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Abstract: In the shoot apical meristem (SAM) of Arabidopsis, PIN1-dependent polar auxin transport
(PAT) regulates two crucial developmental processes: organogenesis and vascular system formation.
However, the knockout mutation in the PIN1 gene does not fully inhibit these two processes.
Therefore, we investigated a potential source of auxin for organogenesis and vascularization during
inflorescence stem development. We analyzed auxin distribution in wild-type (WT) and pin1 mutant
plants using a refined protocol of auxin immunolocalization; auxin activity, with the response reporter
pDR5:GFP; and expression of auxin biosynthesis genes YUC1 and YUC4. Our results revealed that
regardless of the functionality of PIN1-mediated PAT, auxin is present in the SAM and vascular
strands. In WT plants, auxin always accumulates in all cells of the SAM, whereas in pin1 mutants,
its localization within the SAM changes ontogenetically and is related to changes in the structure of
the vascular system, organogenic activity of SAM, and expression levels of YUC1 and YUC4 genes.
Our findings indicate that the presence of auxin in the meristem of pin1 mutants is an outcome of at
least two PIN1-independent mechanisms: acropetal auxin transport from differentiated tissues with
the use of vascular strands and auxin biosynthesis within the SAM.

Keywords: Arabidopsis; auxin immunolocalization; organogenesis; PAT; pin1 mutant; YUC genes;
SAM; vascular system; xylem

1. Introduction

Organogenesis and differentiation of continuous vascular strands, linking newly developing
organs with existing vasculature, are fundamental processes in plant development. These processes are
related to the shoot apical meristem (SAM) and regulated by auxin [1,2]. In addition, both processes are
interrelated and occur in the peripheral zone of the SAM [3], which surrounds the apical central zone
composed of initial cells and the rib meristem, which is below the central zone and gives rise to the
internal tissues of the stem [4–7]. In Arabidopsis thaliana, the SAM shows three distinct layers derived
from the region where initial cells are confined. The most external L1 and underlying L2 layers, mostly
dividing anticlinally, form the tunica, and internal L3 layer, with cells dividing in various planes, form
the corpus of the SAM [5–7]. Organogenesis and vascular meristem (procambium) development are
associated with cells of the L2 and L3 layers of the peripheral zone of the SAM, respectively [8,9].

Regulation of organogenesis and vascular differentiation is driven by transmembrane polar
auxin transport (PAT). This type of auxin transport functions due to the activity of three groups of
membrane transporters [10,11]: AUX1/LIKE-AUX1 (AUX1/LAX), facilitating the influx of auxin to the
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cell [12]; PIN-FORMED (PIN), mediating the efflux of auxin from the cell [1,13,14]; and ATP-BINDING
CASSETTE SUBFAMILY B (ABCB) [15], also enabling the efflux of auxin out of the cell and probably
regulating the level of auxin accessible for PIN proteins [10,16,17]. The direction of auxin flow, and
thus auxin general distribution in the plant, depends mostly on the polar localization of PIN proteins
in the plasma membrane [18], which can change in response to external and internal stimuli [19,20].
In Arabidopsis, eight PIN proteins are present, of which at least five (PIN1-PIN4 and PIN7) are localized
in the plasma membrane, and are thus responsible for PAT [14,21]. However, their exact localization
and relationship with auxin distribution are tissue and organ specific [22,23]. Interestingly, PAT within
the SAM has been shown to be regulated solely by the PIN1 protein [6,24,25].

According to the currently accepted model, auxin is transported to the peripheral zone of the
SAM acropetally in the epidermis and L1 layer using PAT and PIN1 proteins [1]. In this region, due to
changes in PIN1 protein polarization, the maxima of auxin concentration are established, inducing
organ primordia formation [1,20,26,27]. Simultaneous auxin depletion from the surrounding region
generates the inhibitory field and the organ development in the specific spatial patterns. However,
one has to bear in mind, that besides auxin, cytokinin is also involved in the establishment of organ
distribution pattern [28,29]. Moreover, both hormones seem to interact in that process, as for example
AHP6 (ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6), an inhibitor of cytokinin
signaling, involved in the establishment of the secondary inhibitory field outside of the developing
primordium, is activated in response to auxin. In turn, cytokinin probably regulates the auxin
concentration or the auxin response during new organ formation [28]. Auxin regulates also the
subsequent development of the initiated organ primordia. First, it is transported using PIN1 proteins
to their most apical part and then basipetally, within the internal layers and towards already existing
vasculature, thus specifying the new vascular strand [1,20,30,31]. Consequently, the arising vascular
strands join each other in the stem, establishing regular spatial patterns of the vascular strands in
accordance with organ distribution in the stem. Analyzes of tomato and Arabidopsis shoots showed
that the mechanism of organogenesis regulation and vascularization of the stem, driven by polar auxin
transport, is similar in both vegetative and generative stages of plant development [1,32]. However,
several studies have shown that besides PAT, signals from internal tissues are involved in the regulation
of these two processes, although their role has not been deciphered yet [25,33–36].

Developing organ primordia start to biosynthesize auxin, which can be transported acropetally
to the organogenic zone of the SAM, thus becoming a source of auxin for new organ primordia
formation and differentiation of vasculature [27,37]. Some studies have indicated that auxin can also
be synthesized directly in the organogenic (peripheral) zone of the meristem, which could be a source
of auxin in addition to PAT [38,39]. Auxin biosynthesis in Arabidopsis mainly occurs by means of
the tryptophan-dependent pathway, which is a two-stage process [40,41]. First, tryptophan (TRP)
is converted to indole-3-pyruvic acid (IPA) due to the activity of one of the aminotransferases from
the TRP AMINOTRANSFERASE of ARABIDOPSIS (TAA) family [42]. Next, IPA is transformed
to indole-3-acetic acid (IAA) by flavin monooxygenases encoded by genes from the YUCCA (YUC)
family [43]. In Arabidopsis, the aminotransferase gene TAA1 and its two close homologues, TAR1
and TAR2, were characterized and probably have a similar function [42,43]. Additionally, 11 YUC
genes, with tissue-, organ-, and developmental stage-specific functions, were identified [39,44]. Their
expression patterns, along with the phenotypes of their mutants, indicate that TAA1, YUC1, and YUC4
genes are most important for auxin biosynthesis, regulating organogenesis on the SAM [39,42,44].

