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Abstract: Dityrosine is the product of oxidation that has been linked to a number of serious
pathological conditions. Evidence indicates that high amounts of dityrosine exist in oxidized milk
powders and some milk related foodstuffs, further reducing the nutritional value of oxidized proteins.
Therefore, we hypothesize that some receptors related to special diseases would be targets for
dityrosine. However, the mechanisms of the interaction of dityrosine with probable targets are still
unknown. In the present work, an inverse virtual screening approach was performed to screen
possible novel targets for dityrosine. Molecular docking studies were performed on a panel of
targets extracted from the potential drug target database (PDTD) to optimize and validate the
screening results. Firstly, two different conformations cis- and trans- were found for dityrosine
during minimization. Moreover, Tubulin (αT) (−11.0 kcal/mol) was identified as a target for
cis-dityrosine (CDT), targets including αT (−11.2 kcal/mol) and thyroid hormone receptor beta-1
(−10.7 kcal/mol) presented high binding affinities for trans-dityrosine (TDT). Furthermore, in order
to provide binding complexes with higher precision, the three docked systems were further refined
by performing thermo dynamic simulations. A series of techniques for searching for the most
stable binding pose and the calculation of binding free energy are elaborately provided in this work.
The major interactions between these targets and dityrosine were hydrophobic, electrostatic and
hydrogen bonding. The application of inverse virtual screening method may facilitate the prediction
of unknown targets for known ligands, and direct future experimental assays.
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1. Introduction

Proteins represent major targets for free radicals arising from oxygen reduction in vivo,
which would be generated as a result of normal cellular metabolism and external stimulus, including
environmental agents, such as metal ions and radiation. The relative oxidation reactions would modify
amino acid residues, altering the structure and function of proteins, and further forming protein
cross-links [1,2]. Moreover, the resulting changed proteins participate in damaging reactions and signal
induction as a new reaction entity [3].

During food processing and storage, oxidized protein products (OPPs), such as protein carbonyls,
methionine sulfoxide, and dityrosine, would be generated as a response to heat treatment, oxygen
and light exposure, further leading to a decrease of product quality, safety, and nutritional value [4,5].
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Studies have proven that OPPs have been tested in plasma and accumulated in diverse disorders,
such as diabetes mellitus, metabolic syndrome, atherosclerosis, coronary artery disease, and chronic
kidney disease [6–8]. Furthermore, OPPs also play an important role in a wide range of age-related
diseases, including Parkinson′s disease, senescence, and asthma [9–11]. The above studies indicate
that OPPs ingested from food systems could accumulate in cells, then have influence on human bodies,
leading to the occurrence of some diseases.

In particular, tyrosine as the most sensitive residue among the aromatic amino acid residues
is the potential target of oxidative modification. Moreover, an oxidized product 1, 3-dityrosine is
formed through protein dimerization. Dityrosine is a highly fluorescent compound that is resistant to
protease activity and acid hydrolysis [12]. Furthermore, dityrosine is a useful marker for assessing
oxidative damage to proteins [13,14], which can be generated during a normal physiological process
in specialized cases and also as a result of exposure to environmental agents (ultraviolet irradiation,
radicals, NO2, and lipid hydroperoxides). Dityrosine has been found in the elastic ligaments of
insects [15], the cell walls of Candida albicans and Saccharomyces cerevisiae [16,17], and the fertilization
envelope of the sea urchin egg Stronglycocentrotus purpuratus [18]. Additionally, dityrosine has been
detected in the hydrolysates of some structural proteins [19,20], insoluble proteins derived from
human cataractous lenses [21], elastin, collagen [22], and the storage form of thyroglobulin [23].
In addition, dityrosine is also linked to a number of serious pathological cases, such as brain tissues
from Parkinson′s disease [24], and aortic tissues of hyperglycaemic animals [25].

