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Abstract: Lipopolysaccharide (LPS) and lipoteichoic acid (LTA), the Gram-negative and the
Gram-positive bacterial cell wall components are important mediators of neuroinflammation in
sepsis. LPS and LTA are potent activators of microglial cells which induce the production of various
pro-inflammatory cytokines. It has been demonstrated that disturbance of iron homeostasis of the
brain is one of the underlying causes of neuronal cell death but the mechanisms contributing to this
process are still questionable. In the present study, we established monocultures of differentiated
SH-SY5Y cells and co-cultures of differentiated SH-SY5Y cells and BV-2 microglia as neuronal model
systems to selectively examine the effect of inflammatory mediators LPS and LTA on iron homeostasis
of SH-SY5Y cells both in mono- and co-cultures. We monitored the IL-6 and TNFα secretions of the
treated cells and determined the mRNA and protein levels of iron importers (transferrin receptor-1
and divalent metal transporter-1), and iron storing genes (ferritin heavy chain and mitochondrial
ferritin). Moreover, we examined the relation between hepcidin secretion and intracellular iron
content. Our data revealed that LPS and LTA triggered distinct responses in SH-SY5Y cells by
differently changing the expressions of iron uptake, as well as cytosolic and mitochondrial iron
storage proteins. Moreover, they increased the total iron contents of the cells but at different rates.
The presence of BV-2 microglial cells influenced the reactions of SH-SY5Y cells on both LPS and
LTA treatments: iron uptake and iron storage, as well as the neuronal cytokine production have
been modulated. Our results demonstrate that BV-2 cells alter the iron metabolism of SH-SY5Y cells,
they contribute to the iron accumulation of SH-SY5Y cells by manipulating the effects of LTA and LPS
proving that microglia are important regulators of neuronal iron metabolism at neuroinflammation.
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1. Introduction

Sepsis is among the most common causes of morbidity and mortality worldwide [1].
In sepsis, the central nervous system (CNS) is one of the first organs that is affected [2]. Sepsis
is associated with production of pro-inflammatory cytokines, impaired brain microcirculation,
and disturbed neurotransmitter secretion [3]. Cytokine production is one of the underlying cause
of neuroinflammation leading to disruption of blood–brain barrier, neuronal oxidative stress,
and microglial activation [4,5]. Microglia are the resident immune cells of the brain responsible for
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the production of cytokines (tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and interleukin-6
(IL-6)), neurotrophic factors, nitrogen oxide (NO), and reactive oxygen species that lead to
neuronal cell death [6–8]. They also play a crucial role in the alteration of blood–brain barrier and
blood–cerebrospinal fluid barrier in systemic inflammation [9].

Lipopolysaccharide (LPS) and lipoteichoic acid (LTA), the two lipid-linked polymers of bacterial
cell wall components, are found in Gram-negative and Gram-positive bacteria, respectively [10,11].
LTA evokes the induction of several inflammatory mediators in different cell types (e.g., macrophages,
lung cells, liver cells, and glial cells) including TNFα, IL-1β, IL-6, IL-8, monocyte chemoattractant
protein-1 (MCP-1), macrophage inflammatory proteins (MIP-1a and MIP-2), myeloperoxidase,
and NO [12,13]. LPS mainly initiates the production of pro-inflammatory cytokines like TNFα, IL-1β,
IL-6, and NO in both glial cells and neurons [14,15]. It has been demonstrated that LPS and LTA induce
the production of reactive oxygen species (ROS) and activate NFκB (nuclear factor kappa B) pathway
which leads further production of pro-inflammatory cytokines [16].

LPS and LTA are recognized by Toll-like receptors (TLRs) which are involved in the innate
immune system [17,18]. Upon ligand binding TLRs dimerize and initiate myeloid differentiation
primary response gene 88 (MyD88)-dependent or independent pathways leading to the production
of IL-6, IL-1, and TNFα [19]. TLR2 recognizes lipoproteins and other components of Gram-positive
bacterial cells, such as LTA [20]. TLR4 recognizes LPS, a structural component of the outer membrane
of Gram-negative bacterial cells, double-stranded RNA or flagellin and various endogenous ligands
and necrotic cells [17,21,22].

The presence of TLRs has been demonstrated both in the CNS and in neural cell cultures.
Evidences prove that microglia and neurons both express TLR4 and TLR2 [23]. TLR signaling in
the CNS strongly influences the neuroinflammatory responses [24,25].

The presence of iron is critical in the normal development of brain functions. It is needed for myelin
synthesis and for neurotransmitter production [26]. Iron uptake in the neuronal cells occurs mostly via
the well described transferrin–transferrin receptor (TfR) system. Other mechanisms for iron import in
different cell types of the CNS involve divalent metal transporter-1 (DMT-1), brain melanotransferrin,
or lactoferrin [27]. The main iron storage protein in the brain is ferritin [28]. Mitochondrial ferritin
(FTMT), a ferritin-like protein has been proved to act as a modulator of cellular iron homeostasis. FTMT
is expressed predominantly in neurons and sequesters free iron protecting the cell from oxidative
damage [29]. Neurons and microglial cells have the capacity to accumulate and store large quantities
of iron, although microglial cells are more efficient in this process than neurons [30]. Iron accumulation
leads to oxidative damage, mitochondrial dysfunction and neuronal cell death [31].

The systemic iron metabolism and homeostasis are dependent on the proper regulation of
hepcidin, a small antimicrobial peptide which is mainly expressed in the liver [32]. Hepcidin is
translated as preprohepcidin, from which the 24 amino acids long N-terminal presequence is cleaved
in the endoplasmic reticulum. The prohepcidin is transported into the Golgi apparatus where the furin
proprotein convertase cuts it into the 25 amino acids long mature hepcidin [32]. Under conditions
of iron overload in order to limit iron export, hepcidin binds to its receptor ferroportin, and triggers
its internalization and intracellular degradation [33]. Iron homeostasis is also controlled by the
iron regulatory proteins (IRPs) which bind iron responsive elements (IREs) of regulated messenger
RNAs [34]. Inflammatory conditions are the major regulators of hepcidin synthesis and therefore
the overall iron homeostasis. It has been described that inflammatory stimuli (IL-6, TNFα, and LPS
treatments) of the CNS cells lead to perturbation of iron homeostasis [35,36].

LPS is a common inflammatory mediator to induce inflammatory processes (e.g., pro-inflammatory
cytokine production) in neurons and microglia. Meanwhile, the role of Gram-positive bacterial cell wall
component LTA has not been investigated in the context of neuroinflammation and iron metabolism.