Auxin transport using PIN1 proteins is obligatory for organogenesis and vascularization in
Arabidopsis [1,25,45–48]. Thus, mutation in the PIN1 gene should inhibit both these processes. However,
the generative stem of the pin1 mutant is completely depleted of organs at early developmental
stages, while single and malformed organs are produced at later stages [34,49,50]. Furthermore,
the development of the vascular system is not blocked and only some patterning abnormalities and
delays in the xylem differentiation are observed [34,45,50]. Thus, the main goal of our project was
to analyze if, in pin1 mutants, the organogenesis and vascularization are regulated, as in wild-type
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(WT) plants, by high auxin concentration. In addition, we investigated auxin potential sources when
PIN1-dependent PAT is not functional. Our study showed that (1) in pin1 mutants, organogenesis and
vascularization are induced by high concentrations of auxin, established by means of synthesis in the
meristem and acropetal auxin transport in vascular strands from differentiated tissues; (2) the source
of auxin and its distribution within the meristem change during ontogenesis; (3) the meristem is active
organogenically only when auxin is present in its superficial layers.

2. Results

2.1. Organogenic Activity of pin1 Mutant Inflorescence SAM

In order to examine if the organogenic activity of the meristem changes during the ontogenesis of the
pin1 generative stem, we analyzed the inflorescence stem morphology at different developmental stages.

In WT plants, inflorescence stems are morphologically similar and flower primordia are
densely packed on the meristem throughout all stages of inflorescence development (Figure 1A),
until growth termination at the height of around 30 cm. In contrast, inflorescence stems of
pin1 mutants were phenotypically variable (Figure 1, Supplementary Table S2). However, some
regularities related to the developmental stage were noticed. Young stems below 1 cm high were
smooth, needle-like, and completely depleted of organs (Figure 1B), in higher stems (3–6 cm), single
bulges and sporadically developing organ primordia were visible in the meristem (Figure 1C), and
in older shoots of 10–15 cm height, the meristem led to the formation of multiple bulges, folds, and
deformed organs, also visible in the mature part of the stem (Figure 1D). Growth of pin1 mutants
terminated when inflorescence stems were above 15–20 cm high and two phenotypes of stem
growth termination were distinguished: (1) with the organogenic activity either in the form of a
single flower-like structure with multiple elements (Figure 1E) or in the form of multiple deformed
organs (Figure 1F); and (2) due to meristem necrosis (Figure 1G). These analyses showed that in
pin1 mutants, despite the damage of functional PAT, SAM can produce organ primordia and its
organogenic activity gradually increases during the inflorescence stem development.
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Figure 1. The phenotype of inflorescence shoots. The phenotype of the stem apex of wild-type (WT) (A)
and pin1 mutant (B–H) Arabidopsis plants. pin1 mutant stems showing several developmental features
of its apex: without organs (B); with single bulges and developing organ primordia (C), denoted with
arrows; with numerous bulges, folds and malformed organs (D), denoted with arrows; a termination with
a single organ (E), multiple organs (F), and meristem necrosis (G); fasciation (H). Scale bar 200 µm.
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Based on the phenotypic changes described above for pin1 mutants, we established five
developmental stages for further analyses: stage I, stem height below 1 cm with no organogenic
activity; stage II, stem height of 3–6 cm with sporadic organogenesis; stage III, stem height of 10–15 cm
with intensive organogenesis; stage IV, stem height of 15–20 cm terminating with the formation
of malformed organs; and stage V, stem height of 15–20 cm terminating with meristem necrosis.
In addition, we observed fasciation of pin1 mutant shoots (Figure 1H), but this phenotype was not
analyzed in our study.

2.2. Structure of the Vascular System in Fully Developed Inflorescence Stems

Concomitantly, we analyzed how mutation in the PIN1 gene, resulting in the damage of PAT
in the SAM, and the occurrence of spontaneous organogenesis influence vascularization of the stem.
We compared the spatial pattern of the vascular tissues arrangement in fully developed inflorescence
stems of WT plants and pin1 mutants on the series of successively prepared transverse sections from
the base to the tip of the stem.

In the basal part of the mature inflorescence stems of WT plants, a regular pattern of 5–8
discrete vascular bundles was formed, between which interfascicular fibers were present (Figure 2A).
A similar arrangement of vascular tissues was present at all positions within the acropetally analyzed
inflorescence stems (Figure 2A–C). Beneath the lateral organs (leaves, branches, and flowers),
the number of vascular bundles increased due to the formation of vascular traces extending into
the lateral organs (Figure 2B). In addition, interfascicular fibers in the apical part of the stem were not
differentiated (Figure 2C). Furthermore, in the basal part of 29% stems (n = 7), secondary growth was
detected (Supplementary Figure S1A–D).

In contrast to the regular arrangement of the vascular tissues in WT plants, the vascular pattern in
pin1 mutants differed depending on the analyzed position within the inflorescence stem (Figure 2D–H).
In the most basal part, the vascular system was composed of 7–10 discrete vascular bundles arranged
similarly to WT plants (Figure 2D). Between xylem and phloem of neighboring bundles, interfascicular
fibers were differentiated (Figure 2D). Additionally, in 61% (n = 23) mutant plants, secondary
growth was observed, which varied circumferentially or was confined only to particular sectors
(Supplementary Figure S1E–J). The arrangement of vascular bundles changed towards the tip of the
stem. First, bundles fused laterally, and thus decreased in number (Figure 2E) until the continuous
vascular cylinder was formed (Figure 2F). Only in one out of 23 stems it was fully continuous, as mostly
1–3 breaks were distinguished (Figure 2F). In addition, multiple interfascicular fibers pushed towards
the pith were detected in the whole area between the xylem of neighboring bundles (Figure 2F).
In a more acropetal direction, the vascular cylinder split into 7–10 bundles of different sizes, and then
fused again forming a cylinder. Depending on the inflorescence stem, 1–4 split-fusion cycles could be
detected and, interestingly, corresponded with the formation of the bulges and folds visible on the stem
surface. Such split-fusion cycling ended up with the formation of a large number (13–18) of relatively
small bundles of equal size (Figure 2G). In addition, the interfascicular fibers were shifted towards
the surface of the stem and were observed between the phloem of neighboring bundles (Figure 2G).
Further towards the tip of the stem, there were disturbances in the typical mutual arrangement of
phloem, xylem, and interfascicular fibers (Figure 2H; Supplementary Figure S2). Consequently, locally
interfascicular fibers surrounded the phloem (Supplementary Figure S2A,B) and numerous surplus
concentric bundles were formed in the pith (Figure 2H; Supplementary Figure S2C,D). Such vascular
tissue patterning was related to strong folding of the stem surface and the presence of malformed
organs. In inflorescences that terminated their growth with meristem necrosis (stage V, n = 6) such
an arrangement of vascular tissues was the last observed. In inflorescences terminating with organ
formation, the vascular system split, supplying the particular organs (stage IV, n = 17).

