor 2 (APOER2) [36–38] (Figure 1). The members of the LDL receptor 
family share structural properties consisting of a short intracellular domain, a transmembrane 
domain, and a large extracellular domain with a varying number of complement-type repeats, which 
allow them to interact with APOE [38]. The first identified key member of this family of receptors 
was LDLR, which is the main receptor for LDL and VLDL. LDLR preferentially binds to lipidated 
APOE particles, and its deficiency leads to severe hypercholesterolemia and premature 
atherosclerosis [39]. LRP1 binds to APOE aggregates and is essential for early development, as the 
deletion of the Lrp1 gene in mice results in embryonic lethality [40], while the brain-specific 
knockdown of Lrp1 inhibits synaptic transmission and motor function [41]. LDLR and LRP1 are the 
main APOE receptors in the brain, and deletion of Ldlr increases APOE levels [42,43]. Both APOER2 
and VLDLR are almost exclusively expressed in the brain, are structurally very similar to each other, 

Figure 1. Role of Apolipoprotein E (APOE) in Alzheimer’s disease (AD). In humans, there are three
APOE isoforms: APOEε2, APOEε3, and APOEε4. In the brain, APOE is secreted mainly by astrocytes
and its lipidation is mediated by ABCA1. ABCA1 transports cholesterol and phospholipids to naïve
APOE forming discoidal high-density lipid (HDL) particles. Lipid-rich APOE particles can interact with
Aβ monomers and oligomers and bind to the low-density lipid (LDL) receptor family including LRP1,
LDLR, VLDLR, and ApoER2 on both neurons and microglia, while also interacting with triggering
receptor expressed on myeloid cells 2 (TREM2) only in microglia.

APOE has two functional domains: An N-terminal domain, residues 136–150, and a C-terminal
lipid-binding domain, residues 244–272 [10,11]). The N-terminal domain forms a four-helix bundle [32]
and the amino acid differences between isoforms alter the protein structure, thus leading to differential
lipid and receptor binding. With a Cys residue at position 112, both APOE2 and APOE3 have the ability
to form disulfide-linked hetero- and homodimers, while Arg at position 112 of APOE4 significantly
impedes the binding [33]. The structural variation between isoforms due to amino acid Cys/Arg at
position 158 impacts the receptor-binding domain of APOE and thus, the binding affinity to APOE
receptors. The variation at position 112 plays a role in domain–domain interaction and affects lipid
binding properties of APOE [34], thus explaining the binding preference of APOE4 for very low-density
lipoproteins (VLDL) and APOE3 to HDL [35]. Therefore, the stability and functional role of APOE is
largely dependent on its ability to interact with lipids and its receptor binding properties.

2.2. APOE Receptors

APOE predominantly binds to receptors of LDL receptor family, which includes low-density
lipoprotein receptor (LDLR), LDLR-related receptor 1 (LRP1), very-low-density lipoprotein receptor
(VLDLR), and APOE receptor 2 (APOER2) [36–38] (Figure 1). The members of the LDL receptor
family share structural properties consisting of a short intracellular domain, a transmembrane domain,
and a large extracellular domain with a varying number of complement-type repeats, which allow
them to interact with APOE [38]. The first identified key member of this family of receptors was
LDLR, which is the main receptor for LDL and VLDL. LDLR preferentially binds to lipidated APOE
particles, and its deficiency leads to severe hypercholesterolemia and premature atherosclerosis [39].
LRP1 binds to APOE aggregates and is essential for early development, as the deletion of the Lrp1 gene
in mice results in embryonic lethality [40], while the brain-specific knockdown of Lrp1 inhibits synaptic
transmission and motor function [41]. LDLR and LRP1 are the main APOE receptors in the brain,
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and deletion of Ldlr increases APOE levels [42,43]. Both APOER2 and VLDLR are almost exclusively
expressed in the brain, are structurally very similar to each other, bind to lipid-free APOE, and are
dependent on the extracellular ligand Reelin [44]. In mice deletion of both Apoer2 and Vldlr leads to
defective lamination of the cerebellum, cortex, and hippocampus, as well as a reduction in cerebellum
volume and impaired motor function [44].