In the present study we established bilaminar co-culture systems of differentiated SH-SY5Y cells
and BV-2 cells which are relevant cell models to investigate neuroinflammatory processes [8,37,38].
We utilized these models to describe new implications of iron metabolism in neuroinflammation.
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We evaluated the effects of inflammatory mediators LPS and LTA on the iron uptake and storage in
differentiated SH-SY5Y cells. Microglia are known to be able to modulate neuronal functions and they
have an important role in neuroinflammatory processes. Therefore we investigated the alterations of
the iron metabolism of differentiated SH-SY5Y cells in the presence of BV-2 microglia to reveal the
modifications mediated by these immune cells.

2. Results

2.1. Determination of Toxicity of LPS and LTA on SH-SY5Y

Our preliminary results on LTA- and LPS-treated SH-SY5Y cells revealed that 1 µg of bacterial cell
wall component per ml of culture media is the optimal working concentration to induce inflammatory
processes. These conclusions were based on mRNA expression experiments. Next, we determined the
optimal time intervals of LPS and LTA administrations with cell viability assays. Lipopolysaccharide
decreased cell viability only to 92% after 48 h while lipoteichoic acid decreased viability to 73% at 48 h
treatment in monocultures. In the presence of BV-2 cells the viability of SH-SY5Y cells decreased to
82% at 48 h after LPS treatment and to 67% at 48 h after LTA treatment (Figure 1).
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Figure 1. Viability of mono- and co-cultured SH-SY5Y cells after LPS and LTA treatments. Cell
viability was determined using Cell Counting Kit-8 (Sigma-Aldrich Kft., Budapest, Hungary) and was
expressed as percentage of the control cells. (A) Viability of LPS treated SH-SY5Y cells and co-cultured
SH-SY5Y cells. (B) Viability of LTA treated SH-SY5Y cells and co-cultured SH-SY5Y cells. The columns
represent mean values and error bars represent standard errors of the mean (SEM) of four independent
determinations. Asterisk stands for p < 0.01 between mono- and co-cultures. Double cross means
p < 0.01 between LPS and LTA treatments. Cross shows p < 0.01 compared to the untreated controls.

2.2. LPS and LTA Have Distinct Effects on the mRNA Expressions of the Iron Uptake and Storage Genes in
SH-SY5Y Cells

Our primary goal was to reveal the effects of BV-2 cells on the iron metabolism of SH-SY5Y cells
in the separate treatments with LPS or LTA, but our results also demonstrated that the two different
bacterial cell wall components triggered altered responses in monocultured SH-SY5Y cells.

The mRNA analysis demonstrated that iron uptake genes (DMT-1 and TfR1) showed different
expression levels in SH-SY5Y cells in the presence of LPS and LTA. DMT-1 expression levels were
significantly elevated at 24 h and 48 h in the presence of LPS, while LTA treatment increased its level
significantly as early as 6 h, although the mRNA expression of DMT-1 was downregulated to the
control level at 24 h (Figure 2A). TfR1 showed a different expression profile as well: it was elevated
at 6 h and 48 h in case of LTA treatment while the LPS treatment significantly increased the TfR1
mRNA levels only at 48 h (Figure 2A). These results may suggest that SH-SY5Y cells react later to
LPS treatment due to its different action, and both DMT-1 and TfR1 contribute to LPS-mediated iron
uptake. In the case of LTA treatment, DMT-1 levels begin to change earlier (6 h) and at late stage of the
treatment the increasing expression of TfR1 may take the place of DMT-1 in iron uptake.
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The distinct effects of LPS and LTA treatments are more obvious in case of iron storage genes.
The mRNA expressions of FTH were elevated at each time points of LPS treatment but with different
altitudes (Figure 2B). Meanwhile LTA treated cells showed increased FTH expression only at 48 h.
FTMT mRNA levels were increased in case of LTA treatment of SH-SY5Y cells, while LPS did not seem
to affect significantly FTMT mRNA expression (Figure 2B). These results presume that LPS acts mainly
on FTH expression while LTA affects primarily FTMT mRNA level. The results also suggest that LPS
acts on cytosolic iron stores while LTA modifies both the mitochondrial and cytosolic iron stores.
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Figure 2. Effects of LPS and LTA treatments on the mRNA expressions of iron uptake and iron
storage genes in SH-SY5Y cells. Real-time PCR was performed with the SYBR green protocol using
gene-specific primers. β-actin was used as a housekeeping gene for the normalization and relative
expression of controls was considered as 1. The mRNA expressions of the treated cells were compared
to their appropriate controls (6 h, 24 h, or 48 h). (A) mRNA expression levels of DMT-1 and TfR1
of LPS- and LTA-treated SH-SY5Y cells. (B) mRNA expression levels of FTH and FTMT of LPS-and
LTA-treated SH-SY5Y cells. The columns represent mean values and error bars represent standard
errors of the mean (SEM) of three independent determinations. Asterisk indicates p < 0.01 between LPS
and LTA treatments. Cross marks indicate p < 0.01 compared to the untreated controls.

2.3. LPS and LTA Act Differently on the Hepcidin Secretion and Iron Content of the SH-SY5Y Cells

Next, we determined the production of the major iron regulatory hormone hepcidin of LPS
and LTA treated SH-SY5Y cells. Hepcidin secretions showed significant difference between the two
treatments. In case of LPS treatment hepcidin secretion increased gradually from 6 h and this elevation
was significantly higher than in case of LTA treatment (Figure 3A). LTA increased hepcidin production
only in the late stages of the experiments—at 24 h and 48 h—and levels were significantly lower
compared to LPS treatment (Figure 3A).

The iron contents of the treated SH-SY5Y cells followed the changes of hepcidin secretion.
The higher hepcidin level resulted in higher intracellular iron content in case of LPS treated SH-SY5Y
cells (Figure 3B). Increased iron levels were only measured at 24 h and 48 h in case of LTA treated cells
but these values were significantly lower compared to the LPS treated cells (Figure 3B). These results
suggest that hepcidin acts on SH-SY5Y cells with an autocrine fashion, and causes intracellular
iron accumulation.



Int. J. Mol. Sci. 2019, 20, 17 5 of 19
Int. J. Mol. Sci. 2018, 19, x 5 of 19 

 

 

Figure 3. Effects of LPS and LTA treatments on hepcidin secretion and on iron content of SH-SY5Y 

cells. Hepcidin content of cell culture supernatants was determined with Hepcidin 25 bioactive ELISA 

Kit. The hepcidin contents of the control media did not change during the experiments therefore only 

one control was represented in Figure A. Intracellular iron contents of SH-SY5Y cells were determined 

using a colorimetric ferrozine-based assay. Iron contents of the untreated control cells were measured 

the same way and at the same time points of the experiments (6 h, 24 h, and 48 h). (A) Hepcidin 

concentrations in the cell culture media of the LPS and LTA treated SH-SY5Y monocultures. (B) Total 

iron contents of LPS and LTA treated SH-SY5Y cells. The columns represent mean values and error 

bars represent standard errors of the mean (SEM) of four independent determinations. ND stands for 

not detected. Asterisk marks p < 0.01 between LPS and LTA treatments. Cross marks p < 0.01 

compared to the untreated controls. 