Our analyses showed that in pin1 mutants, the vascular system structure changes during
ontogenesis, corresponding with the intensification of the organogenic activity of the SAM. Importantly,
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the damage of PAT, caused by mutation in the PIN1 gene, does not stop vascular differentiation and
also results in an increased number of formed vascular strands (vascular hypertrophy).
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Figure 2. Ontogenetic changes in the structure of the inflorescence shoots. Subsequent cross-sections
of the inflorescence shoot of WT (A–C) and pin1 mutant (D–H) plants, showed in the basal-apical
sequence. The left picture presents the vascular strands arrangement, and the right picture the
magnification of the interfascicular region. The stem of the WT plant has in its basal part discrete
vascular bundles (A); under the first branch increased number of bundles (B); and in the apical region
the stem lacks differentiated interfascicular fibers (C). The stem of the pin1 mutant is characterized
by (looking from the most basal part of the stem towards the top) regions with: discrete vascular
bundles (D); fusing bundles (E), denoted with bracket; the vascular cylinder, with interfascicular
fibers displaced towards the pith (F), direction of fibers displacement denoted with arrow; vascular
cylinder splitting into numerous small bundles, with interfascicular fibers displaced towards the stem
surface (G), direction of fibers displacement denoted with arrows; concentric bundles in the pith of
the stem (H), denoted with arrows. vb—vascular bundle, fv—fusing vascular bundles, vc—vascular
cylinder, if—interfascicular fibers, ir—interfascicular region, x—xylem, ph—phloem. Scale bar 100 µm.
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2.3. Ontogenetic Changes in the Spatial Arrangement of Xylem Strands in Inflorescence Stems

To better understand the relationship between organogenesis and vascularization in pin1 mutants,
we analyzed the spatial arrangement of xylem strands of inflorescence stems in the first three
(described above) developmental stages (I–III). The height of the inflorescence stems of WT plants,
examined as controls, corresponded to the height of the mutant stems in the same stage (depicted here
as stages I–III of WT plants).

In inflorescence stems of WT plants, in all three analyzed stages (I–III), xylem vessels formed
multiple, separate, and continuous strands connected to differentiated xylem strands of lateral
organs (Figure 3A,B). The youngest detected protoxylem elements, differentiating in relation to
organ primordia development, were observed below the SAM at an average distance of 93.3 µm
from it (n = 10; Figure 3A, Supplementary Table S3). These elements were discontinuous with the
protoxylem strands of the stem below (Figure 3B), a feature that was never observed in older organs
due to the later bidirectional xylem strands differentiation (Figure 3C). Interestingly, in pin1 mutants,
the spatial structure of xylem strands changed ontogenetically. In young pin-like inflorescence stems
(stage I), without any signs of organogenesis, protoxylem vessels formed discrete strands, which
were at an average distance of 602 µm from the meristem (n = 7; Figure 3D, Supplementary Table S3),
further than in WT plants. These strands were always continuous, suggesting their unidirectional
acropetal differentiation. In the stems of stage II plants, with single bulges or folds, xylem strands
were less regular in their axial orientation and were observed less distant at an average distance
of 373.7 µm (Figure 3E, Supplementary Table S3). These strands were often connected with each
other in an unpredictable manner (Figure 3E) and were characterized by sporadic discontinuities
(Figure 3F). Furthermore, within one inflorescence stem, particular strands differed in their distance
from the meristem, with protoxylem located closer to the meristem in sectors with emerging
organ primordia (Figure 3E). In stage III, with strong stem folding and presence of malformed
organs, the number of discontinuities of xylem strands increased (Figure 3G,H) and the youngest
detected protoxylem elements differentiated very close to the meristem (average distance of 171 µm;
Figure 3G, Supplementary Table S3). Malformed organs were characterized by their own differentiated
protoxylem, continuous with the vascular system of the stem (Figure 3I), while stem folds and bulges
lacked their own vascular system.
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Figure 3. Structure of the xylem strands in the apices of the inflorescence stems, stained with propidium
iodide. In WT plants, xylem strands differentiate close to the meristem—distance denoted with bracket,
and are continuous in the mature stem and organs (A); discontinuities (denoted with arrows) are
present only in the apical, meristematic region of the shoot (B). The discontinuities in the xylem strands,
however, disappear during development, as a result of bidirectional xylem differentiation—denoted
with arrows (C). pin1 mutants are characterized by: discrete, continuous xylem strands differentiating far
from the meristem (distance denoted with brackets), in stage I (D); increased number of xylem strands,
in comparison to stage I, with variable distance from the meristem—denoted with brackets (E) and
with local discontinuities—denoted with arrows (F), in stage II; numerous differentiated xylem strands
close to the meristem—distance denoted with bracket (G), with frequent discontinuities—denoted with
arrows (H), and developing malformed organs with their own xylem strands connected to the strands
of the main stem—denoted by arrow (I), in stage III. St I–III—successive developmental stages, the
asterisk—first differentiated protoxylem element. Scale bar 50 µm.
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These analyses revealed that ontogenetic changes in the structure of the vascular system in pin1
mutants, such as non-simultaneous maturation of the xylem strands, discontinuities in the vascular
system, and vascular hypertrophy, are closely related to the increase in organogenic activity of the SAM.

2.4. Auxin Distribution during Inflorescence Stem Ontogenesis

In order to analyze how auxin distribution at the tissue level changes during inflorescence
stem ontogenesis in pin1 mutants, we took advantage of transgenic lines with synthetic auxin
response promoter DR5 (WT; pDR5:GFP and pin1; pDR5:GFP) and fine-tuned the protocol for
auxin immunolocalization.