Up to now, although more than 245 articles have been focused on studying dityrosine, considerable
process has been made in dityrosine preparation, isolation, analysis, and the role for dityrosine
crosslinking of some diseases. Based on the previous publications, it is assumed that dityrosine may
result in potential damage to food nutrition and the human body, moreover, some related proteins
might be the targets for dityrosine. Therefore, in this paper, an in silico inverse virtual screening
approach was performed on dityrosine in an attempt to evaluate the possible interaction between
dityrosine and targets that have been recognized as participants in different diseases and find possible
binding conformations to direct experimental assays.

2. Results and Discussion

2.1. Inverse Virtual Screening

The inverse virtual screening was done by AutoDock Vina, which has been proven to be efficacious
in predicting the binding poses and energies, and particularly developed for parallel computing [26].
Therefore, in the present work, we chose this method for large inverse virtual screening studies.

2.1.1. For Cis-Dityrosine (CDT)

After inverse virtual screening, the scoring function results of the compounds are listed in
Tables S1–S17. The highest docking score (lower than −8.0 kcal/mol) in the group of binding proteins,
as shown in Table S1, is formed between CDT and intestinal fatty acid binding protein (IFABP),
with binding score of −9.1 kcal/mol.

In the class of nuclear receptors (Table S2), Lac Repressor (LacR) exhibits the best binding affinity
for CDT, possessing score of −9.1 kcal/mol, then, Peroxisome proliferator activated receptor delta,
Retinoic acid receptor RXR-alpha, Nuclear Vitamin D Receptor, Thyroid hormone receptor Alpha-1,
Hepatocyte nuclear factor 4-gamma, Cellular Retinoic-Acid-Binding Protein Type II, and Liver X
receptor alpha might interact with CDT, with binding scores of −8.7 kcal/mol, −8.4 kcal/mol,
−8.3 kcal/mol, −8.2 kcal/mol, −8.2 kcal/mol, −8.0 kcal/mol and −8.0 kcal/mol, respectively.

The targets involved in transport proteins (Table S3), receptors (Tables S4 and S12), Monoclonal
Antibodies (Table S5), Factor, Regulator and Hormones (Table S6), Structural Proteins (Table
S7), Signaling Proteins (Table S8), Ion Channels (Table S9), Lipid Binding Protein (Table S11),
other Enzymes (Table S13) with the best binding scores are Cytochrome C2 (−8.7 kcal/mol),



Int. J. Mol. Sci. 2019, 20, 115 3 of 19

Actin, alpha skeletal muscle (−8.9 kcal/mol), Immunoglobulin lambda Light Chain Dimer (Mcg)
(−8.9 kcal/mol), Gonadotropin alpha subunit (−8.6 kcal/mol), Tubulin alpha chain (−8.1 kcal/mol),
Ran-GPPNHP-RanBP1-RanGAP (−9.0 kcal/mol), Voltage-Gated Potassium Channel (−8.6 kcal/mol),
KES1 protein (−8.6 kcal/mol), and Aldehyde oxidoreductase (−9.9 kcal/mol), respectively.

Among the circadian clock-related proteins (Table S14), the targets CLK1, CLK2, CLK4 and CK
II alpha′ exhibit higher binding scores toward CDT, with values of −9.1 kcal/mol, −8.3 kcal/mol,
−8.0 kcal/mol, and −8.0 kcal/mol, respectively.

In addition, the good interaction in insulin receptor pathway proteins (Table S15) is formed
between PKA C-alpha and CDT, with value of −8.9 kcal/mol.

The serum proteins (Table S16) with the best docking scores are SL-2, ADAM-TS 1, ADAM-TS
5, ADORA2A, MMP-13, Topo1, ADAM 17 and AE 1, with binding scores of −8.6 kcal/mol,
−8.4 kcal/mol, −8.3 kcal/mol, −8.3 kcal/mol, −8.2 kcal/mol, −8.2 kcal/mol, −8.1 kcal/mol, and
−8.1 kcal/mol, respectively.

The other positive interactions are obtained in the breast cancer proteins, between CDT and
Beta-2 adrenoceptor, TOP2A, MMP−9, MMP-16, CHEK2, Stromelysin-1 and LAR, having binding
affinities of −9.8 kcal/mol, −9.3 kcal/mol, −8.7 kcal/mol, −8.6 kcal/mol, −8.4 kcal/mol, and
−8.2 kcal/mol, respectively.

