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Abstract: Malnutrition of iron (Fe) affects two billion people worldwide. Therefore, enhancing grain
Fe concentration (GFeC) in wheat (Triticum aestivum L.) is an important goal for breeding. Here we
study the genetic factors underlying GFeC trait by genome-wide association studies (GWAS) and the
prediction abilities using genomic prediction (GP) in a panel of 369 European elite wheat varieties
which was genotyped with 15,523 mapped single-nucleotide polymorphism markers (SNP) and a
subpanel of 183 genotypes with 44,233 SNP markers. The resulting means of GFeC from three field
experiments ranged from 24.42 to 52.42 µg·g−1 with a broad-sense heritability (H2) equaling 0.59
over the years. GWAS revealed 41 and 137 significant SNPs in the whole and subpanel, respectively,
including significant marker-trait associations (MTAs) for best linear unbiased estimates (BLUEs) of
GFeC on chromosomes 2A, 3B and 5A. Putative candidate genes such as NAC transcription factors
and transmembrane proteins were present on chromosome 2A (763,689,738–765,710,113 bp). The GP
for a GFeC trait ranged from low to moderate values. The current study reported GWAS of GFeC for
the first time in hexaploid wheat varieties. These findings confirm the utility of GWAS and GP to
explore the genetic architecture of GFeC for breeding programs aiming at the improvement of wheat
grain quality.
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1. Introduction

Wheat is the second most produced and consumed food crop worldwide and its products form a
fundamental diet in the daily life for people in the whole world (FAOSTAT 2016; http://faostat.fao.
org). Wheat grains contain mainly carbohydrates with a small proportion of proteins and essential
micronutrients such as iron (Fe) and zinc (Zn) [1–3]. Micronutrient deficiency including Fe and Zn are
among the most prevalent deficiencies in the developing countries and high-risk groups are women
and children [4]. More than 2 billion people are affected with Fe deficiency which has an adverse
effect on health, such as retarding the physical growth and affecting the motoric development, leading
to fatigue and low productivity [5,6]. Therefore, in regions where the people depend mostly on
cereal-based foods, deficiencies in micronutrients become a challenge. On the other side, improving Fe
concentrations in the edible part of crops are linked with positive consequences on both grain yield
and nutritional status as well as a positive effect on human health [7].
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Understanding the genetic basis of Fe concentration in wheat grains is imperative for enhancing
Fe values in newly developed varieties. Therefore, we performed a genome-wide association study
(GWAS) approach which is one of the main approaches for dissecting complex traits including
nutritional quality traits that are controlled by many genes and influenced by the environment [8,9].
Several genetic regions controlling mineral concentration traits in wheat have been identified by
applying traditional quantitative trait loci (QTL) analysis using bi-parental mapping populations.
For instance, Peleg et al. [10] detected five QTLs on chromosomes 2A, 3B, 5A, 6B and 7A for Fe
concentration in a tetraploid wild emmer × durum wheat recombinant inbred lines (RILs) population.
Another study identified five QTLs underlying grain Fe concentration (GFeC) in a Triticum spelta ×
T. aestivum RIL population, of which three mapped to chromosome 1A while two QTLs mapped to
chromosomes 2A and 3B [11]. To our knowledge two GWAS studies have been reported on synthetic
wheat lines. Gorafi et al. [12] studied grain iron content in 47 synthetic hexaploid wheat germplasm
lines and Bhatta et al. [13] performed GWAS for various grain minerals including Fe on 123 synthetic
hexaploid wheat lines. Association mapping for seed Fe content was also performed for other crops
such as pearl millet [14] and seed Fe concentration in chickpea [15]; however, no GWAS study on
released wheat varieties is available to our knowledge.

