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Abstract: The growing prevalence of metabolic syndrome (MetS) in the U.S. and even worldwide
is becoming a serious health problem and economic burden. MetS has become a crucial risk
factor for the development of type 2 diabetes mellitus (T2D) and cardiovascular diseases (CVD).
The rising rates of CVD and diabetes, which are the two leading causes of death, simultaneously
exist. To prevent the progression of MetS to diabetes and CVD, we have to understand how MetS
occurs and how it progresses. Too many causative factors interact with each other, making the
investigation and treatment of metabolic syndrome a very complex issue. Recently, a number of
studies were conducted to investigate mechanisms and interventions of MetS, from different aspects.
In this review, the proposed and demonstrated mechanisms of MetS pathogenesis are discussed and
summarized. More importantly, different interventions are discussed, so that health practitioners can
have a better understanding of the most recent research progress and have available references for
their daily practice.
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1. Introduction

Metabolic syndrome (MetS), is a complex of metabolic abnormalities, which serves as a risk factor for
type 2 diabetes mellitus (T2D) and cardiovascular diseases (CVD). The main characteristic components
include hyperglycemia, raised blood pressure, elevated triglyceride levels, low HDL-cholesterol levels,
and obesity (particularly central adiposity). Since 1988, when Reaven first described it as “Syndrome
X” [1], the definition and diagnostic criteria have been proposed and modified several times by
different public health organizations. This definition will continue to develop as our ability to predict
the metabolic consequences, in regard to diabetes and cardiovascular disease also develops [2]. In the
development of the definitions, the debate has been focused on whether obesity or insulin resistance
is the unifying feature and underlying cause for MetS. Indeed, MetS has been renamed “Insulin
Resistance Syndrome” by the European Group for Study of Insulin Resistance (EGIR) in 1999 and
American Association of Clinical Endocrinologists (AACE) in 2003. Obesity and insulin resistance are
further discussed in the next section of this review.

Recently, the criteria published by American Heart Association/National Heart, Lung and
Blood Institute (AHA/NHLBI) (slightly revised from National Cholesterol Education Program, Adult
Treatment Panel III NCEP-ATP III) and International Diabetes Federation (IDF) have been widely used
in the U.S. and worldwide [2]. The historical definitions and criteria for diagnosis are summarized
and organized in Table 1. In 2005, IDF dropped the World Health Organization (WHO) requirement
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for insulin resistance, and requires obesity be prerequisite to diagnose MetS, whereas AHA did not
mandate abdominal obesity as a required risk factor [3]. Dr. Reaven has criticized IDF for its emphasis
on obesity rather than insulin resistance, and considers insulin resistance as more likely to contribute
to MetS [4]. In 2009, IDF and AHA/NHLBI representatives held discussions and finally agreed on a
definition of MetS. Abdominal obesity would not be an obligatory component, but waist circumference
would continue to be a useful screening tool. The presence of any three out of five abnormal findings
diagnoses a person with MetS. As for the waist circumference thresholds for abdominal obesity,
different organizations still hold relatively different standards [3], as shown in Table 1. Regardless,
the risk associated with a waist circumference will differ in different populations with gender and
ethnicity. Further studies are needed/encouraged to explore the relation of waist circumference
thresholds to metabolic risk and cardiovascular outcomes in different populations [3].

The prevalence of MetS keeps growing with the rising rates of obesity worldwide, no matter
what diagnostic criteria is being used. According to the Centers for Disease Control and Prevention
(CDC), from 2011 to 2014, over one-third of adults and around 17% in youth in the United States
were obese [5]. Based on WHO data, worldwide obesity has nearly tripled since 1975 [6]. In line with
obesity trends, around 34% of adults have MetS [7,8]. Metabolic syndrome is a crucial contributor
to type 2 diabetes and cardiovascular disease. In co-occurrence, the prevalence of CVD and T2D is
also increasing. Heart disease and diabetes still take the 1st and 7th place of the leading causes of
death in the U.S. based on CDC data for 2015 [9]. Thus, it is important to undercover the mechanisms,
and develop effective intervention strategies accordingly, so as to control the prevalence of MetS and
prevent development into diabetes and CVD.

2. Etiology of MetS

Although research has been carried out in recent decades on MetS, the exact underlying
etiology is still not completely understood. Many contributing factors and mechanisms have been
proposed, including insulin resistance, adipose tissue dysfunction, chronic inflammation, oxidative
stress, circadian disruption, microbiota, genetic factors, and maternal programming, etc. The major
contributors are discussed in the following paragraphs.

2.1. Insulin Resistance

MetS is also widely known as insulin resistance syndrome [10,11] due to the causative role insulin
resistance plays in the syndrome [12,13]. Even the group European Group for the Study of Insulin
Resistance (EGIR) and American Association of Clinical Endocrinologists (AACE) used the term
insulin resistance syndrome rather than metabolic syndrome. Because insulin resistance is difficult
to evaluate directly, especially in a clinical setting, some types of evidence were accepted, including
impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and type 2 diabetes mellitus. Some
other factors were also served as diagnostic criteria, such as blood pressure, obesity, and disordered
lipid profile (Table 1).
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Table 1. Development of clinical criteria of metabolic syndrome by different health organizations.