Activation of APOE receptors by Reelin initiates a signaling cascade through the initiation of Src
family kinases (SFKs). The activation includes PI3 kinase and Protein kinase B (Akt), which result in
reduced phosphorylation of the microtubule stabilizing protein tau, and regulation of microtubule
dynamics [45,46]. As noted above, due to the amino acid substitution of Arg with Cys at 158 leading
to conformational differences, APOE2 exhibits a severely decreased binding affinity to LDLR (1–2% of
APOE3) [47], a significantly decreased affinity to bind LRP1 (40% of APOE3) [47], but similar affinity to
VLDLR [48]. The receptors from the LDL receptor family have distinct physiological roles due in part
to their affinity to ligands, signaling potency, cellular localization, expression pattern, and endocytosis
rate [36].

2.3. APOE Function in the CNS

The human brain accounts for approximately 2% of the weight of the body but contains over 20%
of its total cholesterol [49]. In the brain, cholesterol is necessary for the formation and maintenance
of synapses, and APOE plays a major role in cholesterol homeostasis. The blood–brain barrier (BBB)
prevents the exchange between the brain and plasma cholesterol and lipids transported by HDL, LDL,
and VLDL [28]. APOE as the major lipid carrier in the brain and has an important role in the transport
of cholesterol and other lipids from astrocytes to neurons, where they are needed to maintain synaptic
plasticity [50]. The important role of APOE in synaptic integrity and plasticity, as well as dendritic
complexity, has been demonstrated by experiments in APOE knockout mice [29,51].

Disruptions in synaptic function such as decreased synaptic density, and alterations in autophagy,
are pathological features of neurodegenerative disorders, including AD [52–55]. There is increasing
evidence that APOE isoforms differentially impact synaptic integrity and plasticity [56–59]. In mice
and humans, APOE4 correlates inversely with dendritic spine density [56,60], and synaptic
proteins PSD-95, synaptophysin, and syntaxin 1 are altered in an APOE isoform-specific manner
(APOE4 < APOE3 < APOE2) [57]. It has been shown that in targeted replacement mice expressing
human APOE, APOE4 isoform has a differential effect on neuronal signaling in young and aged mice
indicated by the expression level of proteins in NMDAR-dependent ERK/CREB pathway, reduced
expression of APOE receptor LRP1 and lower NR2A phosphorylation [59]. Other studies demonstrated
that in APOE4 expressing mice, dendritic spine density and complexity, as well as glutamate receptor
function, and synaptic plasticity are impaired [61,62]. Meta-analyses addressing the differential effect
of APOE isoforms in cognitively healthy adults over the age of 60 suggest that APOEε4 carriers exhibit
impaired episodic memory, executive function, and global cognition, with no impact on primary
memory, verbal ability, or attention [63,64]. Studies utilizing the same cognitive tests and similar in
size patient cohorts are rare, thus making the findings inconsistent between groups [65]. Whether
or not memory and cognitive impairments in humans, carriers of APOEε4 allele, are associated with
a disturbed neuronal signaling and the level of NR2A phosphorylation, as in APOE4 expressing mice,
is not known.

3. TREM2

3.1. TREM2 Structure and Expression

TREM2 is a transmembrane receptor of the immunoglobulin superfamily expressed on the
plasma membrane of myeloid cells and microglia, and is active in the innate immune response [66].
TREM2 protein consists of an extracellular Ig-like domain, a transmembrane domain, and a small
cytoplasmic tail. In the CNS, TREM2 expression is strongest in the basal ganglia, corpus callosum,
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spinal cord, and medulla oblongata [67]. Human TREM2 is located on chromosome 6p21.1 in the
TREM gene cluster near other TREM and TREM-like genes: TREML1, TREM2, TREML2, TREML3,
TREML4, and TREM1 [68,69]. Many of these genes are conserved in mice and humans with only Trem3
and Trem6 unique to mice and TREML3 to humans. Both TREM2 and TREM1 interact with TYROBP to
initiate pathways involved in cell activation and phagocytosis [16,69]. TREMs proteins are implicated
in the clearance of extracellular debris [70].