Recently, genomic prediction (GP) or genomic selection (GS) approaches were developed based
on genome-wide marker information to predict the breeding value of complex traits for which only
genotyping data are provided (test population) [16]. These predicted values are called genome estimate
breeding values (GEBVs) and are based on actual phenotypic data related to genotypes in a training
population [17]. Several methods were adopted for GP or GS calculation such as Bayesian methods,
rrBLUP and Genomic best linear unbiased prediction (GBLUP), while the main affecting factor within
these methods is the density of the markers [18]. Application of GP will be helpful particularly for
complex traits and for traits that are costly to phenotype; therefore, applying GP could speed up
the genetic gains in the development of nutrient-dense wheat varieties. To date, numerous plant
breeding studies have been published to investigate complex traits such as nutritional quality traits in
wheat [19,20].

The goals of this study were (i) to study the natural phenotypic variation of wheat GFeC in a
panel of 369 elite wheat varieties grown for three years in the field, (ii) to investigate the genetic
architecture of this trait and to identify QTLs by applying a GWAS approach, (iii) to define the gene
content in the respective genomic region of the wheat reference sequence as well as to identify potential
candidate genes, and (iv) to examine the prediction ability in the present wheat panel by using different
statistical models.

2. Results

2.1. Phenotypic Analysis and Correlations

The analyses of variance (ANOVA) for Fe concentration in grains showed a significant effect
of both genotype and years (p < 0.001) (Table S1). Wide genetic variation of GFeCs was found
between the genotypes in both the whole panel and subpanel in each year (Figure S1, Table S2). The
genotypic variation of Fe concentrations in each year appeared to be normally distributed (Figure S2).
The average of grain Fe based on BLUE values was about 34 µg·g−1 dry weight (DW) in the whole
and subpanel of genotypes (Figure 1) with a range of 24.42–52.42 µg·g−1 DW in the whole panel and
26.99–48.52 µg·g−1 DW in the subpanel of genotypes (Figure 1). This trend of GFeC decrease among
years may be attributed to environmental effects including rain fall and temperature (Figure S3). In fact,
this conclusion was supported by the resulting heritability for Fe concentration across the years which
is equal to H2 = 0.59.
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Figure 1. (A) Grain iron concentration (μg g−1) in all wheat genotypes of the whole panel for the years 
2015, 2016 and 2017 and BLUE values. (B) Grain iron concentration (μg·g−1) for wheat genotypes in 
the subpanel for the years 2015, 2016 and 2017 and BLUE values. 

A significant positive correlation ranging from r = 0.26 to 0.39 (p < 0.001) was found for grain Fe 
in all three years (Figure 2). As well, a significant positive correlation (0.11–0.26, p < 0.001) was 
present between Fe and thousand kernel weight (TKW) in all three years (Figure S4) and a strong 
correlation was found between Fe and Zn with values ranging between 0.51–0.68 (p < 0.001) over 
years (Figure S4). In the whole wheat panel, genotype “SW Tataros” showed the highest Fe 
concentration equaling 52.67 μg·g−1 DW based on the BLUEs (Figure 3). 

 

Figure 2. Pearson correlation between Fe grain concentrations (μg g−1) in the years 2015, 2016 and 
2017. The degree of significance indicated as * p ≤ 0.05.  

Figure 1. (A) Grain iron concentration (µg·g−1) in all wheat genotypes of the whole panel for the years
2015, 2016 and 2017 and BLUE values. (B) Grain iron concentration (µg·g−1) for wheat genotypes in
the subpanel for the years 2015, 2016 and 2017 and BLUE values.