2.4. BV-2 Cells Alter the IL-6 and TNFα Cytokine Productions of SH-SY5Y Cells 

Production of pro-inflammatory cytokines is a reliable marker of microglial activation. We 

investigated not only the microglial but the neuronal IL-6 and TNFα secretions as well, to reveal the 

reaction of SH-SY5Y cells to inflammatory mediators. The elevated levels of secreted cytokines prove 

that both cell types responded with IL-6 and TNFα production to the inflammatory mediators, LPS 

and LTA. In Figure 4A,B it can be seen that both bacterial cell wall components increased the secretion 

of microglial IL-6 and TNFα, although LTA exerted a 50% lower effect on the cells than LPS. 

TNFα concentrations showed gradually elevated levels in the LPS treated monocultures of 

neuronal cells (Figure 4C). The presence of BV-2 cells in the LPS treated co-cultures caused a delay in 

the SH-SY5Y TNFα production and decreased the magnitude of the secretion (Figure 4C). LTA 

exerted different effect on the TNFα production of SH-SY5Y cells (detected only at 6 h) (Figure 4D) 

and BV-2 cells altered not only the time of secretion (delayed to 24 h) but they caused significant 

elevation of TNFα production compared to the monoculture (Figure 4D). The measured TNFα 

concentrations point out that LPS and LTA have different effect on TNFα secretion showing 

remarkable elevation only in case of LPS treatment, while in the co-cultures LPS has a lower effect on 

TNFα secretion and LTA is able to trigger TNFα production. In the SH-SY5Y monocultures the IL-6 

protein level showed a moderate elevation during both treatments (8.47–11.76 pg/mL in the case of 

LPS and 9.14–15.21 pg/mL in the case of LTA), meanwhile BV-2 cells did not affect significantly the 

IL-6 production of neurons compared to the monoculture (Figure 4E,F). 

Figure 3. Effects of LPS and LTA treatments on hepcidin secretion and on iron content of SH-SY5Y
cells. Hepcidin content of cell culture supernatants was determined with Hepcidin 25 bioactive ELISA
Kit. The hepcidin contents of the control media did not change during the experiments therefore only
one control was represented in Figure A. Intracellular iron contents of SH-SY5Y cells were determined
using a colorimetric ferrozine-based assay. Iron contents of the untreated control cells were measured
the same way and at the same time points of the experiments (6 h, 24 h, and 48 h). (A) Hepcidin
concentrations in the cell culture media of the LPS and LTA treated SH-SY5Y monocultures. (B) Total
iron contents of LPS and LTA treated SH-SY5Y cells. The columns represent mean values and error
bars represent standard errors of the mean (SEM) of four independent determinations. ND stands for
not detected. Asterisk marks p < 0.01 between LPS and LTA treatments. Cross marks p < 0.01 compared
to the untreated controls.

2.4. BV-2 Cells Alter the IL-6 and TNFα Cytokine Productions of SH-SY5Y Cells

Production of pro-inflammatory cytokines is a reliable marker of microglial activation.
We investigated not only the microglial but the neuronal IL-6 and TNFα secretions as well, to reveal
the reaction of SH-SY5Y cells to inflammatory mediators. The elevated levels of secreted cytokines
prove that both cell types responded with IL-6 and TNFα production to the inflammatory mediators,
LPS and LTA. In Figure 4A,B it can be seen that both bacterial cell wall components increased the
secretion of microglial IL-6 and TNFα, although LTA exerted a 50% lower effect on the cells than LPS.

TNFα concentrations showed gradually elevated levels in the LPS treated monocultures of
neuronal cells (Figure 4C). The presence of BV-2 cells in the LPS treated co-cultures caused a delay in
the SH-SY5Y TNFα production and decreased the magnitude of the secretion (Figure 4C). LTA exerted
different effect on the TNFα production of SH-SY5Y cells (detected only at 6 h) (Figure 4D) and BV-2
cells altered not only the time of secretion (delayed to 24 h) but they caused significant elevation of
TNFα production compared to the monoculture (Figure 4D). The measured TNFα concentrations point
out that LPS and LTA have different effect on TNFα secretion showing remarkable elevation only in
case of LPS treatment, while in the co-cultures LPS has a lower effect on TNFα secretion and LTA is able
to trigger TNFα production. In the SH-SY5Y monocultures the IL-6 protein level showed a moderate
elevation during both treatments (8.47–11.76 pg/mL in the case of LPS and 9.14–15.21 pg/mL in the
case of LTA), meanwhile BV-2 cells did not affect significantly the IL-6 production of neurons compared
to the monoculture (Figure 4E,F).
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Figure 4. Determination of IL-6 and TNFα secretions of co-cultured BV-2 cells and mono- and
co-cultured SH-SY5Y cells. Secreted IL-6 and TNFα concentrations of the culture media were
determined with IL-6 and TNFα ELISA Kits specific for human or mouse cytokines. (A) IL-6 and TNFα
productions of co-cultured BV-2 cells treated with LPS. (B) IL-6 and TNFα productions of co-cultured
BV-2 cells treated with LTA. (C) IL-6 secretions of mono- and co-cultured LPS treated SH-SY5Y cells.
(D) IL-6 secretions of mono- and co-cultured LTA treated SH-SY5Y cells. (E) TNFα secretion of mono-
and co-cultured LPS treated SH-SY5Y cells. (F) TNFα production of mono- and co-cultured LTA treated
SH-SY5Y cells. The columns represent mean values and error bars represent standard errors of the
mean (SEM) of three independent determinations. The cytokine contents of the control media did not
change during the experiments therefore only one control was represented in each figure. ND stands
for not detected. Cross means p < 0.01 compared to the controls. Asterisk marks p < 0.01 between
mono- and co-cultures.

2.5. Western Blot Analysis of the Iron Related Genes Reveals Alterations between the Mono- and Co-Cultured
SH-SY5Y Cells

Inflammatory mediators together with other factors and conditions (e.g., iron regulatory proteins,
microRNAs (miRNAs), and iron availability) are known to exert regulatory functions in the iron
homeostasis of different cell types. We investigated whether the two different bacterial cell wall
components influenced iron uptake and/or iron storage in SH-SY5Y cells and whether microglia,
the immune cells of the brain were able to attenuate or enhance the effects of LPS and LTA on the iron
metabolism of neuronal cells. DMT-1 and TfR1, which are responsible for iron uptake, and FTH and
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FTMT—iron storage protein encoding genes—were examined to reveal if there are any differences at
protein expression levels.