The proteolytic cleavage of TREM2 ectodomain generates soluble TREM2 (sTREM2) [71] (Figure 2).
sTREM2 has the ability to passes the Brain—cerebral spinal fluid (CSF) barrier and can be detected in
CSF [72].
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Figure 2. TREM2 activation and downstream signaling. sTREM2 is generated by ADAM10 or
ADAM17 mediated proteolytic cleavage. Ligand-activated TREM2 interacts with immune receptor
tyrosine-based activation motifs (ITAMs) on TYROBP, which leads to TYROBP phosphorylation and
recruitment of spleen tyrosine kinase (SYK). TYROBP/SYK mediated activation of phosphoinositide
3-kinase (PI3K)—AKT pathway and phosphorylation of LAT (linker for activation of T-cells family
member 1), recruits other signaling adaptors including phospholipase Cγ (PLCγ). PLCγ degrades
phosphatidylinositol-3,4,5-trisphosphate (PIP3) into inositol trisphosphate (IP3), inducing an efflux
of Ca2+. The ability of TREM2 to bind ligands is influenced by genetic variations, some of which are
associated with AD, and located adjacent to or within an electrostatically basic patch (light blue).

3.2. TREM2 Function

TREM2 binds Lipopolysaccharides (LPS) [73], phospholipids [15], HDL [24], LDL, APOE [22–24],
APOJ [24], apoptotic neurons [18], and Aβ [74] all of which activate signaling pathways (Figure 2).
TREM2 conveys intracellular signals through TYROBP, an adaptor protein that contains functional
docking sites known as ITAMs. Upon TREM2 activation through ligand binding, the ITAMs
on TYROBP are phosphorylated and recruit SYK. SYK activates the PI3K–AKT pathway and
phosphorylates the adaptor LAT (linker for activation of T-cells family member 1), which recruits
other signaling adaptors including PLCγ. PLCγ degrades PIP3 into IP3, which creates an efflux of
Ca2+ [15,66,75] (Figure 2).

Unlike the signaling cascade triggered by ligand-activated TREM2 (Figure 2), the biological role of
sTREM2 is not well understood. It has been proposed, however, that it either acts as a decoy receptor
opposing full-length TREM2 [76] or has another still unidentified function. In cell culture, at least,
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sTREM2 promoted survival of bone marrow-derived macrophages (BMDM) [77], yet failed to rescue
phagocytosis in TREM2-deficient BMDM cells [78].

A well-established function of TREM2 is the regulation of cell proliferation. Knockdown of TREM2
in primary microglia leads to a reduction in cell number [79] and TREM2 deficiency inhibits myeloid
cell population growth in response to traumatic brain injury [80] and aging [16]. Expression of TREM2,
even at a normal level, may also impact the proliferation of endothelial cells. Recently, Carbajosa et al.
investigated the impact of TREM2 deficiency, in the brain of young and aged mice using RNA-seq and
found a disruption of gene networks related to endothelial cells that is more apparent in younger than
in older mice. They suggested that the absence of TREM2 in microglia influences endothelial gene
expression, which may link immune response and brain vascular disease as an underlying factor in
AD pathogenesis [81]. Microglia survival in the context of TREM2 expression has been also linked
to the CSF-1-CSF-1R pathway, which is primarily active in conditions of reactive microgliosis [82]
and affects Aβ clearance [83]. Since it has been demonstrated that TREM2 signaling, via TYROBOP,
synergizes with CSF-1R signaling to promote survival of macrophages [84], a similar mechanism
can be involved in microglial survival as well. A recent study by Wang et al. demonstrating that
TREM2-deficient microglia exhibited reduced survival at low CSF-1 concentrations support the role of
CSF-1R signaling in microglia survival [15]. In conjunction with decreased survival, TREM2-deficient
microglia demonstrate a reduced chemotactic capacity. Migration of microglia towards injected
apoptotic neurons as well as towards sites of laser-induced damage was also reduced in Trem2−/−

mice [20].

3.3. TREM2 Variants and Neurodegeneration

Rare biallelic mutations that result in loss of function of TREM2 cause Nasu–Hakola disease [67]
(NHD) and in some cases Frontotemporal dementia (FTD) [68,85]. NHD is manifested with bone
cysts and early onset of neurodegeneration. Brain pathology is comprised of axonal degeneration,
white matter loss, cortical atrophy, increased microglia density, and astrogliosis [86–88]. The variants
associated with NHD and FTD can be a result of coding mutations in the transmembrane domain
(D134G, K186N) [67], ectodomain (Y38C, T66M) [68,89,90], early stop codons [91,92], or mutations
in a splice site [93,94]. Considering the role of TREM2 in microglial function, variants in TREM2
can be part of functional networks involved in multiple neurodegenerative disorders. Numerous
studies have evaluated the effect of TREM2 on risk for AD (discussed in Section 4.2), frontotemporal
dementia (FTD) [95], amyotrophic lateral sclerosis (ALS) [96–98], Lewy body dementia [99], posterior
cortical atrophy [100], Creutzfeldt-Jakob disease [101], progressive supranuclear palsy [96], Parkinson′s
disease [96], ischemic stroke [96], and multiple system atrophy [102].