A significant positive correlation ranging from r = 0.26 to 0.39 (p < 0.001) was found for grain
Fe in all three years (Figure 2). As well, a significant positive correlation (0.11–0.26, p < 0.001) was
present between Fe and thousand kernel weight (TKW) in all three years (Figure S4) and a strong
correlation was found between Fe and Zn with values ranging between 0.51–0.68 (p < 0.001) over years
(Figure S4). In the whole wheat panel, genotype “SW Tataros” showed the highest Fe concentration
equaling 52.67 µg·g−1 DW based on the BLUEs (Figure 3).
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associations including unmapped markers was higher and mounted to 137 MTAs (Figure 5A) with 
R2 values ranging from 5.60% to 13.09% (Table S4). The highest phenotypic variation was related to 
unmapped markers (AX-158577508 and AX-158577509) and equaled 10.38% and 13.09%, 
respectively. Fifteen, four and two significant SNPs which were present on chromosomes 2A 
(763,689,738–765,710,113 bp), 3B (731,263,238–731,264,585 bp) and 5A (538,758,878–539,958,539 bp) 
were targeted for further analysis. 

The QQ plots for SNP results revealed that the distribution of observed association p-values 
were close to the distribution of expected associations (Figures 4B and 5B); that means the model 
which we implemented for GWAS was sufficiently stringent to control for false positive 
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a query against IWGSC RefSeq annotation v1.0 to get their annotations. 

In the subpanel, we detected several potential candidate genes that located on chromosome 2A 
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encode either a transcription factor (TF) related to the NAC (NAM (no apical meristem)) domain 
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remobilization in plants [21,22]. Therefore, we conclude that this genomic region harbors several 
putative candidate genes, which may have a significant role in grain Fe accumulation. 

Figure 3. The scale of the top five genotypes with the highest Fe concentration (µg·g−1) value crossing
years (BLUE).



Int. J. Mol. Sci. 2019, 20, 76 4 of 13

2.2. Genetic Analysis and Genes Underlying GFeC Trait

GWAS analysis for the whole panel identified 41 significant MTAs (−log10 (p-value) ≥ 3)
(Figure 4A) which were distributed over the genome with R2 values ranging between 2.7% to 5.22%.
In total 41 MTAs, of which 17 were located on chromosome 3B between 46.6 to 59.8 cM (Table S3). Due
to no common associations among years, our analyses were based on BLUEs by including the most
significant 3 SNPs for further analysis (Table S3). In the subpanel, the number of significant associations
including unmapped markers was higher and mounted to 137 MTAs (Figure 5A) with R2 values
ranging from 5.60% to 13.09% (Table S4). The highest phenotypic variation was related to unmapped
markers (AX-158577508 and AX-158577509) and equaled 10.38% and 13.09%, respectively. Fifteen, four
and two significant SNPs which were present on chromosomes 2A (763,689,738–765,710,113 bp), 3B
(731,263,238–731,264,585 bp) and 5A (538,758,878–539,958,539 bp) were targeted for further analysis.

The QQ plots for SNP results revealed that the distribution of observed association p-values were
close to the distribution of expected associations (Figures 4B and 5B); that means the model which
we implemented for GWAS was sufficiently stringent to control for false positive associations. In a
previous study a total of 8 markers in the whole panel and 31 markers in the subpanel (Tables S3 and
S4) had been found significant for grain Zn concentration in the same germplasm [9]. Based on BLUEs,
significant markers from the whole and subpanel were selected for a query against IWGSC RefSeq
annotation v1.0 to get their annotations.

In the subpanel, we detected several potential candidate genes that located on chromosome 2A
(763,689,738–765,710,113 bp) (Table S5). Based on the functional annotation, we found genes which
encode either a transcription factor (TF) related to the NAC (NAM (no apical meristem)) domain
family or a transmembrane protein (Table 1). These genes are well known to play a role in nutrient
remobilization in plants [21,22]. Therefore, we conclude that this genomic region harbors several
putative candidate genes, which may have a significant role in grain Fe accumulation.
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Figure 4. (A) Summary of genome-wide association scans for the whole panel of wheat genotypes (369)
which were analyzed by using the 90K iSELECT Infinium array and the 35K Affymetrix SNP array for
each year (2015/2016/2017) and BLUEs. The horizontal red color line indicated the threshold of −log10

(p-value) of 3. (B) Quantile-quantile scale representing expected versus observed −log10 (p-value).
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Figure 5. (A) Summary of genome-wide association scans for the subpanel of wheat genotypes (183)
which analyzed by using the 90K iSELECT Infinium array, the 35K Affymetrix SNP array and the
135K Affymetrix SNP array for each year (2015/2016/2017) and BLUEs. The horizontal red color line
indicated the threshold of −log10 (p-value) of 3. (B) Quantile-quantile scale representing expected
versus observed −log10 (p-value).