Evaluation Content WHO 1998 EGIR 19 99 NCEPATPIII 2001 AACE 2003 NCEP ATPIII 2005 AHA/NHLBI 2005 IDF 2005 IDF/NHLBI 2009

Criteria

IGT, IFG, T2D, or
reduced insulin

sensitivity plus any
two of the following

Plasma insulin >
75 percentile plus

any two of the
following

Any three of the
following

IGT or IFG plus any
of the following

Any three of the
following

Any three of the
following

Increased WC plus
any two of the

following

Three out of five of
the following

Obesity

Men: WHR > 0.9;
Women: WHR >

0.85 and/or BMI >
30 kg/m2

WC ≥ 94 cm in
men or ≥ 80 cm in

women

WC ≥ 102 cm in
men or ≥ 88 cm in

women
BMI > 25 kg/m2

WC ≥ 102 cm in
men or ≥ 88 cm in

women

WC ≥ 102 cm in
men or ≥ 88 cm in

women

population-specific
increased WC

cutoffs

population-and
country-specific

WC cutoffs

Glucose IGT, IGF, or T2D IGT or IFG ≥110 mg/dL
(including T2D) IGT or IFG ≥100 mg/dL

(including T2D)

≥100 mg/dL or on
drug treatment for
elevated glucose

≥100 mg/dL
(including T2D) ≥100 mg/dL

Triglycerides (TG) TG ≥ 150 mg/dL TG ≥ 150 mg/dL TG ≥ 150 mg/dL TG ≥ 150 mg/dL
TG ≥ 150 mg/dL or

on therapy
lowering TG

TG ≥ 150 mg/dL or
on drug treatment

for elevated
triglycerides

TG ≥ 150 mg/dL or
on therapy

lowering TG
TG ≥ 150 mg/dL

High density
lipoprotein

(HDL)-cholesterol
(HDL-C)

HDL-C <
40 mg/dLin men or
HDL-C < 50 mg/dL

in women

HDL-C <
39 mg/dL in men

or women

HDL-C < 40 mg/dL
in men or HDL-C <

50 mg/dL in
women

HDL-C < 40 mg/dL
in men or HDL-C <

50 mg/dL in
women

HDL-C <40 mg/dL
in men or HDL-C <

50 mg/dL in
women on therapy
increasing HDL-C

HDL-C < 40 mg/dL
in men or HDL-C <

50 mg/dL in
women or on drug

treatment for
reduced HDL-C

HDL-C < 40 mg/dL
in men or HDL-C <

50 mg/dL in
women on therapy
increasing HDL-C

HDL-C< 40 mg/dL
in men or HDL-C <

50 mg/dL in
women

Blood pressure ≥140/90 mmHg

≥140/90 mmHg
or on

antihypertensive
therapy

≥130/85 mmHg ≥130/85 mmHg
≥130/85 mmHg or
on antihypertensive

therapy

≥130/85 mmHg or
on antihypertensive

therapy

≥130/85 mmHg or
on antihypertensive

therapy

≥130/85 mmHg or
on antihypertensive

therapy

IGT, impaired glucose tolerance, IFG, impaired fasting glucose, TG, triglycerides, T2D, type 2 diabetes, WC, waist circumference, WHR, waist/jip ratio. WHO, World Health Organization.
EGIR, European Group for the study of Insulin Resistance rename “insulin resistance syndrome”. NCEP ATPIII, National Cholesterol Education Program, Adult Treatment Panel III,
“Metabolic Syndrome” reassigned. AACE, American Association of Clinical Endocrinologists, “Insulin Resistance Syndrome”. IDF, International Diabetes Federation. AHA/NHLBI,
American Heart Association/National Heart, Lung and Blood Institute.
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In order to understand insulin resistance, it is important to understand the basis of insulin action
and its signaling cascades. In a normal situation, an increase in blood glucose upon feeding stimulates
insulin release from pancreatic β cells. Insulin, together with glucose, stimulates glucose uptake from
circulation into cells for glycolysis or is stored as glycogen in the liver, muscle, or adipose. This results
in the suppression of hepatic gluconeogenesis. All these physiological processes work together to
bring down the blood glucose to the normal basal level range. GLUT4 is one of the most important
glucose transporters, mainly expressed in muscle and adipose tissue. Under the stimulation of insulin,
GLUT4 is mobilized from the cytosol to the cell membrane to transport glucose from outside of the
cell to inside. This is the rate-limiting step in glucose uptake and muscle glycogen synthesis [14,15].
Insulin not only regulates glucose metabolism, but also modulates lipid metabolism. Lipogenesis is
enhanced in response to insulin, while lipolysis is inhibited.

In an abnormal, or insulin-resistant state, there is a loss of initial insulin secretion (first phase) in
response to a glucose load, resulting in postprandial hyperglycemia. Subsequently, an exaggerated
second-phase insulin response causes chronic hyperinsulinemia. Insulin-responsive tissues cannot
sensitize or respond to insulin efficiently. Insulin-mediated glucose uptake, glycolysis, and glycogen
synthesis are all impaired. Over time, insulin resistance worsens and pancreatic β-cells gradually
become stressed, fatigued and apoptotic, until they completely lose their function [16,17]. Without
insulin, hyperglycemia persists. Thus, the late-stage type 2 diabetic patients are similar to type 1
diabetic patients, who solely rely on external insulin injection to bring down blood glucose to a
relatively normal level. As the disease progresses, even insulin injection may not help with blood
glucose control, due to severe insulin resistance in the late stage. Other intervention strategies need to
be developed to improve insulin sensitivity or β-cell function, such as diet and physical activity.