In control plants (WT), in all analyzed developmental stages (I–III), a signal from the pDR5:GFP
was present in the L1 layer of the meristem, surface layer of organ primordia, and all vascular strands
(Figure 4B,C). Furthermore, in vascular strands from the differentiated region, GFP was detected in
the xylem parenchyma cells, phloem, and locally in the procambium (Figure 4R–T). In pin1 mutants,
pDR5:GFP expression changed ontogenetically. In stage I, the GFP signal was usually not detected
in the meristem and vascular strands, even when xylem elements were differentiating (Figure 4E,F).
Interestingly, in one out of six stems of that stage, the signal was present in the outer layers (L1 and L2)
of the lower part of the peripheral zone of the meristem, probably predating organogenic activity of
the SAM (Figure 4G,H). In stems of stage II, with early-appearing small bulges on the meristem, the
auxin response signal was detected at the base of these bulges (Figure 4I,J). The signal was stronger in
the L1 and L2 layers, but weaker in more internal tissues and locally in vascular strands (Figure 4K). In
this stage, if several bulges and/or malformed organs were present (Figure 4L–N), a strong expression
of the pDR5:GFP was additionally detected in all vascular strands (Figure 4L). Interestingly, during
this developmental stage, the GFP signal was not detected at the tip of the meristem, nor at the tip of
developing organ primordia (Figure 4I–M). In stage III, the oldest analyzed mutant stems, pDR5:GFP
expression in the meristem changed and was detected in the whole L1 layer of peripheral and central
zones of the meristem (Figure 4O,P). Additionally, the pDR5:GFP signal was detected in the tips of
initiated bulges, vascular strands of the stem, and the cells connecting these two regions (Figure 4Q).
In the mature region of stage III stems, the pDR5:GFP expression localized to the xylem and phloem of
vascular bundles, but was not observed in the undifferentiated cells of the procambium (Figure 4W–Z).
In the xylem, the GFP signal was only detected in the parenchyma cells on the protoxylem side
(Figure 4Y).

Next, we directly visualized auxin in the inflorescence stems at different developmental stages by a
fine-tuned protocol of auxin immunolocalization. In WT plants, a similar pattern of auxin distribution
was detected in all three analyzed stages (I–III). Auxin was present in all cells of shoot tips with
clearly higher levels in the meristem, organ primordia, and developing vascular strands (Figure 5B,C).
In the basal part of the analyzed stems, the strongest signal was detected in vascular strands, where
auxin was confined to the procambium, phloem cells, and xylem parenchyma (Figure 5P). Auxin
immunolocalization in pin1 mutants revealed that in young needle-like stems, in developmental stage I,
two different patterns of auxin distribution occurred. In the most common pattern, present in seven out
of nine shoots, auxin distribution was different in the apical and basal part of the stem (Figure 5E–G).
In the apical region, auxin was detected only in developing vascular stands and connected with
them the internal layers of the meristem (Figure 5E,F), whereas in the basal part, the auxin signal
was present in all tissues except the epidermis, where it was detected only locally (Figure 5E,G).
The strongest signal was detected in vascular strands, where auxin was confined to the procambium,
differentiating and differentiated phloem cells, and single cells of the xylem (Figure 5Q). Interestingly,
there was a clear boundary between the basal and apical pattern of auxin distribution in the same
shoot (Figure 5E–G). In the second pattern of auxin distribution in stage I, observed only in two out of
nine analyzed stems, auxin was present in all cells of the stem, with the exception of the surface layers
(Figure 5H,I). In addition, the immunolocalization signal was stronger in vascular strands and inner
layers of the meristem.
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bundles - denoted with arrow (K) or in the L1–L2 layers of the peripheral zone of the SAM and in all 
vascular bundles (L–N); in stage III, the GFP signal is visible in the L1 layer of the entire meristem, at 
the tip of the developing organs and in all vascular strands (O,P) as well as of the cells (denoted with 
arrow) connecting the tip of an organ primordia with the vasculature (Q). On the transversal sections, 
the activity of the pDR5:GFP transgene in WT plants is visible in the phloem, xylem and locally in 
procambial cells (R–U). In terms of the xylem, GFP signal accumulates in all xylem parenchyma 
cells—denoted with arrows (S,T). In the pin1 mutant GFP signal is visible in xylem and phloem (W–
Z). In terms of the xylem, GFP signal is present only in the parenchyma cells on the protoxylem side—

Figure 4. Spatial localization of the auxin response reporter pDR5:GFP activity. Longitudinal (A–Q) and
transversal (R–Z) sections through the apical part of inflorescence stems of WT (A–C,R–U) and pin1 mutant
(D–Q,W–Z) plants. On the longitudinal sections, in WT plants, the GFP signal is visible in the vascular
strands (B) and the L1 layer of the meristem (C). In the pin1 mutant, in stage I, the activity of the pDR5:GFP
transgene is not detected (E,F) or is present in the L1–L2 layers of the peripheral zone of the meristem (G,H);
in stage II, GFP signal accumulates in the surface layers at the base of the organ primordia—primordium
denoted with asterisk (I,J) and locally in the vascular bundles - denoted with arrow (K) or in the L1–L2 layers
of the peripheral zone of the SAM and in all vascular bundles (L–N); in stage III, the GFP signal is visible in
the L1 layer of the entire meristem, at the tip of the developing organs and in all vascular strands (O,P) as
well as of the cells (denoted with arrow) connecting the tip of an organ primordia with the vasculature (Q).
On the transversal sections, the activity of the pDR5:GFP transgene in WT plants is visible in the phloem,
xylem and locally in procambial cells (R–U). In terms of the xylem, GFP signal accumulates in all xylem
parenchyma cells—denoted with arrows (S,T). In the pin1 mutant GFP signal is visible in xylem and
phloem (W–Z). In terms of the xylem, GFP signal is present only in the parenchyma cells on the protoxylem
side—denoted with arrows (Y). (A,D,U,Z) Tissue autofluorescence (control); (C,F,H,J,M,P) magnifications
of the meristems. St I–III—successive developmental stages; vb—vascular bundle, if—interfascicular fibers,
px—protoxylem, mx—metaxylem, sx—secondary xylem, ph—phloem, pc-procambium, c—cambium.
Scale bare 50 µm.
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Figure 5. Immunolocalization of auxin in the inflorescence stems. Longitudinal (A–N) and transversal
(O–Q) sections through the apical part of the inflorescence stems of WT (A–C,O–P) and pin1
mutant (D–N,Q) plants. On the longitudinal sections, in WT plants, the strongest signal of auxin
immunolocalization is visible in the entire meristem, developing organs and all vascular strands (B,C).
In the pin1 mutant, in stage I, the auxin signal is visible in the L3 layer of the meristem, vascular
strands of the apical part of stem (E,F) and in all cell types of the more basal stem region (G), or in
all cells of the entire shoot, except the surface layers (H,I); in stage II, the auxin immunolocalization
signal is additionally visible in the L1 layer of the peripheral zone (J,K), and the more basal region,
characterized by the presence of the auxin signal in all cells, is closer to the meristem (L); in stage
III, the immunolocalization signal is visible in the L1–L3 layers of the entire meristem, the surface
layer of the organs and all vascular strands (M,N). On the transversal sections, in WT plants, auxin
immunolocalization signal accumulates in the procambial region, phloem and all cells of xylem
parenchyma (P). In the pin1 mutant, the signal is visible in the procambial region, phloem, and xylem
parenchymal cells on the protoxylem side (Q). (A,D,O) Tissue autofluorescence (control); (C,F,I,K,N)
magnifications of the meristems, meristem outlined with dashed line; (G,L) magnifications of the
marked regions, the surface of stem outlined with dashed line. St I–III—successive developmental
stages; px—protoxylem; mx—metaxylem; ph—phloem; pc—procambium. Scale bar 50 µm.