2.1.2. For Trans-Dityrosine (TDT)

The results of inverse virtual screening for TDT are shown in Tables S18–S34. The AutoDock Vina
method gives the best performance in the group of binding proteins (Table S18), retrieving Streptavidin,
Intestinal Fatty Acid Binding Protein, Annexin III, Uteroglobin, with binding scores of −8.7 kcal/mol,
−8.5 kcal/mol, −8.1 kcal/mol, and −8.1 kcal/mol, respectively.

For the group of nuclear receptors (Table S19), thyroid hormone receptor beta-1 (TRβ1) exhibits
the best binding score for TDT, possessing binding affinity of −9.0 kcal/mol.

The targets of interest among transport proteins (Table S20), receptors (Tables S21 and S29),
Monoclonal Antibodies (Table S22), Factor, Regulator and Hormones (Table S23), Structural Proteins
(Table S24), Signaling Proteins (Table S25), Ion Channels (Table S26), Lipid Binding Protein (Table S28),
and other Enzymes (Table S30) are Transferrin, Metabotropic Glutamate Receptor 2, Immunoglobulin
lambda Light Chain Dimer (Mcg), Heat Shock 70 kDa protein 8, Myosin light chain kinase family,
Ran-GPPNHP-RanBP1-RanGAP, Voltage-Gated Potassium Channel, KES1 protein and Lanosterol
Synthase (LS), with values of −9.0 kcal/mol, −9.8 kcal/mol, −9.0 kcal/mol, −8.7 kcal/mol,
−9.4 kcal/mol, −9.2 kcal/mol, −8.5 kcal/mol, −9.1 kcal/mol, and −10.1 kcal/mol, respectively.

The performance of inverse virtual screening for circadian clock related proteins is given in
Table S31, among the ten receptors, CK II alpha′ (−8.7 kcal/mol), CLK1 (−8.5 kcal/mol), CLK2
(−8.2 kcal/mol), CLK4 (−8.1 kcal/mol) and CK II alpha (−8.0 kcal/mol) give the binding score lower
than −8.0 kcal/mol.

As shown in Table S32, eleven targets are favorable for binding insulin receptor pathway proteins
toward TDT, thereinto, the best docking affinity value is found for the complexes formed by TDT and
PKA C-alpha, with docking score of −9.7 kcal/mol.

Several targets, SL-2, Topo1, ADAM-TS 5, HLA-A, ADAM-TS 1, ADAM 22, MMP-13, HLA-B8,
ADAM 17, ADAM-TS 4, AE 1 and ADORA2A from serum proteins (Table S33) have shown excellent
docking scores, with values of −9.1 kcal/mol, −8.9 kcal/mol, −8.8 kcal/mol, −8.6 kcal/mol,
−8.6 kcal/mol, −8.4 kcal/mol, −8.3 kcal/mol, −8.2 kcal/mol, −8.2 kcal/mol, −8.2 kcal/mol,
−8.1 kcal/mol, and −8.1 kcal/mol, respectively.

The breast cancer proteins (Table S34) with good docking affinities in silico toward TDT are
Beta-2 adrenoceptor, MMP-16, MMP−9, DNA topoisomerase II and CHEK2, with binding scores of
−9.5 kcal/mol, −9.1 kcal/mol, −8.8 kcal/mol, −8.5 kcal/mol and −8.2 kcal/mol, respectively.
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2.2. Refinement Docking

For further screening, a refinement docking procedure was carried out on dityrosine/targets
complexes with binding scores lower than −8.0 kcal/mol (the results obtained from inverse
virtual screening).