Table 1. Potential candidate genes underlying GFeC trait in wheat.

Gene ID Gene Annotation Chr. Start (bp) End (bp)

TraesCS2A01G562600,
TraesCS2A01G562700 transmembrane protein, (DUF247) 2A 763,796,420

763,802,755
763,799,183
763,804,683

TraesCS2A01G563600,
TraesCS2A01G565000 transmembrane protein, (DUF594) 2A 764,149,111

764,898,033
764,150,898
764,900,078

TraesCS2A01G565900,
TraesCS2A01G566000,
TraesCS2A01G566100,
TraesCS2A01G566200,
TraesCS2A01G566300,
TraesCS2A01G566400

NAC domain-containing protein 2A

765,277,860
765,373,519
765,392,440
765,441,104
765,514,989
765,546,770

765,278,647
765,375,363
765,393,650
765,442,258
765,518,243
765,547,909

2.3. Genomic Prediction of GFeC Trait

GP was evaluated for GFeC trait with three statistical models including GBLUP, ridge regression
best linear unbiased prediction (RR-BLUP) and Bayes-Cπ in the whole panel. Prediction ability values
were 0.29 to 0.38, 0.27 to 0.35, and 0.20 to 0.35 based on using these methods: GBLUP, RR-BLUP and
Bayes-Cπ respectively (Figure 6). The highest value is equal 0.38 (GBLUP) and 0.35 (RR-BLUP and
Bayes-Cπ) based on Fe BLUE values. The prediction values within years were almost the same and



Int. J. Mol. Sci. 2019, 20, 76 6 of 13

equaled around 0.2 (Figure 6). Based on the GP results, more accurate estimates of breeding values
through marker-based relationship matrices could be obtained by increasing the number of genotypes
in the training data.Int. J. Mol. Sci. 2018, 19, x 7 of 13 
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3. Discussion

3.1. The Usefulness of the Natural Phenotypic Variation

In human nutrition, the estimated average requirement (EAR) of Fe is 1460 µg/day/person,
while the target level for sufficient Fe concentration in wheat grains was established as 52 µg·g−1 [23].
In our mapping panel, we observed high phenotypic variation in grain Fe concentrations ranging
between 16.77–62.87 µg·g−1 among years and identifying 23 lines equal or above the required target
(≥52 µg·g−1). A similar range of GFeCs was reported for a wheat RIL population (17.8–69.0 µg·g−1)
which resulted from crossing Triticum boeoticum with Triticum monococcum [24]. Morgounov et al. [25]
found GFeCs in the range of 34–43 µg·g−1 for 41 winter w·µg heat cultivars except for one spring
wheat cultivar, that had GFeC of 56 µg·g−1. Also, the range of Fe concentrations in Indian and Pakistan
hexaploid wheat grains was found to be in the range of (9.2 to 49.7 µg·g−1) [26]. Therefore, using lines
with elevated GFeC are important to develop new varieties for crop improvement.

The heritability of Fe concentration among the years was moderate equaling H2 = 0.59, suggesting
a quantitative nature of inheritance and a considerable environmental influence on the expression
of the trait. Gorafi et al. [12] reported a broad-sense heritability value of Fe grain concentration in
synthetic hexaploid wheat germplasm of 0.80. Khokhar et al. [27] reported broad-sense heritability
equal to 0.75 for Fe grain concentrations in field-grown Indian wheat.