DMT-1 protein expression was elevated from 6 h to 48 h in the LPS treated monoculture. BV-2 cells
retarded the expression of DMT-1 in the co-cultured SH-SY5Y cells, it was only increased at 48 h.
We could detect also elevation of the expression of TfR1 in the LPS treated monoculture at 6 h and
48 h and in the presence of microglia, TfR1 protein levels were increased as well at 24 h and 48 h
(Figure 5A,B) suggesting that the TfR1 level is regulated by LPS and is modified by BV-2 cells.
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Figure 5. Western blot analyses of proteins involved in iron uptake and storage in mono- (A,C) and
co-cultured (B,D) SH-SY5Y cells. Pelleted cells were lysed and their protein contents were measured.
The same amount of protein (15 µg) from each sample was separated by SDS-PAGE using 12% or
14% polyacrylamide gels, transferred by electroblotting to nitrocellulose membranes and probed
with anti-DMT-1, anti-TfR1, anti-FTH, and anti-FTMT polyclonal rabbit antibodies according to the
manufacturers’ protocols. DMT-1 and TfR1 expressions reflect iron uptake capacity of SH-SY5Y cells.
FTH and FTMT protein levels show the mechanisms of iron storage in SH-SY5Y cells. The experiments
were repeated at least three times. Optical density analyses can be seen in Figure S1.

FTH levels were similar to the control level at 6 h and 48 h in monocultured, LPS-treated SH-SY5Y
cells, but at 24 h remarkable down regulation occurred suggesting a negative feedback regulation or
short term iron redistribution in the cells. Increasing FTH protein expression pattern was found in the
LPS treated co-cultured SH-SY5Y cells suggesting that BV-2 cells notably affect cytosolic iron stores.
FTMT protein levels were decreased at 24 h and 48 h in the LPS-treated monocultures. Interestingly,
in the co-cultures, the FTMT protein level was increased at 24 h and then decreased suggesting that
in the presence of microglia FTH may take the role of FTMT at 48 h in iron storage of SH-SY5Y cells
(Figure 5A,B). This alteration may contribute to the protection of mitochondria from iron toxicity when
mitochondrial iron store is filled.

In case of LTA treatments there was a decrease at 24 h of the DMT-1 protein in the monoculture
which alteration did not appear in the co-culture suggesting an alteration in the translational regulation
of this gene in the presence of BV-2 cells. TfR1 protein level showed elevated expression in the LTA
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treated monoculture suggesting that SH-SY5Y cells utilize TfR1 for iron import. In the co-cultured
SH-SY5Y cells TfR1 began to be elevated only at 48 h suggesting that at earlier time points DMT-1
is used for iron uptake instead of TfR1, and then TfR1 takes the role or work together with DMT-1
(Figure 5C,D).

FTH protein levels were similar to the control level at the examined time points of LTA treatment
of the monocultured SH-SY5Y cells. In the LTA treated co-culture, microglia seemed to decrease FTH
protein levels of SH-SY5Y cells compared to the monocultures with an exception at 24 h when it
increased. FTMT expression was increased at the late stages of the LTA treatments in both mono- and
co-cultures. Based on these results it is revealed that both FTH and FTMT levels were elevated at 24
h and 48 h in the LTA treated monocultures. At the same time points BV-2 cells could decrease FTH
and increase FTMT levels suggesting that FTMT may take the role of FTH (Figure 5C,D), which is in
contrast with the results of LPS treated SH-SY5Y cells (Figure 5A,B).

2.6. BV-2 Cells Modify the Hepcidin Secretion of SH-SY5Y Cells

Inflammation is one of the most important positive modulators of hepcidin expression, the major
regulator of iron metabolism. To investigate the effects of BV-2 cells on hepcidin production of the
LPS- and LTA-treated SH-SY5Y cells we determined hepcidin secretion of SH-SY5Y cells in mono- and
co-cultures using competitive ELISA. The LPS treated SH-SY5Y cells showed increasing hepcidin levels
with time (Figure 6A) in the monoculture. These changes were significantly higher than in the LPS
treated co-cultured SH-SY5Y cells suggesting that BV-2 cells may inhibit hepcidin secretion and/or
maturation. In the case of LTA treatment we revealed opposite results: the co-cultured SH-SY5Y
cells secreted significantly higher amount of hepcidin compared to the monoculture (Figure 6B).
The results suggest that the presence of BV-2 cells affects the hepcidin synthesis of SH-SY5Y cells: they
suppress hepcidin secretion in case of LPS treatment while they trigger hepcidin production in case of
LTA treatment.
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Figure 6. Determination of the concentration of secreted hepcidin from cell culture medium. The mature
hepcidin content of each sample was determined with Hepcidin 25 bioactive ELISA Kit. (A) Hepcidin
concentrations in the cell culture media of the LPS-treated SH-SY5Y monocultures and co-cultures.
(B) Hepcidin productions of the LTA treated mono- and co-cultured SH-SY5Y cells measured from
the culture medium. The columns represent mean values and error bars represent standard errors of
the mean (SEM) of four independent determinations. The hepcidin contents of the control media did
not change during the experiments therefore only one control was represented in the figures. Asterisk
marks p < 0.01 between the mono- and co-cultures. Cross means p < 0.01 compared to the controls. ND
means not detected.

2.7. Transcriptional Regulation of Hepcidin Antimicrobial Peptide (HAMP) Expression in the LPS- and
LTA-Treated Mono- and Co-Cultured SH-SY5Y Cells