2.2. Pancreatic β-Cell Dysfunction

The β-cell function (BCF) is closely related with MetS. A study of the Cleveland clinic suggested
that β-cell dysfunction (estimated using the disposition index—DI) is highly correlated with the
severity of MetS (estimated using z-score) independent of sex, body fat, blood lipids, blood pressure,
insulin resistance, and glucose metabolism [18]. Therefore, improving BCF can be an important strategy
to ameliorate MetS. It is suggested that increased cardiorespiratory fitness (CRF) is positively associated
with enhanced BCF in individuals with MetS, independent of body fat%, and other confounding
factors [19]. The researchers recommended that “Equal, if not more attention should be dedicated to
CRF improvement relative to fat-loss for favorable pancreatic BCF and thus a possible reduction in
CVD risk in individuals with MetS” [19].

In recent years, as weight-loss strategies have been evaluated, CRF has attracted more attention.
A meta-analysis of fitness (CRF) and fatness (BMI) on overall mortality showed that unfit individuals
(low CRF) had twice the risk of mortality compared to normal weight-fit individuals, regardless of
BMI. It is suggested that fitness-based interventions rather than weight-loss driven strategies reduce
mortality risk overall [20]. It has been repeatedly shown that CRF is a powerful prognostic factor in all
populations of coronary heart disease (CHD) and cardiovascular (CV) patients [21]. Higher levels of
CRF can be protective, and its improvement may yield better benefits [22]. Lean body mass is a better
indicator for longevity or mortality than BMI, therefore more attention needs to be given to lean mass
or CRF rather than body weight as a strategy for lowering the risk of MetS [23–25].

2.3. Cellular Dysfunction by Protein Kinases and Phosphatases

Normally, insulin can bind to the insulin receptor in the cell membrane, resulting in excitation
of insulin receptor tyrosine kinase. Subsequently, insulin receptor substrate-1 (IRS1) and -2 (IRS2),
are recruited and phosphorylated on the tyrosine sites to continue to phosphorylate the downstream
target signaling proteins, either phosphatidylinositide 3-kinases (PI3K) or a class of small GTPase
(RAS), which are two major pathways in insulin-mediated activities. PI3K→Akt pathway is the
major channel of the metabolic effects of insulin. Phosphorylated PI3K catalyzes the generation of
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phosphatidylinositol 3,4,5-trisphosphate (PIP3) from phosphatidylinositol 4,5-trisphosphate (PIP2),
resulting in phosphoinositide-dependent protein kinase (PDK1/PDK2) and Akt binding to PIP3 [26,27].
PDK1/PDK2 then phosphorylates Akt [2], which phosphorylates a number of downstream targets to
mediate the effect of insulin on enhancing GLUT4 translocation, glycogen synthesis, protein synthesis,
and lipogenesis, as well as inhibiting apoptosis and hepatic gluconeogenesis. Some of these metabolic
effects work through Akt phosphorylation of FOXO1. FOXO1 is required in the nucleus for the
transcription of some of the gluconeogenic and lipogenic genes. Upon phosphorylation by Akt, FOXO1
translocates from nucleus to cytosol, suppressing glucose production in the liver and promoting cell
survival in the heart [28]. Many of these phosphorylation events are used as indicators of insulin
sensitivity [13]. RAS→mitogen-activated protein kinase (MAPK) signaling pathway mainly mediates
the effect of insulin on mitogenesis and cell growth (Figure 1).

1 
 

 

Figure 1. The role of kinases in the insulin signaling cascades and its interaction with nutrients in control
of FOXO1-mediated physiological function. AA—amino acids; FFA—free fatty acids; HGP—hepatic
glucose production; Agt—angiotensinogen; Hmox-1—heme oxygenase-1; G6pc—glucose-
6-phosphatase catalytic subunit; Agrp—agouti-related peptide; pY—tyrosine phosphorylation;
pS/T—serine/threonine phosphorylation; OGT—O-GlcNAc transferase; HBP—hexosamine
biosynthetic pathway; PIP2—phosphatidylinositol-4,5-biphosphate; PIP3—phosphatidylinositol-
3,4,5-triphosphate; PTP1B—protein tyrosine phosphatase; PTEN—phosphatase and tensin
homolog; PDK—phosphoinositide-dependent protein kinase; PI3K—phosphatidylinositide 3-kinase;
PIKKs—PI3K-related kinase family; IR—insulin receptor.

Under insulin resistance, the phosphorylation signaling pathway becomes impaired, which
leads to decreased GLUT4 expression, or dysfunction of translocation, resulting in impaired glucose
transport, suppressed glycogen storage, and inhibited protein synthesis. GLUT4 activation by insulin
is also important during the glucose disposal, and p38 MAPK may be involved in this process [29].
Under insulin resistance state, both GLUT4 translocation and activation are affected [30]. Meanwhile,
deficits in insulin signaling pathway release FOXO1 back to the nucleus to promote the expression
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of gluconeogenic genes and a rise in very-low-density lipoprotein (VLDL) secretion [15,31]. The real
mechanism of insulin resistance is still not completely understood. However, many factors have been
shown to interact with each other, and contribute to insulin resistance. For example, hyperinsulinemia
results in serine/threonine phosphorylation of IRS (which promotes IRS degradation) and prevention
of tyrosine phosphorylation (which is the classic phosphorylation in insulin signaling pathways
involved in PI3K→Akt→FOXO1). Proinflammatory cytokines such as tumor necrosis factor α(TNFα)
and genetic defects (i.e., Akt) induce insulin resistance.