TREM2 R47H variant was identified as a risk factor for AD independently by two groups that
analyzed European and North American [8], and Icelandic cohorts [6]. Later in the same year,
Cruchaga et al. demonstrated that TREM2-R47H variant is associated with a higher level of tau
and phospho-tau in CSF [103]. The initial findings for the TREM2-R47H variant were confirmed by
other groups [104,105]. In addition, Sims et al. reported a significant association of TREM2-R47H and
-R62H variants with LOAD and showed that even after removing these variants from the analysis the
association remained significant suggesting the presence of other TREM2 risk variants [106]. TREM2
pW191X and pL211P variants were recently identified associated with LOAD in African American
cohort but the variants shown to confer AD risk in Caucasians were extremely rare [107]. Similarly,
Yu et al. reported several new TREM2 variants in the Han Chinese population, however, none of
them was significantly associated with AD risk and the TREM2 R47H variant was not detected in this
population [108].

In addition to TREM2, another gene in the same cluster—TREML2 was also examined for
association with LOAD. In a meta-analysis study of 36,306 human CSF samples, the missense variant
rs3747742 of TREML2 seemed to confer a protective effect against AD [109]. A complete list of so far
identified TREM2 variants—can be found on the ALZ forum website https://www.alzforum.org/.

https://www.alzforum.org/
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Recently, Kober et al. demonstrated that NHD variants impact protein stability and decrease
TREM2 cell surface expression, while AD variants impact TREM2 ligand binding [110] (Figure 2).
When mapping the electrostatic surface of TREM2, Kober et al. identified a large basic patch that was
not present in other members of the TREM family [111,112] indicating a unique role for this domain
in TREM2 function. Many of the AD-related mutations can be found near or within this basic region
of TREM2. Both R47H and R62H decrease the size of the basic patch and reduce binding properties
resulting in a loss of function, while T96K increases the size corresponding to a gain of function [110].

4. APOE, TREM2, and AD

4.1. APOE and AD

Studies in mice have suggested that a relationship between APOE isoform and Aβmetabolism
was involved in AD pathogenesis. Considering APOE as an Aβ binding protein [113], many of the
early in vitro studies tested Aβ binding to APOE and other apolipoproteins [114–118]. While the
binding was repeatedly confirmed, none of those studies provided any indication that the risk for AD
was dependent on differences in APOE-Aβ binding.

APOEε4 is the major genetic risk factor for LOAD [119,120]. Inheritance of a single copy
of APOEε4 increased AD risk by ~3-fold, and the inheritance of two copies increases risk by
~12-fold [121]. Compared to AD patients who are not APOEε4 carriers, AD patients who carry
at least one APOEε4 allele exhibit an earlier disease onset, faster disease progression, and increased
brain atrophy [119,122,123]. Importantly, however, homozygous APOEε3 AD patients still account for
the majority of LOAD cases, suggesting that additional genetic or environmental factors are relevant
to disease progression. The question, however, if the APOE4 isoform is deleterious or less protective,
remains unanswered, with evidence supporting both claims [124]. While the global deletion of APOE
is associated with a drastic reduction of compact amyloid plaques in the brain of APP expressing
mice [51,125–127] the phenotypes of those mice have not been extensively examined to improve our
understanding of the role of APOE in the development of AD. Recent studies provided new insight
on the role of microglia in the phenotype of APP expressing mice with global deletion of mouse
Apoe—their reduced microglia recruitment and altered plaque morphology indicated a role beyond
APP processing and deposition [128].

Using mouse models for AD, it has been established that human APOE differentially impacts
Aβ deposition in a dose-dependent, as well as isoform-specific manner, with APOE4 > APOE3
> APOE2 [12,129–131]. Interestingly, recent publications implicated APOE as essential for plaque
formation during early seeding stages of Aβ deposition [132,133]. Utilizing APOE3 and APOE4
inducible mice Liu et al. have shown that APOE4 but not APOE3 increases amyloid pathology when
expressed during the early seeding stages of amyloid deposition [132]. This impact was not seen in
APOE3 mice and was lost when APOE4 was expressed only in later stages of plaque development,
indicating APOE4 has the greatest impact on amyloid deposition during the initial seeding stages [132].
By dosing with anti-sense oligonucleotides from birth, Huynh et al. showed a reduction in Aβ
deposition in APOE4 mice, whereas there was no effect when the treatment began after the onset of
Aβ plaque formation [133].