In later stages of pin1 mutants’ development, the auxin distribution pattern was always different
between the apical and basal parts of the analyzed stem fragments. In stage II, in the apical part auxin
was localized in the vascular strands, inner layers of the meristem, and locally in the L1 layer of the
peripheral zone of the SAM (Figure 5J,K). The signal in the L1 layer was strongly associated with
developing organ primordia, which sporadically started to appear on the meristem during this stage
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(Figure 5K). In the basal part, auxin was detected in all cell types of the inflorescence stem, similar to
the most common pattern of auxin distribution in stage I (Figure 5J,L). However, this basal pattern
of auxin distribution was detected closer towards the tip of the stem than in stage I (Figure 5J,L).
In stage III, auxin distribution changed only in the apical region in comparison to stages I and II.
In these stems, the strong auxin signal was present in all meristem layers, where normally initial cells
are maintained, and in vascular strands connected to the L3 layer (Figure 5M,N).

The experiments using the auxin response marker pDR5:GFP and auxin immunolocalization
showed that auxin distribution in the meristem of pin1 mutants changes ontogenetically and the
organogenic activity of the meristem is linked to the presence of auxin in the L1 layer. Additionally,
the pDR5:GFP expression pattern in the meristem does not fully reflect the pattern of auxin distribution
visualized with the use of immunolocalization, but is strongly related to organogenesis.

2.5. Ontogenetic Changes in Auxin Biosynthesis

To examine if auxin is synthetized in the inflorescence meristems of pin1 mutants, we analyzed
the expression pattern of YUC1 and YUC4 genes in different developmental stages using transgenic
lines pYUC1:GUS and pYUC4:GUS, and quantitative reverse-transcription polymerase chain reaction
(qRT-PCR).

In WT plants, pYUC1:GUS and pYUC4:GUS expression was detected during all three (I–III)
analyzed stages of inflorescence stem development (Figure 6A,B). Both transgenes had strong
expression in young inflorescence stems of stage I, when flower buds just started to develop
(Figure 6A,B). YUC1 promoter activity was visible at the flower receptacle, where flower elements are
formed, and temporary in stamens (Figure 6A). YUC4 promoter activity localized both in the flower
receptacle and in the tips of petals (Figure 6B). In stems of stage II, with some flowers already fully
developed, pYUC1:GUS was expressed in stamens and flower receptacles, where it could be detected
even after silique formation (Figure 6A). pYUC4:GUS expression in this stage completely disappeared
from the tips of petals of fully developed flowers and was detected in the flower receptacle, stamens,
and the tips of carpels (Figure 6B). After seed production, in stage III, pYUC4:GUS expression was
maintained in the apical and basal parts of siliques (Figure 6B). Thus, YUC1 and YUC4 promoter
activity in WT plants clearly decreased with flower maturation and siliques formation. This was
further confirmed by qRT-PCR analyses of YUC1 and YUC4 genes transcript levels (Figure 6E,F).

In pin1 mutants, pYUC1:GUS and pYUC4:GUS expression in the inflorescence stems was similar
and depended on the developmental stage (Figure 6C,D). In young shoots, in stage I, the activity of
pYUC1:GUS (n = 12) and pYUC4:GUS (n = 12) was never detected in the meristem (Figure 6C,D).
During stage II, GUS signals in the meristem were detected in 31.6% of plants for YUC1 (n = 19;
Figure 6C) and in 25.9% of plants for YUC4 (n = 27; Figure 6D). Expression of none of these reporters
was directly related to the organogenic activity of the meristem, because in 62.5% pYUC1:GUS (n = 16)
and 69.6% pYUC4:GUS (n = 23) plants, the GUS signal was not detected in the shoot apex, despite
the presence of the single bulges, folds, or developing organ primordia (Figure 6C,D). Importantly,
in mutant plants where YUC1 or YUC4 promoter activity was detected, the GUS signal was weak and
located in the region encompassing the meristem and/or tips of organ-like structures (Figure 6C,D).
In stage III, YUC1 and YUC4 promoter activity was detected in 48% (n = 25) and 58.33% (n = 24)
of analyzed plants, respectively (Figure 6C,D). When present, for both genes, the GUS signal was
detected in the most apical part of the inflorescence stem of mutants (Figure 6C,D). In stems of stage
IV terminating with organogenesis, YUC1 promoter activity was detected in 45.45% plants (n = 11),
where the signal localized to developing malformed organs (Figure 6C), and YUC4 promoter activity
was detected in developing and fully developed organs of 78.57% of the analyzed plants (n = 13;
Figure 6D). In shoots terminating with meristem necrosis (stage V), neither YUC1 (n = 9) nor YUC4
(n = 11) promoter activity was detected in the stem apex (Figure 6C,D).
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Figure 6. Expression analyses of auxin biosynthesis genes YUC1 and YUC4. (A–D) Activity of the
YUC1 (A,C) and YUC4 (B,D) promoters visualized by the activity of the GUS reporter protein (blue).
In WT plants, in stages I-III, activity of the pYUC1:GUS (A) and pYUC4:GUS (B) reporters is visible
in developing organs. In pin1 mutants the expression of pYUC1:GUS (C) and pYUC4:GUS (D) is not
detected in stage I plants; is visible in some shoots with organ primordia in stage II plants; is present in
most plants from stages III and IV; and is not detected in stage V plants. (E–G) The comparison of YUC1
(E), YUC4 (F) and TAA1 (G) transcript levels during different ontogenetic stages of inflorescence shoots
development of WT and pin1 mutant plants. Abundance of the transcripts, in each case, is relative
to the pin1 stage I sample. The level of YUC1 and YUC4 genes expression in pin1 mutants increases
during ontogenesis, but yet is generally weaker in comparison to WT plants. The level of TAA1 gene
expression in WT plants and pin1 mutants does not generally significantly differ. Statistically significant
differences to the pin1 stage I sample are denoted with asterisk (t-test, significance at p = 0.05). St. I–V
(pin 1) and St. I–III (WT)—successive developmental stages. Scale bar 500 µm.
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Next, we examined YUC1 and YUC4 expression using qRT-PCR and revealed that transcript levels
of both genes in pin1 mutants, in all five developmental stages (I–V), were much lower than those
of WT plants (Figure 6E,F). In the case of the YUC4 gene, its expression in pin1 mutants significantly
increased in stages III and IV compared to stage I. In stage V terminating with meristem necrosis, there
was a marked decrease in the expression of the YUC4 gene (Figure 6E,F). However, regarding the
YUC1 gene, there was no statistically significant differences in its expression levels between different
developmental stages, though the tendency of changes was the same as that detected for the YUC4 gene
(Figure 6E,F). In addition, we analyzed the expression of TAA1, a gene coding for an enzymatic protein
catalyzing earlier stages of auxin biosynthesis than the YUC genes, but still on the same pathway
dependent on IPA [40,42]. Interestingly, TAA1 transcript levels, in both WT and mutant plants, did not
significantly differ ontogenetically and decreased only at the latest developmental stage (Figure 6G).