Insulin resistance locally in the key insulin-responsive tissues, such as adipose tissue, liver,
muscle, brain, immune cells and intestine cells, works alone or synergistically towards systemic insulin
resistance. Guo has reviewed the mechanism of insulin resistance in different tissues [13]. He has
found that central nervous system (CNS) insulin resistance is the main cause of obesity by regulating
appetite and food intake behavior; insulin resistance in adipose tissue results in hyperlipidemia and
inflammation; hepatic insulin resistance causes hyperglycemia; cardiac insulin resistance promotes
heart failure; pancreatic insulin resistance results in impaired β-cell regeneration; insulin resistance in
vascular endothelium promotes hypertension and disrupts glucose homeostasis; insulin resistance in
skeletal muscle shortens lifespan, and insulin resistance in bone impairs glucose homeostasis [13].

Insulin signaling is also governed by phosphatases. Phosphorylated tyrosine residues in IRS1 and
2 can be dephosphorylated by protein tyrosine phosphatase 1B (PTP1B) and T cell protein tyrosine
phosphatase (TCPTP) which results in termination of insulin signaling. Both of these have been
proposed to be potential therapeutic targets due to their inhibitory effect on insulin signaling [32]. In the
pancreas, FOXO1 promotes beta-cell differentiation and insulin secretion [33], probably contributing
to hyperinsulinemia in T2D. Phosphorylated FOXO1-S253 can be dephosphorylated by protein
phosphatase 2A (PP2A), MAPK phosphatase-3 (MKP3), or a nuclear phosphatase SCP4. Thus,
suppressing the activities of these protein phosphatases may enhance FOXO1-S253 phosphorylation,
suppression of FOXO1, and hepatic glucose production [34].

2.4. Suppression of IRS1 and IRS2 Gene Expression and Function

IRS1 and IRS2 have crucial roles in the insulin signaling cascade. Systemic deletion of both IRS1
and IRS2 causes embryonic lethality in mice [35]. Dysfunction of IRS1 and IRS2 in different tissues
contributes local, or even systemic insulin resistance, and pathogenesis of metabolic diseases [13].
For example, loss of IRS1 and IRS2 in the heart causes impaired insulin signaling and heart failure.
It has been suggested that chronic hyperinsulinemia activates p38 (p38α MAPK mitogen-activated
protein kinase) which can reduce IRS1 and IRS2 proteins by promoting their ubiquitination and/or
degradation, resulting in insulin resistance [36]. During insulin resistance in rodents and humans,
glucose uptake mediated by IRS1 was severely impaired whereas salt reabsorption in kidney proximal
tubule mediated by IRS2 was reserved. This explains how insulin resistance results in a state of salt
overload, leading to hypertension [37]. Research has found that APPL1 (adaptor protein containing
pleckstrin homology domain, phosphotyrosine binding (PTB) domain, and leucine zipper motif) serves
as a binding partner of IR and IRS proteins [38]. Its phosphorylation at Ser401, which is downregulated
in obesity, plays a key role in regulating the interaction of IR and IRS proteins, and thus insulin
signaling [38]. Adiponectin stimulates APPL1 Ser401 phosphorylation to promote insulin signaling.
Adiponectin, however, also stimulates skeletal muscle autophagy and antioxidant potential to reduce
insulin resistance during high fat-diet (HFD) feeding in mice [39].

Factors that interfere with either expression or phosphorylation of IRS1 and IRS2 may contribute
to insulin resistance. Direct evidence has shown that mammalian PTEN (phosphatase and tensin
homolog) is a dual-specificity protein phosphatase, dephosphorylating tyrosine-, serine- and
threonine-phosphorylated proteins. Also, it acts as a lipid phosphatase, removing the phosphate in the
D3 position of the inositol ring from PIP3. Similar to PTP1b, PTEN is also a protein tyrosine phosphatase
for IRS1, and the dephosphorylation of IRS1 results in impaired insulin signaling. On the other hand,
NEDD4 (neural precursor cell-expressed developmentally downregulated protein 4) ubiquitin ligase
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can work on PTEN resulting in its ubiquitination and degradation. Thus, as the antagonist of PTEN,
NEDD4 promotes IRS1 phosphorylation and therefore insulin signaling [40]. It has been suggested that
long-term high dose statins (e.g., rosuvastatin) can induce insulin resistance by upregulating PTEN in
skeletal muscle [41]. The high-molecular-mass complexes containing insulin receptor substrates also
involved in mediating and regulating insulin-like activities were summarized in a previous review [42].
Not only insulin-like growth factors (IGF)/insulin but also other cytokines/hormones contribute
to the formation of IRSs associated with other proteins (IRSAPs). IRSAPs can regulate IGF/insulin
signaling pathway by controlling IRS tyrosine phosphorylation and interaction with PI3K [43–45].
IRSAPs also play important roles in the modification of IRSs stability, intracellular localization, and
RNA metabolism and translation [42].

Both systemic IRS1 null mice and IRS2 null mice displayed insulin resistance, indicating both
are irreplaceable [46–48]. When IRS1 is phosphorylated on serine/threonine sites, IRS1 both tyrosine
phosphorylation and downstream insulin signaling would be hindered. High fat-diet (HFD) produces
insulin resistance in the hippocampus of mice by increasing serine-phosphorylated IRS1 (IRS1-pS616),
resulting in insulin resistance [49]. Hepatitis C virus NS5A promotes insulin resistance and increases
gluconeogenesis through IRS1 serine phosphorylation (Ser307) followed by decreased phosphorylation
of Akt-Thr308, FOXO1-Ser256, and GSK3β-Ser9—all downstream players of the insulin signaling
pathway [50].