Preprohepcidin mRNA expression is regulated by STAT3 transcription factor, among other
intracellular factors (e.g., SMAD transcription factors, HIF1α, and MAP kinase cascades). The STAT3
protein is phosphorylated by the IL-6 cytokine receptor/Janus kinase signaling pathway activated
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by inflammatory signals. Therefore, we examined STAT3 transcription factor phosphorylation in
the monoculture and the co-cultured SH-SY5Y cells to reveal whether this process contributes to
the increased hepcidin production in neurons. STAT3 phosphorylation was induced in the LPS and
LTA treated monocultures (Figure 7A,C) with different rates. During LPS treatment, the STAT3
phosphorylation increased from 6 h, meanwhile LTA could initiate STAT3 phosphorylation at 24 h and
after a remarkable increase occurred at 48 h, although there was no significant difference between IL-6
secretions of the treated cells. In the co-cultures STAT3 phosphorylation begun later, at 24 h in case of
both treatments (Figure 7B,D), suggesting influencing role of BV-2 cells on cell signaling pathways in
SH-SY5Y cells. Although these results strengthen the role of STAT3 phosphorylation in the regulation
of hepcidin expression but other factors produced by BV-2 cells or by SH-SY5Y cells or the intracellular
iron content may affect hepcidin production of SH-SY5Y cells as well.
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Figure 7. Western blot analyses of phospho-STAT3 in mono- (A,C) and co-cultured (B,D) SH-SY5Y
cells. SH-SY5Y cells were collected and pelleted cells were lysed and their protein contents were
measured. The same amount of protein (15 µg) from each sample was separated by SDS-PAGE using
12% polyacrylamide gel, transferred by electroblotting to nitrocellulose membranes and probed with
anti-p-STAT3 polyclonal rabbit antibody according to the manufacturer’s protocol. p-STAT3 reflects
the activation of JAK/STAT signaling pathway affecting HAMP transcription. The experiments were
repeated at least three times. Optical density analyses can be found in Figure S2.

2.8. Changes in the Expression of Iron Uptake Proteins and Hepcidin Contribute to the Increased Iron Content
of SH-SY5Y Cells

To prove that changes in the expression of iron uptake and storage proteins show correlation
with the variation of the intracellular iron content, we measured cellular total iron content using a
ferrozine-based assay. Our results revealed that the iron content of the co-cultured SH-SY5Y cells
was significantly higher in both treatments compared to the monocultures (Figure 8A,B)—except at
48 h of LPS treatment where there was no difference between the mono- and co-cultures (Figure 8A).
The results suggest that BV-2 cells can increase the iron content of SH-SY5Y cells in the presence of LPS
or LTA. Moreover, BV-2 cells alone, without any treatment, could increase neuronal iron content since
the iron content of control co-cultured SH-SY5Y cells changed with time of cultivation (Figure 8C,D).
Elevation of the iron content in the co-cultured SH-SY5Y cells raised the possibility that this extra
iron was not imported exclusively from the culture medium but the BV-2 cells contributed directly
to these changes as well. To reveal this hypothesis we measured the iron content of the BV-2 cells in
the co-cultures. Increased microglial total iron content was measured only at 6 h of LTA treatment
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(Figure 8C). At 24 h and 48 h in both treatments, the BV-2 cells decreased their iron content meanwhile
the total iron content of SH-SY5Y cells increased (Figure 8B,C). These data suggest the presence of
iron transport between the two cell types in the co-cultures and the important role of microglia in iron
accumulation of SH-SY5Y cells in inflammation.
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Figure 8. Comparisons of the total iron contents of mono- and co-cultured SH-SY5Y cells and
co-cultured SH-SY5Y and BV-2 cells. Intracellular iron contents of SH-SY5Y and BV-2 cells were
determined using a colorimetric ferrozine-based assay. Iron contents of the untreated control cells
were measured the same way and at the same time points of the experiments (6 h, 24 h, and 48 h).
(A) Total iron contents of LPS-treated mono- and co-cultured SH-SY5Y cells. (B) Total iron contents
of the LTA-treated mono- and co-cultured SH-SY5Y cells. (C) Intracellular iron contents of SH-SY5Y
cells and BV-2 cells in LPS-treated co-cultures. (D) Intracellular iron contents of SH-SY5Y cells and
BV-2 cells in LTA treated co-cultures. The columns represent mean values and error bars represent
standard errors of the mean (SEM) of four independent determinations. Asterisk stands for p < 0.01
between mono- and co-cultures. Double cross means p < 0.01 between SH-SY5Y cells and BV-2 cells.
Cross means p < 0.01 compared to the controls.

3. Discussion

Iron is an essential trace element necessary for proper brain functioning. Iron homeostasis is tightly
regulated by hepcidin—a peptide hormone produced mainly by the liver—but it is also expressed in
the brain suggesting its role in the local iron homeostasis [39]. Neuroinflammation is mediated by
reactive microglia and astrocytes secreting pro-inflammatory cytokines. These cytokines trigger the
production of free radicals, deregulation of iron metabolism and mitochondrial function [40].

Bacterial infections induce cellular responses through Toll-like receptors, a family of pattern
recognition receptors [21,22]. Both Gram-positive and Gram-negative bacteria act via these receptors
generating immune response in the infected cells, including the cells of the CNS. LTA is a component
of the Gram-positive bacterial cell wall, a potent agonist of TLR2 [41]. LPS, from the cell wall of
Gram-negative bacteria, is proved to bind to TLR4 and induce activation of microglia [17]. It has
been reported that TLR2 and TLR4 are expressed by neurons indicating a role of these receptors
in neuronal inflammatory responses [42]. Although the action of microglia and astrocytes under
inflammatory conditions is well described, only few articles deal with the behavior of neurons in
inflammation. LPS, as an inflammatory mediator has been proved in numerous experiments [43,44] to
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induce neurodegeneration and dysregulation of iron metabolism, but the direct effect of Gram-positive
cell wall component LTA on neuronal iron uptake, storage, and utilization has not been investigated yet.

The aim of our study was to reveal the changes of iron metabolism in differentiated human
SH-SY5Y cells under the treatment of inflammatory mediators LPS and LTA, and to examine if
the presence of BV-2 murine microglia could alter these changes. To find the answers for these
questions we compared the effects of LPS and LTA on monocultured SH-SY5Y cells to BV-2 co-cultured
SH-SY5Y cells.

To reveal the alterations in iron metabolism of the LPS and LTA treated monocultures we
performed real-time PCR analyses of the genes responsible for iron uptake and storage. Our data
strengthens the hypothesis that LPS and LTA can act differently on the iron metabolism of SH-SY5Y
cells by changing the expressions of DMT-1 and TfR1—responsible for iron uptake—and FTH and
FTMT—responsible for iron storage. The results show that both DMT-1 and TfR1 are involved in
iron uptake of LPS- and LTA-treated SH-SY5Y cells but with different degrees, suggesting a feedback
mechanism by the iron availability or the iron stores. FTH levels were elevated during LPS while FTMT
mRNA levels were increased only in case of LTA treatment of SH-SY5Y cells. These results imply that
LPS modifies cytosolic iron stores while LTA influences both the mitochondrial and cytosolic iron
stores. Hepcidin secretion and total iron content were significantly higher in the LPS treated SH-SY5Y
cells showing a strong correlation among iron uptake, iron storage and hepcidin synthesis.