GFeCs showed a significant positive correlation among years (r = 0.25–0.38, p < 0.001), indicating a
relatively stable measurement of the phenotypic data. The resulting correlation values were moderate;
that may be attributed to the influence of genetics and environment on the GFe accumulation which can
also explain the moderate heritability value (0.59) of GFe. Tiwari et al. [24] found a constant correlation
between different locations for grain Fe concentrations which is compatible with our results.

The positive and highly significant correlation between Fe and Zn in addition to a significant
positive correlation between Fe, Zn and TKW found in the current study, was also reported in earlier
studies in wheat [10,25]. For instance, our results agree with Pandey et al. [26], who reported a positive
correlation between GFeCs and Zn concentrations in 150 bread wheat lines. Additionally, Fe and Zn
have the same families of transporter proteins in several steps during the transportation from the
soil to the grain, for example nicotianamine (NA) related enzymes are important for both of Fe and
Zn radial movement through the root [28,29]. As well, such a high correlation between Fe, Zn and
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TKW suggest that these traits (Fe and Zn) may have the same genetic basis and could be improved
simultaneously with TKW or TKW determinants such as starch and protein. Krishnappa et al. [30]
found common genetic regions between Fe, Zn, TKW and protein content. Peleg et al. [10] showed a
positive correlation between Fe, Zn, TKW and protein content in wheat. Therefore, it is important to
shed light on the genetic makeup of these traits together.

3.2. Putative Candidate Genes

Based on GWAS analysis, we found that different loci are controlling Fe accumulation in wheat
grains indicating that it is a complex trait with polygenic control. In the whole panel, 137 significant
associations were underlying grain Fe and were distributed on chromosomes 1A, 1B, 2A, 2B, 3A, 3B,
4A, 5A, 5B, 5D, 6A, 6D, 7B and 7D of which 3 significant SNPs were located on 3B (46.60–47.42 cM).
There were no obvious candidate genes detected within the aforementioned region. In the subpanel,
three physical regions contained significant SNPs, on chromosomes 2A (763,689,738–765,710,113 bp),
3B (731,263,238–731,264,585 bp) and 5A (538,758,878–539,958,539 bp), but only the 2A region conferred
candidate genes involved in iron uptake or homeostasis.

Chromosome 2A conferred six putative genes related to the NAC (NAM (no apical meristem))
domain family proteins (Table 1), which are well known to be involved in accelerated senescence
and an increase of nutrient remobilization from leaves to grains. Several studies reported about
NAC gene and increasing Fe and Zn content in the grains of wheat [13,21,31,32]. Uauy et al. [21]
described that a NAC TF (NAM-B1) accelerated senescence and nutrient remobilization from leaves to
grains. The reduction in RNA levels of the multiple NAM homologs by RNA interference delayed the
senescence process and reduced wheat grain protein, Zn, and Fe content by more than 30%. In the
same context, Ricachenevsky et al. [31] showed that NAM-B1 which is one of the NAC TFs has a major
role in regulating key genes responsible for the senescence process which leads to higher Fe and Zn
concentrations in wheat grains.

Another four genes encoded transmembrane proteins on chromosome 2A. It has been reported
that transmembrane proteins are responsible for nutrient uptake in plants and play an important role
in enhancing the micronutrient content of grains [22,33]. Therefore, these genes could be important for
GFeC in wheat; however, functional characterization studies are required to validate the function of
these genes.

3.3. Genome-Wide Prediction Accuracy

GP or GS has been proposed as a method to improve the breeding efficiency of quantitative
and complex traits. Therefore, we extended our analyses and included GP as a suggested tool for
improving a polygenic trait such as GFeC in wheat. Our predictability results showed low to moderate
values according to three different years and BLUE values, which agrees with another report that
obtained low to moderate predictability values for the macro- and micro-nutrients including Fe in
wheat landraces [19]. In spring wheat, GP showed moderate to high prediction accuracy for grain
Fe by imputing different statistical models [20]. Based on our findings, GP may be considered as a
promising approach for enhancing GFeC in wheat especially when larger size germplasm panels with
additional genotypes are used to have more accurate estimates of breeding values.