The performed analyses indicated that auxin is synthetized in the shoot apex of pin1 mutants
at later stages of inflorescence stem development, when meristems are characterized by increased
organogenic activity.

3. Discussion

Postembryonic formation of the lateral organs on the SAM and development of the vascular
system are two linked processes [2,31,51] in which a crucial role is played by auxin, which is transported
in a polar manner due to the activity of PIN1 proteins [1,6,47]. Thus, a dependent-on-PAT model
explaining auxin regulation of both processes was formulated [1,27,52]. However, it is evident that PAT
alone does not fully explain how the position of a new organ and vascular strand continuous with the
existing vasculature, are determined, and therefore the existing model should be extended [24,25,34,35].
We showed that in pin1 mutants, organogenesis and vascular differentiation are regulated by auxin,
which is supplied to SAM by additional, independent to PIN1-mediated PAT, mechanisms.

The lack of organ initiation in needle-like stems of pin1 mutants has been previously associated
with the damage of functional PAT as the source of auxin for organogenesis [1,27]. This was supported
by the phenotypes of plants grown in the presence of the PAT inhibitor NPA [45] and the lack of
expression of the synthetic reporter of auxin response pDR5:GUS in meristems of plants lacking
functional PIN1-dependent PAT [25,37]. On the other hand, sporadic organogenesis indicated the
presence of auxin in the SAM of those plants [34,49,50]. Furthermore, the results of the present
study showed that organogenic activity of the SAM increases during ontogenesis and is accompanied
by vascular hypertrophy, suggesting that auxin accumulates gradually. Therefore, to explain this,
experiments with auxin immunolocalization were conducted. The present study for the first time
showed the pattern of auxin distribution in the SAM of Arabidopsis plants in a direct way. The results
showed that auxin is present in the meristem regardless of whether PIN1-dependent PAT is functional
(WT plants) or not (pin1 mutants), suggesting that PAT can be not the only source of auxin for
the meristem.

Although auxin is present in the meristem, in pin1 mutants, its localization changed
ontogenetically. We identified three patterns of auxin distribution in the SAM depending on the
developmental stage of the mutant: (1) present only in inner layers of the meristems, (2) present in
inner layers and locally in surface layers of the peripheral zone, (3) present in inner and surface layers
of the whole meristem. The first pattern was detected in young needle-like stems, with completely
arrested organogenesis, suggesting that auxin in the inner layers (L3) is not sufficient to induce organ
formation. Organogenesis was always related to the second and third patterns, when auxin was present
also in surface layers (L1 and L2) of the meristem. Thus, our data are compatible with previous studies
demonstrating the importance of the L1 layer and PIN1 protein expression in the outer layers, for the
presence of auxin in the meristem and organogenesis [25,31,53]. However, we additionally showed
that auxin-inducing organogenesis is present in the outer layers of the SAM in plants lacking functional
PIN1 proteins, proving that auxin in the L1 layer, which induces organogenesis, can originate from
other sources besides PIN1-mediated PAT.
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Our analyses showed that the meristem of pin1 mutants is organogenically active only in later
stages (II and III) of the inflorescence stem development. The increased organogenesis in stage III
was associated with the increased expression of YUC1 and YUC4 genes, which are responsible for
the final steps of auxin biosynthesis via the IPA pathway in the SAM [39,44]. Thus, it is highly
plausible that the presence of auxin in outer layers of the meristem is the outcome of auxin synthesis,
which becomes the source of this hormone for organogenesis in not-functional PIN1-dependent PAT
conditions. Interestingly, the experiments of Cheng et al. [39] indicate that in WT plants, auxin
biosynthesis can function together with PAT in organ initiation; however, the underlying mechanisms
remain unclear [6]. Importantly, organogenesis in pin1 mutants probably can occur also without auxin
biosynthesis in the IPA pathway as, particularly in stage II of stem development, organs were initiated
even without detectable expression of pYUC1:GUS and pYUC4:GUS in the SAM. This suggests that
organogenesis-inducing auxin present in the L1 layer can also be transported from the outside of the
meristem, although the possibility of auxin synthesis by a different pathway than IPA cannot be fully
ruled out. Such a dual source of auxin, biosynthesis and transport, for organogenesis in case of PAT
damage, is further suggested by the presence of two different patterns of auxin and auxin response
distribution in organogenically active meristems of pin1 mutants.