2.2.1. For CDT

After refinement docking, the scoring function results of the complexes with binding affinities
lower than −9.0 kcal/mol are shown in Table S35 and Figure 1. As expected, the ligand-target
complex with the highest docking score is αT-CDT, with an average of −11.0 ± 0.0 kcal/mol, which
belongs to the group of enzymes. In addition, Aldehyde oxidoreductase, Glutamate carboxypeptidase
II and Beta-2 adrenoceptor also display excellent binding scores for CDT, with docking scores of
−9.9 kcal/mol, −9.9 kcal/mol, and −9.8 kcal/mol, respectively.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  4 of 19 

 

2.2. Refinement Docking  

For further screening, a refinement docking procedure was carried out on dityrosine/targets 
complexes with binding scores lower than −8.0 kcal/mol (the results obtained from inverse virtual 
screening).  

2.2.1. For CDT 

After refinement docking, the scoring function results of the complexes with binding affinities 
lower than −9.0 kcal/mol are shown in Table S35 and Figure 1. As expected, the ligand-target complex 
with the highest docking score is αT-CDT, with an average of −11.0 ± 0.0 kcal/mol, which belongs to 
the group of enzymes. In addition, Aldehyde oxidoreductase, Glutamate carboxypeptidase II and 
Beta-2 adrenoceptor also display excellent binding scores for CDT, with docking scores of −9.9 
kcal/mol, −9.9 kcal/mol, and −9.8 kcal/mol, respectively.  

 
Figure 1. The network of CDT and the screened targets. 

2.2.2. For TDT 

Similar to CDT, αT also shows the highest binding affinity for TDT, with an average score of 
−11.2 ± 0.0 kcal/mol (Table S36 and Figure 2). Moreover, Leukotriene A4 hydrolase (LTA4H), TRβ1, 
LS and Aldose Reductase (AR), with docking affinity values of −10.2 ± 0.0, −10.0 ± 0.0, −10.1 ± 0.0, and 
−10.0 ± 0.0 kcal/mol, respectively, also show promising affinities for TDT. 

Considering the results of refinement docking, a conclusion would be drawn that both CDT and 
TDT can bind to the binding sites of targets derived from different groups of receptors. 

Figure 1. The network of CDT and the screened targets.

2.2.2. For TDT

Similar to CDT, αT also shows the highest binding affinity for TDT, with an average score of
−11.2 ± 0.0 kcal/mol (Table S36 and Figure 2). Moreover, Leukotriene A4 hydrolase (LTA4H), TRβ1,
LS and Aldose Reductase (AR), with docking affinity values of −10.2 ± 0.0, −10.0 ± 0.0, −10.1 ± 0.0,
and −10.0 ± 0.0 kcal/mol, respectively, also show promising affinities for TDT.

Considering the results of refinement docking, a conclusion would be drawn that both CDT and
TDT can bind to the binding sites of targets derived from different groups of receptors.
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2.3. Validation

To further validate the rationality of the docking procedure, and deeply screen the probable
dityrosine binding receptors, a process of validation was performed on complexes with binding affinity
lower than −9.0 kcal/mol, prior to docking analysis, a redocking process of the cocrystallized ligands
into related receptors was performed, and a docking score was obtained. Simultaneously, dityrosine
was docked into the related receptors, and the receptor would be preserved when dityrosine scored
better docking affinity than the co-crystallized ligands. Ideally, complexes depicting binding affinities
better than those generated for the crystal structures are likely to occur at a molecular level.

2.3.1. For CDT

After validation, the scoring function results of the eligible receptors are shown in Table S37.
Accordingly, binding proteins, enzymes, insulin receptor pathway proteins and breast cancer proteins
are involved in CDT binding. The best docking affinity values are found for the complexes formed
by CDT and αT (Enzymes), with binding score of −11.0 kcal/mol, which is lower than the complex
TXL-αT (−9.1 kcal/mol).

2.3.2. For TDT

The results of validation for TDT are listed in Table S38. Similar to CDT, the deeply screened
targets belong to the group of enzymes, insulin receptor pathway proteins and breast cancer proteins.
In addition, nuclear receptor (TRβ1) is also connected to TDT binding. Furthermore, the target
involved in enzymes with the best binding score is αT with a value of −11.2 kcal/mol, better than the
co-crystallized ligand (−9.1 kcal/mol).

The validation results suggest that CDT and TDT structures resulting from the docking procedure
possess different binding receptors, further illustrating that different conformations of dityrosine
would choose diverse targets, then showing different physiological effects.