4. Materials and Methods

4.1. Plant Germplasm

A population comprised of 369 elite European wheat varieties including 355 genotypes of winter
wheat and 14 genotypes of spring wheat, mainly from Germany and France was used in this study.
Field experiments were carried out at IPK, Gatersleben, Germany over three consecutive years
(2014/2015, 2015/2016 and 2016/2017) using plot with a size of 2 × 2 m for each genotype with
six rows spaced 0.20 m apart and more details were described in a previous study by Alomari et al. [9].
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The grains were collected randomly from more than 250 plants of each plot to be used in the study.
Standard agronomic wheat management practices were subjected without applying fertilizers to
the soil.

4.2. Milling Process

Three hundred sixty-nine wheat genotypes harvested from three different field experimental trials
were prepared for milling process by collecting 50 kernels for each genotype to measure thousand-grain
weights (TGW) using a digital seed analyzer/counter Marvin (GTA Sensorik GmbH, Neubrandenburg,
Germany). Wheat grains were milled by using a Retsch mill (MM300, Mettmann, Germany), afterward,
the whole panel of the milled wheat grains was dried by incubating overnight at 40 ◦C in the oven.

4.3. Iron Concentration Measurements

Fifty mg of dried and milled wheat grain flour was taken to be digested by (2 mL) nitric
acid (HNO3 69%, Bernd Kraft GmbH, Germany). The digestion process was completed using a
high-performance microwave reactor (UltraClave IV, MLS, Leutkirch im Allgäu, Baden-Württemberg,
Germany). All digested samples were filled up to 15 mL final volume with de-ionized distilled
(Milli-Q) water (Milli-Q® Reference System, Merck, Germany). Element standards were prepared
from Bernd Kraft multi-element standard solution (Germany). Fe as an external standard and
Yttrium (Y) (ICP Standard Certipur® Merck, Germany) were used as internal standards for matrix
correction. Fe concentrations were measured by Inductively Coupled Plasma Optical Emission
Spectrometry (ICP-OES, iCAP 6000, Thermo Fisher Scientific, Dreieich, Germany) combined with a
CETAC ASXPRESS™ PLUS rapid sample introduction system and a CETAC autosampler (CETAC
Technologies, Omaha, NE, USA).

4.4. Statistical Analysis

We used Sigma Plot package 13 to perform the ANOVA and Pearson’s correlation coefficient (r)
which were calculated for the grain Fe data resulted from the three years. The broad-sense heritability
was calculated using the equation:

H2 = σ2
G/(σ2

G + (σ2
e/nE),

where σ2
G is the genotype variance, σ2

e represents the variance of the residual and nE is the
environments number.

Mixed linear model function and the residual maximum likelihood (REML) algorithm were
applied to calculate the Best linear unbiased estimates (BLUEs) of Fe concentration in wheat grains for
each genotype across the years [34] by considering the genotype as a fixed effect and the environment
as a random effect. All these calculations were accomplished using GenStat v18 software (VSN
International, Hemel Hempstead, UK).

4.5. Genotyping

The whole wheat germplasm (369 varieties) was genotyped using two marker arrays: a 90K
iSELECT Infinium array [35] and a 35K Affymetrix SNP array (Axiom® Wheat Breeder’s Genotyping
Array, http://www.cerealsdb.uk.net/) [36] and these two arrays were genotyped by TraitGenetics
GmbH, Gatersleben, Germany (www.traitgenetics.com). Moreover, a novel 135K Affymetrix array was
used to genotype a subpanel of 183 genotypes from the whole genotypes panel [9,37] and this chip
was designed by TraitGenetics GmbH. As a reference map, the ITMI-DH population [38,39] was used
to anchor the SNP markers of the 90K and 35K chips. The 135K chip markers were genetically mapped
on four different F2-populations and then physically anchored on the chromosome-based sequence of
hexaploid wheat [40].