Overexpression of IRS1 in endothelial cells restored angioblast differentiation and wound healing
in HF-induced diabetic mice with insulin resistance. Hence, endothelial IRS1 can serve as a potential
target to improve angiogenesis, and wound healing in patients with diabetes and obesity [51]. MEMO1
(mediator of ErbB2-driven cell motility 1), a new IRS1-interacting protein, was discovered to bind IRS1
and activate the downstream PI3K and Akt signaling pathway, leading to epithelial-mesenchymal
transition in mammary epithelial cells. Therefore, MEMO1 acts as an oncogene, and is a potential
therapeutic target for cancer treatment [43]. Meta-analysis of several human studies indicated that
IRS1 variants rs7578326 G-allele carriers and rs2943641 T-allele carriers had a lower risk of insulin
resistance, T2D, and MetS [52].

Several lines of new evidence showed that IRS1 is also a target of microRNAs. MiR-128a regulates
myogenesis by targeting IRS1/Akt insulin signaling [53]. MiR-145 also down-regulates IRS1 expression
and its downstream Akt/FOXO1 signaling, which suppresses hepatocellular carcinoma [54]. MiR-126
directly interacts with IRS1 to mediate the repression of IRS1 translation [55]. IRS1 downregulation
can be programmed in offspring of obese mice. A research group found that maternal diet-induced
obesity leads to offspring having increased levels of MiR-126 which targets IRS1 and adipose tissue
insulin resistance prior to the development of obesity, resulting in increased risk of T2D [55].

IRS2 is especially crucial in BCF and the hypothalamus. The β cell- and hypothalamus-specific
knockout of IRS2 in mice induced obesity and both leptin and insulin resistance [56]. Endothelial
cell-specific IRS2 knockout mice exhibited decreased pancreatic islet blood flow, causing impaired
glucose-induced insulin secretion. Thus, IRS2 in endothelial cells may serve as a novel therapeutic
target for restoring β-cell function, and ameliorating glucose intolerance in MetS [57].

Serine/threonine phosphorylation of IRS2 impairs normal IRS2 tyrosine phosphorylation
involved in insulin signaling. Angiotensin II and protein kinase C can phosphorylate IRS2 on
Ser303 and Ser675 sites to inhibit insulin-induced IRS2-Tyr911 phosphorylation in endothelial cells,
hindering its anti-atherogenic actions (pAkt/endothelial nitric oxide) [58]. It has been demonstrated
that IRS2-Ser1137/1138 are novel cAMP-dependent phosphorylation sites, which allows IRS2 to bind
to 14-3-3 proteins for degradation [59]. Important in the insulin signaling pathway, IRS2 was identified
as a likely driver oncogene which activates the oncogenic PI3 kinase pathway and increases cell
adhesion, both characteristics of invasive colorectal cancer cells [60].
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2.5. Obesity and Lipid Toxicity

Obesity is closely related to a variety of chronic diseases, such as CVD, T2D, NAFLD, and
cancer. Overnutrition and physical inactivity together contribute to energy imbalance, in which
energy intakes overpass energy expenditures, resulting in fat storage in obese individuals. High,
non-esterified fatty acids (NEFA) are almost always observed. These have been shown to be an
important contributor to insulin resistance and inflammation. Saturated fatty acids, such as palmitate,
reduces IRS1, 2 tyrosine phosphorylation, promotes FOXO1 activity, and induces serine/threonine
phosphorylation by activation of intracellular protein kinases, such as protein kinase C (PKC) and
c-Jun N-terminal kinase (JNK) [61].

Adipose can secrete some adipokines that can communicate with other different tissues, including
the brain, immune cells etc. For example, leptin is secreted by adipocytes, and signals the brain for
satiety. Normally, as fat cells expand, more leptin is secreted to the brain to signal the termination
of eating behavior. However, leptin resistance can happen in obese individuals, similar to insulin
resistance. In these individuals, even high levels of leptin cannot create satiety [62]. Leptin may also
regulate glucose homeostasis, pancreases β cells, and insulin-sensitive tissues [63,64].

With the growth of adipose tissue during obesity development, angiotensinogen (Agt), a precursor
of angiotensin II that enhances the sympathetic nervous system and blood pressure, is drastically
overexpressed [65,66]. Agt is suggested to be a FOXO1-target gene in the liver [67]. Thus, failure of
insulin-suppressed FOXO1 may promote AngII production that increases SNS and blood pressure.

2.6. Oxidative Stress and Glucose Toxicity

Oxidative stress, defined as an imbalance in the production and degradation of ROS, is closely
associated with MetS, leading to carcinogenesis, obesity, diabetes, and CVD [68]. Increased low density
lipoprotein (LDL), and decreased high density lipoprotein (HDL) levels are frequently observed in
an environment of oxidative stress. Respiratory circuit occurs in the Mitochondria and uses reducing
equivalents generated from the tricarboxylic acid cycle (TCA) cycle and oxygen to produce adenosine
triphosphate (ATP), and water through the electron transport chain (ETC). It is estimated that up to
2% oxygen consumed can be diverted to the production of reactive oxygen species (ROS) formation
by mitochondria [69], which can be utilized and balanced out by the anti-oxidative system in a
normal state. A high-energy diet could increase the metabolic load of the mitochondria resulting in
an overactive ETC that can form excessive ROS as the by-product. ROS contributes to mitochondrial
damage affecting normal cellular signaling and metabolic processes. TNFα and free fatty acids (FFA)
can also be linked with oxidative stress and inflammation. Obesity in animal models, both diet-induced
and genetic, has shown overexpression of NOX (NADPH oxidase) subunits which positively correlates
with increased oxidative stress in MetS. Some evidence has shown that abnormal generation of ROS
can induce adipogenesis via pre-adipocytes proliferation and differentiation and therefore contributes
to the development of obesity and MetS. ROS serves not only as the trigger, but also the outcome
of obesity. Available evidence shows that obesity can cause systemic oxidative stress through NOX
activation, endoplasmic reticulum (ER) stress in adipocytes, and excessive ROS production subsequent
to high-fat high-carbohydrate diet and suppressed anti-oxidative system [70,71]. Oxidative stress in
metabolic disorder leads to diabetes and CVD. The elevated levels of glucose can cause mitochondrial
dysfunction, such as an increase in ROS production and insulin resistance. ROS also induces beta-cell
dysfunction, defective proliferation, and growth.