The most probable routes of auxin transport to the SAM are the developing vascular strands,
since, at each developmental stage, they are characterized by high auxin levels and are coupled to
the L3 layer of the meristem, which always contains auxin. Such a transporting route was previously
widely suggested [33,34,37,54–56]; nevertheless, it has never been experimentally proven. Previous
studies on tissue extracts showed that inflorescence stems of pin1 mutants have similar levels of auxin
to WT plants, and thus it was proposed that auxin in mutant stems is transported acropetally through
the phloem [56]. Our immunolocalization experiments directly showed high auxin concentration in
the phloem and procambium cells of the vascular bundles of pin1 mutants. At the tip of the stem, auxin
presence was usually limited to these cells, and the activity of PAT independently of PIN1 (which
could be responsible for the transport of auxin to the apoplast) was previously ruled out [24,25]. It is
thus possible that in pin1 stems that lack organs, auxin is transported to the L3 layer of the meristem
acropetally through the cells of the procambium and protophloem using the symplasmic transport
pathway.We cannot completely rule out the presence of auxin transport outside the protoplast with the
participation of other transporters; however, auxin outside the phloem-procambium system in this
stage was not detected in the SAM. Interestingly, symplasmic transport with use of plasmodesmata
was recently shown to be involved in gravitropic reactions in plants with inhibited PAT [57,58].

There is still an open question regarding how auxin reaches the peripheral zone of the meristems
at stage II of stem development. In stems with auxin detected in the peripheral zone, the basal region,
in which auxin was detected in all cell types, was closer to the meristem. Interestingly, in these stems,
differentiated elements of the protoxylem were also closer to the meristem. Because previous research
on pin1 mutants showed that organ initiation on the meristem is strictly correlated with the location of
the youngest xylem elements in regard to the organogenic zone [34], it is plausible that these elements
are the source of auxin and induce organogenesis in the peripheral zone. Moreover, auxin was detected
in the xylem sap of Ricinus by Baker [59], and previous physiological studies on maize showed that
auxin can be transported acropetally, probably in the xylem sap, as a conjugate [60]. Thus, it cannot
be excluded that in Arabidopsis, auxin is transported in a similar way, then spreads via the apoplast,
and afterwards is metabolized in the meristem, gaining biological activity. Importantly, the previously
estimated [32] range of diffusion of auxin able to induce organogenesis is relatively similar to the
distance between the youngest protoxylem elements and the meristem in stems, where auxin was
detected in the L1 layer of the SAM. Another possible route for auxin transport to the organogenic
zone is its unloading from the symplasmic pathway (via phloem and/or procambium cells) to the
apoplast with the use of PIN proteins other than PIN1. Notable candidates are PIN3 and PIN7 proteins,
which seem not to be present in the meristem [24,25], but were detected in mature stem regions with
already differentiated tissues [61,62].
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Numerous studies indicate that auxin transported, with the use of PIN1 proteins, in a polar manner
from the organ tips in the direction of already existing vasculature, regulates all stages of vascular
connections formation [45,47,63–66]. However, our results are in agreement with research showing that
the presence of PIN1 in inner layers of the meristem is not necessary for the aforementioned process to
occur [25]. Additionally, we showed that the vascular system develops and is capable of the formation
of functional connections with lateral organs without the presence of functional PIN1 proteins, as in
pin1 mutants. Nonetheless, the presence of high auxin concentrations seems obligatory. As other PIN
proteins were not detected in the meristem of pin1 mutants [24,25], other mechanisms besides PAT can
be responsible for the presence of auxin and the induction of differentiation of vascular strands. Such
mechanisms could be auxin acropetal transport from the leaf rosette via vascular tissues and, in later
developmental stages, induction of auxin biosynthesis via the IPA pathway.

Older stems of the pin1 mutant are characterized by numerous discontinuities within the xylem
strands. The discontinuous fragments subsequently differentiate in the direction of other, already
differentiated elements, concomitantly establishing a connection. This suggests that the differentiated
vascular strands are the source of the signal guiding the differentiation. As auxin is present in
the vascular tissues, it is plausible that it constitutes this signaling molecule. Discontinuities were
also observed in the venation pattern of leaves in the van3/sfc mutant [67,68]. However, in this
case, the formation of the connections did not follow during development. The VAN3(VASCULAR
NETWORK DEFECTIVE3)/SFC (SCARFACE) gene is induced by auxin but its activity in leaf
vascularization is independent of PAT [67]. Therefore, it is possible that the VAN3 gene function
is related to auxin transported in the vasculature, and probably is necessary to establish the continuous
vascular strands.

In stems lacking organs, the vascular system forms differentiating acropetally discrete continuous
strands in which, despite high auxin concentration, the expression of the synthetic promoter of auxin
response (pDR5:GFP) was not detected. Moreover, in stems with organogenically active meristems,
the differentiation of vascular strands occurs in parallel with the loss of its discrete character and
the occurrence of multiple discontinuities. Additionally, differentiation of the vascular system in
the presence of lateral organs was always associated with the clearly distinguishable expression of
the auxin response reporter (pDR5:GFP), which was detected in developing organs and vascular
strands. Vascular strand differentiation may therefore occur both dependently and independently
to the presence of lateral organs on the meristem, probably employing two different mechanisms.
One mechanism is unrelated to organogenesis and not activating the auxin response reporter, and the
other is always associated with organogenesis and activating the reporter response. Therefore, in our
opinion, other mechanisms, besides the one dependent on PIN1-mediated PAT, function to supply
auxin for vascular differentiation.

4. Materials and Methods

4.1. Plant Material and Growth Conditions

Arabidopsis thaliana (L.) Heynh. plants were grown at 22 ◦C with a photoperiod of 10 h light/14 h
dark (short day, SD) for 28 days and then transferred to a photoperiod of 16 h light/8 h dark (long day,
LD) to induce inflorescence stem development. In order to create the necessary transgenic lines,
Arabidopsis mutant pin1-1 ([69]; in En-2 background) was crossed to pDR5:GFP, pYUC1:GUS, and
pYUC4:GUS ([44,70]; all in Col-O background), and selected for marker homozygosity.

4.2. Histological Analyses

Whole mature inflorescence stems of WT (n = 7) and pin1 mutant plants (n = 23) were transversely
cut in a series of 30-µm thick sections using a vibratome (Leica VT 1200S; Leica Instruments GmbH,
Wetzlar, Germany). The individual stems were cut in an acropetal sequence at intervals of ~0.5 cm.
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Sections were stained for 1 min in Alcian blue-safranin O or for 5 min in 5% phloroglucinol with 50%
HCl [71].