http://www.cerealsdb.uk.net/
www.traitgenetics.com
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4.6. GWAS Analysis

To identify the MTA and QTL (i.e., genomic regions) for Fe concentration in wheat grains,
association analyses were conducted between SNP markers and Fe data for each genotype in each
year and BLUEs value. For SNP markers, quality control was applied by considering a minor allele
frequency (MAF) ≤3% (equaling 11 varieties out of 369) with rejecting SNPs having missing values
or heterozygosity ≥3%, resulting in 15,523 polymorphic SNP markers from both of the 90K iSELECT
array and the 35K Affymetrix array and 28,710 polymorphic SNP markers from the 135K Affymetrix
array, which were used for association analysis.

GWAS was carried out for Fe concentration data from both panels (whole and subpanel) over
individual year plus BLUE values by applying the implemented mixed linear model (MLM) and
principal component analysis (PCA) as a correction factor for population structure. Whole wheat
genotypes panel was analyzed by using the combination of two SNP chips (90K and the 35K chips)
based on their genetic reference map whereas, the subpanel was analyzed by the combination of 90K,
35K and 135K chips which were anchored based on physical locations. The purpose of combining
the SNP chips was to increase the density of the used markers, achieving good mapping resolution
and to further enhance the power of GWAS output within the germplasm panel. All the detected
marker-trait associations (MTAs) above the threshold of −log10 (p-value) ≥ 3 where considered as a
significant MTA.

GWAS analysis was computed based on a MLM and PCA which was used for population
correction and stratification by using Genome Association and Prediction Integrated Tool (GAPIT) in
R [41]. The appropriateness of the used model was evaluated through Q–Q plots that were obtained
by plotting “expected−log10 (p-values)” on the x-axis and “observed−log10 (p-values)” on the y-axis.
The population structure of the investigated genotypes panel was described in a previous study by
Kollers et al. [42].

4.7. Blasting and Annotation

The significant SNP markers which defined the significant associations underlying GFeC trait
were listed to obtain their annotation based on the newly released reference genome sequence of
Chinese Spring by blasting their sequance against IWGSC RefSeq annotation v1.0 to detect potential
candidate genes [43,44].

4.8. Genomic Prediction

4.8.1. GBLUP

We used GBLUP to impute GP for GFeC trait data by using Tassel version 5.2.10 [45]. In this
model, we evaluated the prediction accuracy by using fivefold cross-validation with 20 iterations as
implemented in Tassel software.

4.8.2. RR-BLUP and Bayes-Cπ

We evaluate the prediction ability with the two GS models that are ridge regression best linear
unbiased prediction (RR-BLUP) and Bayes-Cπ [16,46]. For both models, GSs were implemented in
R using a fivefold cross-validation as described in previous literature Jiang et al. [47]. Simply, all the
individuals were randomly divided into five subsets, in which four of the five were used as estimation
set and the remaining one were used as test set. After all the genotypic values of individuals were
obtained, we calculate the prediction ability that is the correlation between observed and predicted
values. The whole process was repeated 100 times and then the mean value was used as the final
prediction ability.
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5. Conclusions

This study characterized many lines of a diverse wheat panel for GFeCs to understand the
natural diversity that exists for Fe grain trait and to identify potential genes that contribute to this
phenotypic variation and to examine the prediction accuracy. Broad-sense heritability calculation
revealed moderate variation that could be attributed to both genetic and environmental effects. Overall,
the resources generated in this study can be used to identify suitable candidate genes for further
validation analysis. Results of applying GP models to GFeC showed that the correlation between
observed and predicted values was relatively moderate; therefore, it would be useful to study the
effects of GxE interactions that may improve the predictability value.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/20/1/
76/s1.
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