Glucose flux through the hexosamine biosynthetic pathway (HBP) causes the post-translational
modification of cytoplasmic and nuclear proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc),
which serves as a nutrient sensor for control of insulin signaling in cells. For example, glucose and
OGT-mediated glycosylation of Akt at Thr-308 can prevent the Akt-Thr308 phosphorylation by insulin
signaling. This also provides a mechanism by which hyperglycemia can induce insulin resistance at the
molecular level [72]. Therefore, therapeutic strategies to overcome glucose toxicity and stress-induced
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metabolic abnormalities can be feasible by control of HBP. Exercise can also improve the antioxidant
system of the body, which helps manage the oxidative stress by scavenging harmful free radicals [68].

Hyperglycemia, hyperinsulinemia, and hyperlipidemia coexist in patients with T2D. Indeed,
hyperglycemia can promote lipogenesis at least in the liver. O-GlcNAcylation, an important
glucose-dependent posttranslational modification, stabilizes carbohydrate responsive element binding
protein (ChREBP) and increases its transcriptional activity, thus promoting lipogenesis, through
upregulating lipogenic genes such as acetyl-CoA carboxylase and fatty acid synthase. OGT (O-GlcNAc
transferase) overexpression increased ChREBP in mouse liver, leading to fatty liver. However,
OGA (O-GlcNAcase) overexpression also reduced ChREBP and therefore decreased lipogenesis,
and improved lipid profile of OGA-treated db/db mice [73].

2.7. Chronic Inflammation

Chronic low-grade inflammation has been observed in obesity, T2D, CVD, and other MetS-related
chronic diseases. It is widely established that immune cells play an important role in this pathogenesis.
Metabolic disturbances activate the immune system and result in immune cells activation in tissues
such as the adipose, liver, pancreas, and vasculature. Systematically it increases plasma inflammatory
markers, such as TNFα, IL-6, IL-1b, etc. [74]. Among the immune cells, macrophages polarized
activation has drawn much attention in the last decades and seems to play a crucial role in local and
systemic chronic inflammation [75–77].

Adipose tissue macrophages have been studied increasingly in recent years and have been shown
to be a key contributor to adipose inflammation and systemic inflammation. Adipose is not only
for fat storage, but also a powerful autocrine and endocrine organ. Under some conditions, such as
fat accumulation, fat cells secrete not only adipokines but also cytokines, such as TNFα and MCP1,
etc. These signals attract monocytes in circulation and recruit them to local adipose tissue. Here the
monocytes differentiate to macrophages, infiltrating adipose tissue, particularly the surrounding fat
cells, forming a crown-like structure [78]. Different macrophage subpopulations may exhibit a scale of
different properties such as a two polar of function: pro-inflammatory or anti-inflammatory. Upon
classically pro-inflammatory activation (called M1), usually by LPS, TNFα, macrophages can produce
more pro-inflammatory cytokines to exacerbate inflammation. When macrophages are alternatively
activated (called M2), usually by IL-4, they produce anti-inflammatory cytokines such as IL-10 which
ameliorate inflammation and assists in tissue repair. TNFα decreases insulin sensitivity. Nuclear
factor kappa-light-chain-enhancer of activated B cells (NFκB) and JNK phosphorylation are the main
pathways involved in inflammatory responses, so they are widely used as indicators of inflammation.
Evidence has demonstrated that local adipose inflammatory responses contribute to local insulin
resistance, and further contribute to systemic inflammation and insulin resistance. Many studies have
been conducted in an effort to find the modulator/regulator of macrophage activation in attempts to
control the macrophage activation pattern. It is believed this is either by M1 or M2. By switching M1
to M2, inflammation can be reversed and insulin resistance can be ameliorated [78]. T cells have also
been shown to play a similar role in inflammation.

We previously found that heme oxygenase-1 (Hmox1 or HO-1) is a target of FOXO1 in the liver
impairing mitochondrial biogenesis and function [79]. Hmox-1 is highly expressed in the cell in
response to oxidative stress. It is an enzyme that catalyzes the degradation of heme that produces
biliverdin, ferrous iron, and carbon monoxide. Heme is an essential component for mitochondrial
electron transport chain. There is evidence that levels of heme oxygenase are positive predictors
of metabolic disease, insulin resistance, and metaflammation. This is supported by a recent study
demonstrating that HO-1 is one of the strongest positive predictors of metabolic disease in both mice
and humans. Conditional HO-1 deletion in mice, either hepatocytes or macrophages, protects mice
from HFD-induced inflammation and insulin resistance. The reduced meta-inflammation upon HO-1
deletion dramatically reduced metabolic disease, such as steatosis [80].
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Research in recent decades has uncovered the pivotal role of toll-like receptors (TLRs), especially
TLR2 and TLR4, in chronic inflammation, insulin resistance, and pathogenesis of obesity and MetS.
TLRs can serve as effective therapeutic targets to reverse diabetes and MetS [81]. The inflammatory
signaling cascades initiate activation of NFκB, JNK, and inflammasomes, and interfere with insulin
signaling. NFκB signaling in different tissues, such as adipose tissue, liver, hypothalamus, skeletal muscle,
endothelial cells, and macrophages, contributes to the development of obesity and related MetS [82].