Our co-culture system is established using human differentiated neuroblastoma cells and murine
neonatal microglial cells, the two cell types are able to contact with each other physically by secreting
mediators or by releasing extracellular vesicles [45,46] and they react to these stimuli. Moreover,
using this co-culture model the cytokine production of the SH-SY5Y cells and BV-2 cells can be
examined separately. Previous data have shown that BV-2 cells can be activated by both LPS
and LTA which induce the secretion of pro-inflammatory cytokines [8] and the release of NO
and glutamate [13,14], and at the presence of pathogens neurons release cytokines to regulate the
inflammatory process in the brain [47].

Our results demonstrated that the LPS treated BV-2 cells in the co-culture secrete more IL-6 and
TNFα cytokines than LTA treated cells. TNFα secretions of LPS or LTA treated SH-SY5Y cells were
altered by BV-2 cells but with different rates. BV-2 cells significantly decreased TNFα secretion of
the LPS treated neuronal cells suggesting a protective role of microglia against the TNFα induced
neurotoxicity. On the contrary, TNFα production was triggered in LTA treated co-cultured SH-SY5Y
cells at 24 h and 48 h compared to the monoculture. However, the BV-2 cells themselves are less
sensitive to LTA; they increase the neuronal response to LTA which may influence cell viability
(Figure 1).

Previous study reveals that IL-6 and TNFα are also implied in the alteration of iron homeostasis
by influencing iron uptake and storage [48]. TNFα has an effect on the iron import on the cells by
increasing the expressions of TfR1 and DMT-1 via modulating the activity of IRP1 [49]. Moreover,
both TNFα and IL-6 released from SH-SY5Y cells may alter the iron homeostasis by inducing ferritin
expression [48]. Based on our data we suggest that the changes in the expression of DMT-1 and TfR1 at
the mRNA level are mediated by the neuronal cytokine production. LPS and LTA have different effects
on the expression of iron storage genes in monocultured SH-SY5Y cells: upregulated FTH mRNA level
in case of LPS treatment, and no remarkable effect in case of LTA treatment. LPS and LTA treatments
resulted in elevated intracellular iron content which might trigger FTH expression to decrease iron
mediated toxicity and might cause the redistribution of the iron pools. FTMT seems to be affected
only by LTA suggesting that LTA increases the mitochondrial iron storage and may affect the reactive
nitrogen species production which can influence the functions of the mitochondria (ATP synthesis,
iron–sulfur cluster synthesis, and heme synthesis) making the cells more sensitive to LTA.

The protein expression of the examined genes can be modified by inflammatory
mediators, by inflammatory cell signaling pathways, iron availability, activity of iron regulatory
proteins [48,50–53], certain miRNAs, as well as by direct contacts with other neuronal cells.
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Based on our results we revealed that LPS and LTA act different ways on iron uptake and storage
proteins in SH-SY5Y cells and BV-2 cells can modify these protein expression levels. LPS can influence
iron uptake by increasing the level of DMT-1 and BV-2 cells can act against LPS by retarding the DMT-1
expression. In case of LTA treatment downregulation of DMT-1 appeared at 24 h in the monocultures
while in the co-cultures a decrease in protein level was observed at 48 h suggesting that LTA affects the
translational regulation of DMT-1.

The increasing expression of TfR1 at the LPS treated monocultures suggests that TfR1 cooperates
with DMT-1 in neuronal iron import. In the co-cultures, BV-2 cells can alter the time of action of LPS
on the neuronal expression of TfR1. In case of LTA treatment increased TfR1 protein expression in the
monocultures suggests the important role of TfR1 in iron uptake during LTA treatment. In case of LTA
treated co-cultures TfR1 level was rather decreased suggesting that DMT-1 is involved in iron uptake
at the earlier stage of the treatment then TfR1 may take its role.

The possible reasons for the different actions of LPS and LTA on DMT-1 and TfR1 are the different
regulations of iron regulatory proteins (IRPs) [50,51,53]. LPS may contribute to maintain the level of
DMT-1 and TfR1 by increasing the activity of IRP1 at the early stage of the treatments [54]. On the
contrary, LTA is supposed to decrease the activity of IRP1 contributing to the degradation of DMT-1
mRNA, meanwhile LTA mediated NFκB activation may cause an increment of TfR1 protein level [55].
BV-2 cells may influence also the expression of IRP1 and contribute to the alterations in the expressions
of iron uptake proteins. Moreover, elevating level of hepcidin and IL-6 of treated SH-SY5Y cells which
both are observed in our experiments, may also contribute to the altered expression of DMT-1 in
mono- and co-cultures [35,53]. The discrepancies between protein levels at different time points of the
experiments suggest the complex regulation of iron uptake of the SH-SY5Y cells which is influenced
by the saturation of iron stores in the cytoplasm and in the mitochondria.

In our experiments FTH protein level was similar to the control level in case of LPS treated
monocultures with an exception at 24 h when it decreased. This alteration may be due to the iron
redistribution or the increased synthesis of the heme-containing cytoprotective enzymes (e.g., catalases
and peroxidases) which protect the cells from iron-mediated ROS production and damage [56].
The BV-2 cells changed this expression pattern by increasing FTH level at LPS treatment of the
co-cultures which indicates that LPS treated co-cultured SH-SY5Y cells store more iron in FTH.

LTA treated SH-SY5Y cells showed similar FTH protein expression compared to the controls,
while the presence of BV-2 cells it was decreased at 6 h and 48 h and increased at 24 h. This fluctuation
is may be caused by the intracellular iron trafficking from the cytosol to the mitochondria and/or by
the changes of iron uptake and release. To find out whether the mitochondrial iron store is affected
by LPS or LTA we analyzed FTMT protein expression of SH-SY5Y cells. LPS treatment decreased
FTMT levels in monocultures. In the LPS-treated co-cultures SH-SY5Y cells had fluctuated FTMT
levels. The possible reasons for these results are that SH-SY5Y cells utilize iron for iron–sulfur cluster
synthesis and/or heme synthesis or try to export iron from the cytosol [57]. Iron export may initiate
iron release from mitochondrion to protect mitochondrial functions from iron mediated stress [58].
It seems that BV-2 cells can trigger downregulation of FTMT earlier, but feedback mechanisms may
act against this effect and increases FTMT protein level later. On the contrary, overproduction of
FTMT can cause cytosolic iron deficiency with low ferritin and high TfR1 levels [59]. This modulatory
effect of FTMT was observed in the LTA treated co-cultures at 48 h. The presence of microglial cells
alters the iron storage conditions: at 24 h FTH is increased, at 48 h FTH was decreased and FTMT
expression was increased suggesting iron transport between cytosol and mitochondria mediated by
BV-2 cells. Increased FTMT levels are supposed to protect the cells from increasing labile iron pool
and iron mediated oxidative damage [60], iron overload in the mitochondrion may interfere with
the normal mitochondrial functions and lead to cell death [61]. Since FTMT lacks functional IRE
and its expression is not regulated by IRPs, other regulatory mechanisms might be the underlying
causes of the expressional alterations contributing iron redistribution. The action of miRNAs on mRNA
molecules decreases the translation of the genes which are involved in iron metabolism [62]. miRNA
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expression depends on the dietary iron intake [63] thus they may have a crucial role in the alterations
of DMT-1, TfR1, FTH, and FTMT. The mRNAs transcribed from the first three genes are regulated
directly by miRNAs [64], while FTMT mRNA is regulated indirectly through the control of iron–sulfur
biogenesis [65].