Data from animal models suggest that APOE affects also Aβ clearance in an isoform-dependent
manner [12,130], and the lipidation of the protein seems to be of importance [134]. There are
two major Aβ clearance pathways in the brain: Receptor-mediated clearance via microglia [135],
and astrocytes [136], BBB [137], or through interstitial fluid drainage pathways [138]. Cell facilitated
clearance mechanisms are likely to be, in part, mediated by APOE and APOE receptors. APOE
receptor-mediated internalization of Aβ seems to be most functional in microglia [139] and
astrocytes [140]. ABCA1 functions to alter the lipidation state of APOE in the brain, which consequently
impacts Aβ fibrillization (reviewed in [25,26]). In APP transgenic mice, targeted disruption of Abca1
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decreases APOE lipidation and increases amyloid deposition [141–143]. Conversely, overexpression of
Abca1 increases APOE lipidation and decreases amyloid deposition [144].

The second hallmark of AD, aside from Aβ deposition, is the formation of tau tangles.
Early studies demonstrated isoform-specific binding of APOE to human tau in vitro, suggesting
an isoform-specific impact on tau pathology [145,146]. Recently, APOE4 has been shown to
exacerbate tau-mediated neurodegeneration, while the absence of APOE altogether is protective [147].
Using a P301S tauopathy mouse model on human APOE KI or APOE KO background Shi et al. found
no changes at 3 months, but by 9 months the P301S/E4 mice had significantly more brain atrophy than
P301S/E2, or P301S/E3, and that APOE KO mice were largely protected from this effect [147].

As a result of the relationship between APOE and AD, it has been suggested that targeting APOE
may have a therapeutic potential for AD (reviewed in [148]). There are two potential therapeutic
interventions: Regulation of APOE quantity and modification of APOE properties. The former
entails the upregulation of APOE levels via liver X receptor (LXR) and PPARγ agonists [149–153].
The administrations of retinoid X receptor (RXR) agonist, bexarotene, was shown to increase
APOE level and its lipidation resulting in a reversal of cognitive deficits observed in APP mouse
models [60,154–156]. However, bexarotene effect on Aβ deposition in AD mouse models is
controversial [157–159]. Another therapeutic approach is the use of specific antibodies to alter the
protein levels of APOE [160]. A recent study demonstrated that using an anti-APOE antibody that
recognizes human APOE isoforms, targets, and specifically binds to non-lipidated forms making it
effective in reducing amyloid burden in APP transgenic mice [134]. The modulation of APOE properties
by structural modification through small molecule correctors [161,162], or by inhibiting APOE-Aβ
interactions with small molecule inhibitors [163,164], have also been proposed for therapeutic
interventions in AD.

4.2. TREM2 and Alzheimer’s Disease

As the resident immune cells of the brain, microglia continuously monitor the brain and respond
to damage-related signals that perturb the environment, (reviewed in [165]). The proposed function
of microglial recruitment is to form a physical barrier that encapsulates neurotoxic Aβ, thereby
restricting plaque growth and containing any neurotoxic effects [166,167]. Deficiency in TREM2 or its
adaptor protein TYROBP prevents myeloid cell accumulation around Aβ plaques in a dose-dependent
manner [15,166–169]. In AD patients, heterozygous for the R47H or R62H variants, there are fewer
plaque-associated microglia than in those with nonmutant TREM2 [170]. This lack of microglial
response in R47H carrying patients has also been shown to increase plaque-associated neuronal
dystrophy and reduced microglial coverage [166].