Suppression of obesity-associated inflammation in different tissues, including adipose tissue,
liver, intestine etc. by different nutritional interventions can operate separately or synergistically to
ameliorate systemic insulin sensitivity and metabolic homeostasis [83]. Omega-3 (ω-3) fatty acids have
been proposed to serve as a dietary intervention for reducing obesity-associated inflammation and
insulin resistance [84,85]. However, some research results indicated that the anti-inflammatory benefits
of ω-3 fatty acids are not necessarily associated with a decrease in body weight or improvement of
insulin sensitivity [86,87]. As controversial results coexist, more research needs to be done to fully
investigate the benefits of ω-3 fatty acids in MetS prevention and intervention. A research group
has recently discovered ω-3 PUFA’s exciting potential to block the auto-immunity, restore β-cell
regeneration, and sharply reduce the incidence of T1D [88]. Whether the anti-inflammatory effect of
ω-3 PUFA can achieve such an improvement in T2D, remains to be investigated.

2.8. Circadian

Our body is under a 24-hour cycle which controls the rhythm of many physiological processes.
This clock is intrinsic and influenced by external cues, such as the sun, temperature etc. The driver
(core loop) consists of the positive elements circadian locomotor output cycles kaput (CLOCK) and aryl
hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1), and negative feedback elements
period (PER) and cryptochrome (CRY). Therefore, it is also important to understand when the
metabolic processes happen other than “what” and “how” they happen. For example, individuals
with insomnia tend to be more obese. Obese mice displayed disrupted circadian. Vice versa, circadian
disrupted mice gained more weight when fed with HFD. When circadian was disrupted, macrophage
inflammatory responses exacerbated resulting in more severe insulin resistance in mice fed with
HFD [78]. The concept of chronobiological-based therapies was brought up to reset the circadian
rhythm among obese individuals [89].

The CLOCK transcriptional factor is a vital component of circadian clock. The homozygous clock
mutant mice developed a metabolic syndrome of hyperglycemia hyperlipidemia and overweight,
suggesting circadian plays an important role in energy balance [90]. A recent study demonstrated
that insulin-Forkhead box class O3 (FOXO3) signaling pathway is required for circadian in the
liver through regulation of clock, indicating clock as a downstream target of FOXO3 [91]. Another
essential component of circadian clock is BMAL1, which is also involved in glucose homeostasis [92].
With knock down or disruption of BMAL1, gluconeogenesis was severely abolished and insulin resistance
occurred [92,93]. Disruption of circadian clock alters the metabolic homeostasis, which can result in
metabolic syndrome [94–96].

On the other hand, circadian clock can be reprogrammed by nutritional challenge and diseases.
High fat diet caused the impaired CLOCK:BMAL1 chromatin recruitment and altered the clock
synchronization to light [97–99]. In streptozotocin (STZ)-induced diabetic rats, the clock in heart lost
normal synchronization with the environment [100]. Taken together circadian clock and metabolic
syndrome are closely linked. In the future, new therapeutic methods for obesity and type 2 diabetes
should take circadian clock into a consideration.

2.9. Genetics and Epigenetics

Gene structure and function can be influenced by the environment. In the Greenland Inuit
population, fatty acid desaturases (FADS1, 2, 3) are suspected to have been selection-driven by a diet
high in polyunsaturated fatty acides (PUFAs) during their environmental diet adaptation [101]. It is
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known that genetic factors, interacting with the environment, contribute to MetS. Detecting these
specific genes associated with the disease or modulating genes related to the environment can be
two strategies for gene therapy. As techniques of gene sequencing and editing keep developing, the
cost becomes more affordable, allowing more research and application in gene diagnosis, edit, and
therapy. In the meantime, gene-nutrition interaction (nutrigenomics) has attracted more attention and
has innovated the field of personalized nutrition. Women with the genotype of IRS1-rs2943641 TT
exhibit reduction of insulin resistance and T2D risk when circulating vitamin D-25(OH)D is higher.
The beneficial effect of high circulating 25(OH)D for carriers of the major allele (rs2943641 C) is not as
strong. Differential Vitamin D supplementation levels have the potential to be applied to people based
on their genotype, however more research is needed to confirm this theory [102].

As previously mentioned, IRS protein tyrosine and threonine/serein phosphorylation can
determine insulin sensitivity. Recently, research has shown that HFD can enhance acetylation of
a number of proteins, of which one is p300. This is a global transcriptional cofactor that enhances
FOXO1-mediated gene expression [103], acetylates IRS1, 2, and subsequently impairs IRS interaction
with insulin receptors, resulting in insulin resistance [104]. These results tell us that diets and nutrients
can modify proteins and regulate their functionality in control of metabolism in the cells and body.