The role of hepcidin in maintaining and regulating the brain iron homeostasis is still emerging.
It has been shown that inflammatory stimuli did not trigger the expression of hepcidin in neurons [52]
while other authors revealed that LPS upregulated hepcidin in neurons via the IL-6/STAT3
pathway [66]. In our study it was proved that BV-2 cells had an opposite effect on hepcidin secretion
in LPS and LTA treated co-cultures. BV-2 cells seemed to attenuate the effect of LPS on SH-SY5Y cells
by decreasing significantly the hepcidin production of SH-SY5Y cells, meanwhile BV-2 cells increased
significantly the hepcidin secretion in case of LTA treated SH-SY5Y cells. The changes in the secretion
of hepcidin in SH-SY5Y cells are supposed to contribute to the alterations of the iron uptake and
storage of neurons. Our data also demonstrated that both LPS and LTA increased IL-6 production of
SH-SY5Y cells and phosphorylation of STAT3 protein, which was correlated with increased hepcidin
production in LPS treated mono- and co-cultures, although it seemed that BV-2 cells caused a delay in
STAT3 phosphorylation.

The alterations in the expression of iron uptake and storage proteins and hepcidin secretion in
SH-SY5Y cells presumed increased cellular iron content, although these changes were found to be
diverse in the mono- and co-cultures. Moreover, LTA treated co-cultured SH-SY5Y cells augmented
their iron content more than the LPS-treated cells. Although it is supposed that microglia provide a
protection to the neurons against iron overload [67], our results demonstrated that BV-2 microglia
triggered the neurons to increase their iron content. In addition, based on our measurements, the BV-2
cells contributed to the increased iron accumulation of SH-SY5Y cells by releasing their iron content
into the culture media and probably enhancing the uptake of non-transferrin-bound iron by neurons.
The hepcidin secretion of the SH-SY5Y cells correlated with the increasing iron content indicating that
hepcidin acts on the neurons in an autocrine way and inhibits the release of iron from the cell.

Although the role of microglia in inflammatory processes and neurodegeneration has been
intensively investigated, the reaction of neurons to inflammatory stimulus is not well understood [68].
Emerging evidences strengthen the importance of the investigations on neurons to reveal which
intracellular mechanisms become active or inactive during neuroinflammation and how these
mechanisms are altered by microglia, the major regulators of inflammatory processes of the brain.
Unraveling the molecular mechanisms involved in the changes of neural metabolism at inflammation
may help to elucidate the pathophysiological processes contributing to iron accumulation and
cell death.

In summary, our study strengthens the role of inflammation as an underlying cause of iron
accumulation in the neurons. Although many regulatory partners and direct or indirect cellular
interactions remained to be further examined, we revealed that microglia contributed to the increased
iron content of the neurons suggesting their role in neuronal iron overload due to neuroinflammation.
Though LPS and LTA both activate the NFκB pathway, MAP kinase cascades, and the secretion
of pro-inflammatory cytokines, our results revealed that they triggered different responses in the
differentiated SH-SY5Y cells, although it seems that LPS is a stronger influencing factor for the
regulation neuronal iron metabolism. BV-2 microglial cells influenced the effects of LPS and LTA by
changing iron uptake and storage conditions, and cytokine secretions of the neurons. Taken together
we suggest that differentiated SH-SY5Y cells are able to react differently to the presence of LPS and
LTA and that their reactions are significantly modulated by the microglia proving that microglia are
important regulators of neuronal iron metabolism and neuronal survival.
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4. Materials and Methods

4.1. Cell Cultures and Treatments

SH-SY5Y neuroblastoma cells (ATCC, CRL-2266) were cultured in DMEM/F12 medium (Lonza
Ltd. Basel, Switzerland) and supplemented with 10% fetal bovine serum (FBS, EuroClone S.p.A, Pero,
Italy) and 1% nonessential amino acids (NEAA, Lonza) and 1% Penicillin–Streptomycin (P/S, Lonza).
Cells (1 × 106) were seeded onto 25 cm3 flasks in DMEM/F12 medium supplemented with 1% FBS
and 1% NEAA and were differentiated with 1 µM all-trans retinoic acid (ATRA, Sigma-Aldrich Kft,
Budapest, Hungary) for 5 days in a humidified atmosphere containing 5% CO2 at 37 ◦C. For the
co-culture experiments SH-SY5Y cells were seeded and differentiated on Thermanox coverslips
(Thermo Fisher Scientific Inc., Waltham, MA, USA) in 6-well dishes (TPP Techno Plastic Products
AG, Trasadingen, Switzerland). BV-2 murine microglial cells (a kind gift from Prof. László Tretter
and his research group) were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) (Lonza)
supplemented with 10% FBS and 1% P/S. The cells were plated on poly-L-ornithine (Sigma-Aldrich
Kft.) coated dishes (Corning Inc., Corning, NY, USA) and after 24 h differentiated SH-SY5Y cells
were added to the BV-2 cells by turning the coverslips upside down with SH-SY5Y cells facing the
microglial cells, so the cells are separated by a thin layer of culture medium. Bilaminar co-cultures were
supplemented with 10 µM of cytosine-β-D-arabinofuranoside (Sigma-Aldrich Kft.), in order to prevent
glia proliferation and migration [69]. LPS (E. coli 055:B5, Sigma-Aldrich Kft.) and LTA (Staphylococcus
aureus, Sigma-Aldrich Kft.) were used in the same concentrations (1 µg/mL) in all experiments. Mono-
and co-cultured SH-SY5Y cells were treated with LPS or LTA separately. Cell cultures were treated for
6 h, 24 h, and 48 h to reveal the early and late changes in mRNA expressions. Untreated cells were
used as controls.