Multiple groups have examined the effects of Trem2 deficiency on amyloid pathology with
different results based on the mouse model used, as well as the stage of amyloid pathology. Wang et al.
examined the effect of TREM2 deficiency in 5XFAD and found that at 8.5 months there was a significant
increase of amyloid load in the hippocampus but not in the cortex [15]. Using 5XFAD mice at an earlier
age (4 months) the same group found that Aβ accumulation was similar in TREM2 deficient and
TREM2-WT 5XFAD mice [167]. Likewise, Jay et al. utilizing APPPS1-21 mice found no change in
the amyloid pathology in the cortex and a significant decrease in the hippocampus in Trem2−/−

mice at 4 months [169]. Interestingly, the same AD mouse model, when examined at 8 months,
showed an increased Aβ staining in the cortex and no changes in the hippocampus of Trem2−/−

mice [171]. Jay et al. concluded that in the early stages of amyloid deposition (2-month cortex, 4-month
hippocampus) TREM2 deficiency reduces both plaque number and size, and at later stages (8-month
cortex) it increases plaque size and area. Yuan et al. showed that TREM2 deficiency resulted in
an increase of diffuse amyloid plaques with longer and more branched amyloid fibrils thus, covering
a larger surface area [166]. They conclude that lack of TREM2 may disrupt the microglia barrier around
the plaques that regulates amyloid compaction and has a protective role (Figure 3).
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as W199X had significantly lower sTREM2 levels than TREM2 WT controls [176]. A recent meta-
analysis study comprising of 17 reports and 1593 patients found sTREM2 levels increased in the early 
course of AD progression, indicating its potential use as a biomarker for AD progression [72]. 
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and high throughput protein microarrays [24] (Figure 3). Atagi et al. showed that APOE increases the 
phagocytosis of apoptotic neurons via the TREM2 pathway and that TREM2 R47H variant was 
shown to reduce TREM2 affinity to bind APOE [22]. Interestingly APOE lipidation appears to 
enhance its binding to TREM2 and microglia are more efficient at Aβ uptake when Aβ forms a 
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Jendresen et al. suggests that amino acids 130–149 of human APOE contain the binding site for 
TREM2, and that there is an APOE-isoform-dependent binding to TREM2 [180]. Although other 
groups have shown no APOE isoform differences in binding [22,23], possibly due to the sensitivity 
of binding assays and the lipidation state of APOE. 

Microglia as resident macrophages in CNS account for the immune response in the brain, 
therefore impaired microglia function through either TREM2 deficiency or APOE isoform-specific 
differences have significant implications. Consistently TREM2 haplodeficient, knockout, or the 
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Figure 3. Schematic illustration of the relationship between APOE and TREM2. Microglia in black
cluster around amyloid deposits, which impacts plaque morphology and the microenvironment
surrounding the plaques. Boxes 1 and 2 illustrate TREM2 in an active state and show an increase in
plaque size, compaction, and microglia reactivity in APOE4 compared to APOE3. Microglia which are
TREM2 deficient (boxes 3 and 4) fail to contain the plaques allowing them to become more diffuse and
increase the surrounding dystrophic area. Arrows are relative to APOE3, TREM2 active (box 1).

Recently transgenic mouse models expressing TREM2 R47H variant have been generated that
demonstrate a diminished response to amyloid deposition exemplified by the reduced cell number
and activation of microglia surrounding the plaques [172,173]. These data suggest that TREM2 R47H
is a loss of function variant.

In regard to sTREM2, an early study demonstrated that sTREM2 levels were reduced in the CSF
of AD patients [19]. However, emerging evidence suggests the opposite: sTREM2 is increased in AD
and is positively correlated with tau but not Aβ42 levels [174–177]. sTREM2 has also been shown to
be impacted by TREM2 variants, in which R47H carriers had significantly higher, and T96K, L211P,
as well as W199X had significantly lower sTREM2 levels than TREM2 WT controls [176]. A recent
meta-analysis study comprising of 17 reports and 1593 patients found sTREM2 levels increased in the
early course of AD progression, indicating its potential use as a biomarker for AD progression [72].

4.3. APOE, TREM2, and AD

APOEε4 and TREM2-R47H variant were identified as independent risk factors for
LOAD [6,119,120,178]. Interestingly both APOE and TREM2 are part of a large group of genes
associated with LOAD risk that are expressed in glia cells and related immune response [179]. Several
groups have shown that TREM2 binds to APOE using TREM2-Fc fusion pulldown [23], dot blot
assays [22], and high throughput protein microarrays [24] (Figure 3). Atagi et al. showed that APOE
increases the phagocytosis of apoptotic neurons via the TREM2 pathway and that TREM2 R47H variant
was shown to reduce TREM2 affinity to bind APOE [22]. Interestingly APOE lipidation appears to
enhance its binding to TREM2 and microglia are more efficient at Aβ uptake when Aβ forms a complex
with LDL, APOE, or CLU [24]. In contrast, the same study showed that TREM2-deficient microglia
have a reduced uptake of Aβ-APOE or Aβ-LDL complexes [24]. A recent study by Jendresen et al.
suggests that amino acids 130–149 of human APOE contain the binding site for TREM2, and that
there is an APOE-isoform-dependent binding to TREM2 [180]. Although other groups have shown no
APOE isoform differences in binding [22,23], possibly due to the sensitivity of binding assays and the
lipidation state of APOE.