2.10. Gut Microbiota

Gut microbial imbalance has been observed in obese people. According to Remley et al.
alterations in gut microbiota affect various epigenetic patterns of gene expression involved in metabolic
and inflammatory homeostasis [105]. HFD disrupts the structure of gut microbiota and causes
inflammation—an important contributor to HFD-induced MetS [106]. To investigate which exact
factor—fat content or other nutrients—in HFD drives adiposity compared to normal chow diet
(NCD), Benoit et al. compared 14 compositionally defined diets (CDD) with different fat content,
protein sources, and fiber source combinations. It has been suggested that HFD-induced obesity is
greatly promoted by its lack of soluble fiber (inulin). Inulin is an important ingredient that supports
microbiota-mediated intestinal tissue homeostasis, preventing inflammation and MetS [107]. A recent
pig study also proved that feeding inulin significantly limits the effects of HFD on the microbiota,
resulting in more diverse microbial populations, increased fatty acid oxidation, and suppressed fatty
acid synthesis [108].

Probiotic supplementation seems to be effective to improve and even prevent diet-induced
MetS phenotype. Three probiotic strain supplementations in HFD-fed mice all attenuated MetS,
and shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean mice on
normal chow diet [109]. In a human study with a small sample size, probiotic supplementation for
four weeks with the last week shifting diet to high-fat, high-energy (50% increase in energy intake)
can help prevent high-fat and overfeeding induced insulin resistance, compared to a group with
no probiotic supplementation [110]. Moreover, probiotic supplementation benefits hypertension
through improvement of lipid profiles, regulation of insulin sensitivity, and bioconversion of bioactive
isoflavones [111]. More double-blinded randomized trials with larger sample sizes are warranted,
as well as an examination of the different species of probiotics used.

2.11. Dietary Effects

Nutrition is a key environmental factor for metabolic syndrome. A study in healthy men suggested
that the initial event caused by overnutrition may be oxidative stress but not inflammatory or ER stress,
which in part, promotes carbonylation and inactivation of GLUT4, resulting in insulin resistance [112].
To limit calorie intake, some recommended avoiding high-fat or regular cheese but to take the
reduced-fat substitute. However, substitution of high-fat cheese by reduced-fat cheese will not improve
LDL cholesterol or MetS risk factors [113–115]. Changing only one part of the eating pattern without
controlling the rest will not have significant health results. Researchers recently designed a study using
a 4-day fasting mimicking diet (FMD) which constituted a low-calorie, low-protein, low-carbohydrate



Int. J. Mol. Sci. 2019, 20, 128 12 of 19

but high-fat diet. The goal was to cause changes similar to those caused by water-only fasting, while
considering the challenges and side effects associated with prolonged fasting. It is suggested that FMD
cycles promote β-cell regeneration, restore insulin secretion and glucose homeostasis in both type 1
and 2 diabetic mouse models, as well as in T1D patients. The underlying mechanism is likely related
to the fact that fasting conditions reduce PKA and mTOR activity, induce Sox2 and Ngn3 expression,
and increase insulin production in pancreatic islets [116].

Saturated or unsaturated fats can have different outcomes on insulin resistance and CVD
complications. Frank Hu’s team found that replacing 5% of energy intake from saturated fatty
acid with equivalent energy intake from PUFA, monounsaturated fatty acids (MUFA), or high-quality
carbohydrate (whole grains, but not refined starches or added sugars) can lower risk of CVD by
25%, 15%, and 9%, respectively [117]. Additionally, it has been found that polyunsaturated fats have
cardio-protective benefits from CVD and hypertension in humans [118].

The exact mechanisms underlining these beneficial effects of unsaturated fats are not completely
understood yet, but most likely they are related to their interference with inflammation. A recent study
suggested that dietary MUFA can impede adipose NLRP3 inflammasome-mediated IL-1β secretion,
and attenuate insulin resistance. Additionally adipose dysfunction is disrupted via the preservation
of AMP-activated protein kinase (AMPK) activity, even though these mice maintained diet-induced
obesity [119]. Branched chain amino acids (BCAAs) have also been reported as being beneficial for the
improvement of obesity and T2D. However, increased levels of BCAAs in circulation can also serve
as a marker for lack of insulin activity due to metabolic dysfunction. Thus BCAA levels do not serve
as reliable sources of evaluation [120]. The specific type of fibers may be needed to be clarified in the
future due to the protective effect found in consuming soluble fiber (inulin) in HFD. For example,
this effect is not seen when soluble fiber is replaced with insoluble fiber (cellulose) [107].

With the extended utilization of dietary supplements, people realize benefits for metabolic disease,
such as the polyphenols. Polyphenols can improve the disrupted glucose homeostasis in the insulin
resistance state and exert hypolipidemic effects [121–126]. However, overdose effects can be a very
serious issue. These have to be evaluated extensively, in order to give the public more specific
guidance. As previously discussed, this over-macro-nutrition has many detrimental effects for cells
and health. In addition, micronutrients also control multiple metabolic processes and enzymatic
activities, which is not discussed in this review. For example, selenium (Se), is an essential trace
element, and is recommended worldwide for supplementation to prevent Se-deficient pathological
conditions, including diabetes and insulin resistance. However, it is indicated that overdose of this
micronutrient also increases ROS and impairs hepatic insulin sensitivity [127].

3. Conclusions

MetS has a profound impact on the development of diabetes and CVD. Obesity can play a major
role in the development of other features in MetS. IRS proteins and associated signaling cascades can
play central roles in the control of nutrient metabolism and organ function. Restriction in food intake
and quality selection of nutritional components have huge impacts on insulin secretion and responses,
the cellular redox and inflammatory states, and bodily insulin sensitivity. Managing an appropriate
balance of energy requirement of cells and bodily inflammation will be crucial for insulin sensitivity
and control of MetS and disease development in the future.
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