For the auxin response analyses, 1-cm-long apical parts of the inflorescence stems of pDR5:GFP
(as a control, n = 9) and pin1-pDR5:GFP (n = 17) plants were cut longitudinally or transversely on the
series of 25-um thick sections using the vibratome.

To detect the GUS signal in transgenic lines pYUC1:GUS (n = 30 for WT, n = 76 for pin1
background) and pYUC4:GUS (n = 30 for WT, n = 85 for pin1 background), 1-cm-long apical parts of the
inflorescence stems were incubated at 37 ◦C for 16 h in a mixture of 1.4 mM XGlcA (Duchefa Biochemie,
Haarlem, The Netherlands), 1 mM K3Fe(CN)6, 1 mM K4Fe(CN)6, 50 mM sodium phosphate buffer
(NaH2PO4 × Na2HPO4, pH = 7.0), and 0.1% Triton X-100. Subsequently, the material was fixed in FAA
(Formaldehyde 5%–Acetic acid 5%–Alcohol 50%) for 1 h and rinsed in 50% ethanol.

To visualize the three-dimensional (3D) structure of the xylem strands, inflorescence stems of
WT plants (n = 15) and pin1 mutants (n = 34) were fixed in FAA, hydrated in a graded ethanol series,
incubated in 10% KOH for 2-4 days at 37 ◦C, rinsed in water, and stained with 0.05 mg/mL propidium
iodide (PI; Sigma-Aldrich, Steinheim, Germany) for 1 h.

4.3. Auxin Immunolocalization

Apical parts of 1 cm long of the inflorescences of WT plants (n = 6) and pin1 mutants (n = 24)
were incubated at 4 ◦C in 3% N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDAC;
Sigma-Aldrich) dissolved in 0.1× phosphate buffered saline (PBS) (pH = 7.4; Sigma-Aldrich) with 0.1%
Triton X-100 (POCH, Gliwice, Poland) for 4 h. Then, the material was fixed 24 h in FAA, rinsed in 50%
ethanol, and hydrated in a graded ethanol series. Next, the cross-sections (30 µm thick) and longitudinal
sections (25 µm thick) were prepared using the vibratome. Sections were rinsed sequentially in 25 mM PBS
(NaH2PO4 ×Na2HPO4, pH = 7.0) for 5 min, alkaline phosphatase stabilizing buffer (SB; Sigma-Aldrich)
for 30 min, 100% methanol at−20 ◦C for 10 min, and three times in SB for 10 min. Subsequently, they were
incubated with the primary anti-IAA mouse monoclonal antibody (Agdia, Elkhart, IN, USA) dissolved
1:20 in 25 mM PBS for 18 h at 4 ◦C, rinsed three times for 10 min in 25 mM PBS, incubated in the secondary
goat anti-mouse antibody Alexa Fluor 488 (Molecular Probes, Eugene, OR, USA) diluted 1:100 in 25 mM
PBS for 4 h, at−24 ◦C, and then rinsed 3× 10 min in SB.

4.4. Real-Time Polymerase Chain Reaction (PCR)

Fragments of 0.5 mm length from WT plants and pin1 mutants at different stages of growth
were separately collected for triplicate experiments. Total RNA was extracted using the Plant Total
RNA Extraction kit (EurX, Gdańsk, Poland). Reverse transcription was performed using 1 µg of total
RNA and a High Capacity cDNA Extraction kit (A&A Biotechnology, Gdynia, Poland) according to
the manufacturer’s instructions. Real-time quantitative reverse transcription PCR (qRT-PCR) was
performed using Real-Time 2× PCR Master Mix SYBR version B (A&A Biotechnology) on a Light
cycler 480 Real-Time system (Roche, 632 Mannheim, Germany). Amplification conditions were as
follows: denaturation for 1 min (95 ◦C), 45 cycles of denaturation for 10 s (95 ◦C), amplification for 10 s
according to the primer-specific temperatures (50-60 ◦C), elongation for 20 s (72 ◦C), and cooling for 30 s
(40 ◦C). The specificity of the amplification was verified by melting curve analysis. In all experiments,
the ACTIN2 gene was used as a reference. Primer sequences are shown in Supplementary Table S1.
Statistical analyses were performed using the Statistica 13 software (StatSoft; North Melbourne, Victoria,
Australia). Data had normal distribution (Shapiro–Wilk test) and the t-test was used to verify the
significance of differences (from p = 0.05).
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4.5. Microscopy

Histological analyses were performed in an epi-fluorescent microscope (BX-50, Olympus Optical Co.,
Tokyo, Japan) connected to an Olympus DP71 camera (Olympus Optical Co.) using the CellˆB software
(Olympus Optical Co.). The distribution of the GUS signal was analyzed using a stereomicroscope
(SMZ745T, Nikon Instruments Europe B.V., Warszawa, Poland) and a digital camera (DLT-Cam PRO,
Delta Optical, Nowe Osiny, Poland). The 3D structure of xylem strands was analyzed in a confocal
microscope (LSM, FluoView1000, Olympus Optical Co.). Distances from the youngest differentiated
xylem elements to the SAM were measured as described Banasiak [34]. The excitation/emission light
were 490/590 nm for GFP and AlexaFluor488 and 540–565/632 nm for PI.

5. Conclusions

The results presented in this paper answer several important questions related to the mechanisms
regulating the formation of the lateral organs on the meristem and the differentiation of the vascular
strands associated with them. We showed that the lack of PAT in pin1 mutants does not fully block
these two processes, as other mechanisms that provide auxin remain active. One of these mechanisms
could be the transport of auxin to the SAM, with the use of vascular tissues, while another mechanism
could be the biosynthesis of auxin directly in the meristem and developing organs. Additionally,
we directly showed, for the first time, that auxin is always present in the meristem, independent of
PAT. However, auxin presence in the L1 layer is fundamental for organogenesis. In pin1 mutants,
the stable presence of auxin in inner layers of the meristem is ensured by its transport through the
vascular tissues. Nevertheless, its presence in the L1 layer probably depends on a change in the auxin
transport mode in these tissues and, in older shoots, the induction of an auxin biosynthetic pathway.
Deciphering the mechanism(s) changing auxin transport in the vascular tissues, as well as determining
whether the mechanisms responsible for organogenesis and vascular differentiation in pin1 mutants
are activated by PAT damage, and whether these mechanisms also interact with PAT in wild-type
plants, require further research.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/1/
180/s1.
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