Microglia as resident macrophages in CNS account for the immune response in the brain, therefore
impaired microglia function through either TREM2 deficiency or APOE isoform-specific differences
have significant implications. Consistently TREM2 haplodeficient, knockout, or the TREM2 R47H
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variant, have shown a dose-dependent reduction in microglial activation surrounding amyloid
plaques resulting in more diffuse and less compact amyloid plaques. In agreement with these results,
overexpression of TREM2 and increasing TREM2 protein level cause a significant reduction in plaque
area, plaque-associated neuronal dystrophy, and amelioration of cognitive deficit in 5xFAD mice [181].
Recent reports identified novel microglia type associated with neurodegenerative diseases (also called
disease associated microglia or DAM) characterized by a specific transcriptional profile with both Apoe
and Trem2 as part of this program [170,182]. Accordingly, during the progression of neurodegeneration
in APP transgenic mice and possible AD brain microglia transcriptome convert from a homeostatic
to a disease associated profile. Interestingly, in APP mice that are either TREM2 or APOE deficient
microglia fail to convert from a homeostatic into a fully activated state [170,182]. One explanation for
these findings may be the significantly decreased plaque load observed in APP transgenic and APOE
or TREM2 knockout mice reported by Krasemann et al. [170]. Another explanation is that TREM2
and possibly APOE deficiency prevent microglia conversion from homeostatic to disease-oriented
state thus impairing essential defense functions such as chemotaxis, proliferation, phagocytosis,
and survival [15,20,128,170,182].

In the end, we can conclude that during the last decade significant progress has been made
towards understanding the biology of APOE and TREM2, as well as the biochemical aspects of their
interactions and their impact on AD pathogenesis. And although there are still many unanswered
questions our knowledge of the most significant risk factors of AD will be soon implemented in
successful diagnostic and therapeutic strategies against this devastating disease.

Author Contributions: Conceptualization, C.M.W., I.L., and R.K.; writing—original draft preparation, C.M.W.;
writing—review and editing, C.M.W., R.K., I.L., N.F.F., K.N.N.; visualization, C.M.W.

Funding: This research was funded by the National institute of Health, grant number ES024233, AG056371,
AG057565, K01AG044490, the Alzheimer’s Association, grant number, AARF-16-443213, and the U.S. Department
of Defense, grant number, W81XWH-13-1-0384

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AD Alzheimer’s disease
APOE Apolipoprotein E
LOAD Late Onset AD
TREM2 Triggering receptor expressed on myeloid cells 2
Aβ β-amyloid peptide
EOAD Early-onset AD
APP Amyloid precursor protein
PSEN1 Presenilin 1
PSEN2 Presenilin 2
GWAS Genome-wide association studies
TYROBP Tyro protein tyrosine kinase binding protein
R47H Arginine to histidine at position 47
LDL Low-density lipoprotein
HDL High-density lipoproteins
APOJ Clusterin
ABCA1 Adenosine triphosphate-binding cassette transporters A1
ABCG1 Adenosine triphosphate-binding cassette transporters G1
Cys Cysteine
Arg Arginine
LDLR Low-density lipoprotein receptor
LRP1 LDLR-related receptor 1
VLDLR Very-low-density lipoprotein receptor
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APOER2 APOE receptor 2
SFKs Src family kinases
AKT Protein kinase B
BBB Blood–brain barrier
sTREM2 Soluble TREM2
CFS Cerebral spinal fluid
NHD Nasu–Hakola disease
FTD Frontotemporal dementia
ALS Amyotrophic lateral sclerosis
LPS Lipopolysaccharide
ITAMs Immunoreceptor tyrosine-based activation motifs
SYK Spleen tyrosine kinase
PI3K Phosphoinositide 3-kinase
PLCγ Phospholipase Cγ
PIP3 Phosphatidylinositol-3,4,5-trisphosphate
IP3 Inositol trisphosphate
ASO Anti-sense oligonucleotides
ADSP Alzheimer’s Disease Sequencing Project
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