4.2. Real-Time PCR

SH-SY5Y cells in the monoculture were harvested after washing with PBS Sigma-Aldrich Kft.).
Total RNA was isolated from each sample using Quick RNA mini kit (Zymo Research, Irvine, CA,
USA). Complementary DNA was synthesized from 200 ng total RNA using a high-capacity cDNA
reverse transcription kit (Thermo Fisher Scientific Inc.) according to the manufacturer’s protocol.
Determination of gene expressions was performed in a CFX96 Real-time System (Bio-Rad Inc. Hercules,
CA, USA) using iTaq™ Universal SYBR® Green Supermix (Bio-Rad Inc.) in a total reaction volume of
20 µL. Melting curves were generated after each quantitative PCR run to ensure that a single specific
product was amplified. Both target and reference genes were amplified with efficiencies near 100%.
Relative quantification was calculated by the ∆∆Ct (Livak) method using the Bio-Rad CFX Manager
3.1 software (Bio-Rad Inc.). The expression level of the gene of interest was compared with the level of
β-actin in each sample. These relative expression rates were then compared between the treated and
untreated samples. Relative expression of controls was set to 1. Untreated cell controls were made at
each examined time point of the treatments, 6 h, 24 h, and 48 h, respectively. The mRNA expressions
of the treated cells were compared to the appropriate controls. Primers are described in Table 1.

Table 1. Real-time PCR gene primer list.

Primer Sequence 5′ → 3′

DMT-1 forward GTGGTTACTGGGCTGCATCT
DMT-1 reverse CCCACAGAGGAATTCTTCCT
TfR1 forward CATGTGGAGATGAAACTTGC
TfR1 reverse TCCCATAGCAGATACTTCCA
FTH forward GAGGTGGCCGAATCTTCCTTC
FTH reverse TCAGTGGCCAGTTTGTGCAG

FTMT forward AAGGTGACCCCCATTTGTGC
FTMT reverse GGGGCCCCCATCTTCACTAA
β-actin forward AGAAAATCTGGCACCACACC
β-actin reverse GGGGTGTTGAAGGTCTCAAA
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4.3. Western Blotting

SH-SY5Y cells in the monoculture were harvested after washing with phosphate buffer saline
(PBS) (Sigma-Aldrich Kft.). The co-cultured SH-SY5Y cells were separated from BV-2 cells by removing
the coverslips from the surface of BV-2 cells. The coverslips were washed with PBS (Sigma-Aldrich
Kft.) and the cells were collected by trypsinization. Pelleted cells were lysed with 130 µL of M-PER
Mammalian Protein Extraction Reagent (Thermo Fisher Scientific Inc.) supplemented with complete
mini protease inhibitor cocktail (Roche Ltd., Basel, Switzerland). Protein contents of the samples were
measured with DC Protein Assay Kit (Bio-Rad Inc.). The same amount of protein (15 µg) from each
sample was separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)
using a 12% or 14% polyacrylamide gel and transferred by electroblotting to nitrocellulose membranes.
The membranes were probed with the following polyclonal rabbit antibodies according to the
manufacturers’ protocol: anti-DMT-1 Immunoglobulin G (IgG) (1:1000; Novus Biologicals, Bio-Techne
Corporation, Cambridge, UK), anti-TfR1 IgG (1:1000; Thermo Fisher Scientific Inc.), anti-FTMT IgG
(1:1000; Thermo Fisher Scientific Inc.), anti-FTH IgG (1:1000; Cell Signaling Technology Europe, Leiden,
The Netherlands), and antiphosphorylated signal transducer and activator of transcription 3 (p-STAT3)
IgG (1:2000; Cell Signaling Technology Europe). β-actin (1:2000; Sigma-Aldrich Kft.) was used as
loading control.

4.4. Enzyme-Linked Immunosorbent Assay (ELISA) Measurements

After each treatment, culture media of treated and control cells were collected and stored at
−80 ◦C until the measurements. The mature hepcidin content of each sample was determined with
Hepcidin 25 bioactive ELISA Kit (DRG Diagnostics GmbH, Marburg, Germany) according to the
manufacturer’s protocol. Secreted IL-6 and TNFα concentrations of the culture media of SH-SY5Y
monocultures and co-cultures were determined with human and mouse IL-6 and human and mouse
TNFα ELISA Kits (Thermo Fisher Scientific Inc.), respectively, according to the instructions of the
manufacturer. The hepcidin and cytokine contents of the control media did not change during the
experiments therefore only one control was represented in the figures.

4.5. Determination of the Total Iron Content of Cultured Cells

Determination of the iron concentration was performed using a colorimetric ferrozine-based assay
described by Riemer et al. [70]. Briefly the cells were collected and lysed with 50 mM NaOH at room
temperature for 2 h. After the incubation the samples were mixed with iron releasing reagent (1.4 M
HCl, 4.5% (wt/vol) KMnO4 in H2O) and were incubated for 2 h at 60 ◦C then iron detection reagent
(6.5 mM ferrozine; 6.5 mM neocuproine; 2.5 M ammonium acetate; 1 M ascorbic acid) was added
to each tube and incubated at RT for 30 min. The absorbance was measured at 492 nm on EnSpire
Multimode plate reader (PerkinElmer, Rodgau, Germany). The concentration was determined by a
standard curve using FeCl3 (0–300 µM) treated the same way as the samples. Protein concentration was
measured from each sample with DC Protein Assay Kit (Bio-Rad Inc.). Iron content was normalized
against the protein content and was expressed as µM iron/mg protein. Iron contents of the untreated
control cells were measured the same way and at the same time points of the experiments (6 h, 24 h,
and 48 h).

4.6. Statistical Analysis

The data presented are representative of at least three independent experiments. For all data,
n corresponds to the number of independent experiments. Statistical analysis was performed using
SPSS software (IBM Corporation, Armonk, NY, USA). Statistical significance was determined using
Student’s t-test to compare the two treated groups and to compare controls to treated groups. We used
Bonferroni correction to adjust probability (p)-values because of the increased risk of a type I error
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when making multiple statistical tests. Values were expressed as mean ± standard errors of the mean
(SEM). Statistical significance was set at p-value < 0.01.

Supplementary Materials: Figure S1: Optical densities of the western blot analyses of DMT-1 (A,B), TfR1 (C,D),
FTH (E,F), and FTMT (G,H) of mono- and co-cultured SH-SY5Y cells. The analyses were made using ImageJ
software (https://imagej.nih.gov/ij/), the optical density of the examined proteins was expressed as percentage
of target protein/β-actin abundance. Asterisk marks p < 0.01 compared to untreated controls. Figure S2: Optical
densities of the Western blot analyses of p-STAT3 of mono- (A) and co-cultured (B) SH-SY5Y cells. The analyses
were made using ImageJ software (https://imagej.nih.gov/ij/); the optical density of p-STAT3 was expressed as
percentage of target protein/β-actin abundance. Asterisk marks p < 0.01 compared to untreated controls.
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