2.4. RMSD (Root Mean Square Deviation)/RMSF (Root Mean Square Fluctuation) Analysis

Molecular dynamics (MD) simulations were performed on the three docked systems with the
purpose of collecting the more reliable binding conformations. The RMSD of the protein backbone
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atoms indicated that the proteins experienced little turbulence at the first 7.5 ns and stabilized during
7.5–60 ns (2.25 ± 0.15 Å for TRβ1, 2.43 ± 0.05 Å for αT bound with TDT, 2.62 ± 0.09 Å for αT bound
with CDT) along all the production phase (Figure 3). The RMSD of the TDT and CDT had lower
fluctuations compared to the proteins, and all stabilized during the last 15 ns in all systems. (Figure 3).
Interestingly, CDT in αT model fluctuated a lot compared to TDT in the other two systems, especially
the strong fluctuation of the NHCO2

− group (Figure 3C). The different binding poses other than the
docked one might be expected in the production phase simulation.
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Figure 3. The RMSD of protein backbone atoms and heavy atoms of ligands along the production phase
simulations. The RMSD of the protein backbone atoms and ligand atoms from TRβ1-TDT, αT-TDT
and αT-CDT system are shown per panel (A), (B) and (C). Different replicates were displayed by the
colour lines indicated in each legend box. The superposed proteins by tube were made by superposing
60 conformations (20 conformations per replicate) with 100 ps interval along the production phase.
The degree of the dispersion of the tubes indicated the protein dynamics along simulation time series
(‘red to blue′ represents ‘0 ns to 60 ns′). The ligands superposed with the same method were shown
nearby and draw by sticks.

The residue flexibility of the proteins was further checked by RMSF (Figure 4). The high
fluctuations were only found from the loops of TRβ1 (K211, average 2.78 Å, Q235 average 2.98 Å,
Q252-A258, average 3.32 Å) and αT (G34-Q35, average 2.56 Å, L248, average 2.87 Å, A281, average 2.94
Å). The residues involved in the binding of ligands resulted in smaller average fluctuations (0.42 Å
for TRβ1-TDT, 0.45 Å for αT-TDT, 0.49 Å for αT-CDT), suggesting the reasonable conformations
were obtained from the docking procedure. However, we observed higher residue fluctuations in the
ligand-contact residues of loopF270-Q279 (3.41 Å for αT-CDT, 2.82 Å for αT-TDT) in αT systems. Since
the loop F270-Q279 was located at the rim of the pocket, it might account for the fluctuation of CDT
because of the synergetic movements between the receptor and the ligand.
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Figure 4. The RMSF of protein backbone atoms in all production phase simulations. The RMSF of
backbone atoms in TRβ1-TDT, αT-TDT and αT-CDT system are shown per panel (A), (B) and (C).
The residues involved in close contact with ligands (residues within 4.5 Å around the ligands) were
marked underneath with blue boxes per panel.
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2.5. The Stable Binding Conformation Analysis

2.5.1. The Stable Binding Conformation of TRβ1-TDT

The pocket and TDT in TRβ1 has little movements, and small scale of movements were found
along principal component PC1 and 2 (Figure 5A). Interestingly, the pose with lowest local free energy
(0.38 kT, Figure 5B) were found at a state in which the TDT was located deeper in the centre of the
protein, and F272-I275 of Helix 5 moved up by 1.1 Å, and H6 (L341–G344) shifted outward by 1.2 Å
compared to the docked pose, suggesting that the system reached a most stable conformation by
enlarging the pocket for harbouring TDT and eliminated the bumps caused by the rigid docking
process. The binding free energy of TRβ1-CDT is −15.12 kcal/mol with Poisson−Boltzmann Surface
Area (PBSA) and −15.31 kcal/mol with Generalized Born Surface Area (GBSA), which was a little
higher than predicted with the docking result.
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PC. The movements towards positive direction of PC are in blue, and that of negative direction are in 
red. TDT are in sticks; blue and red sticks represent the minimum and maximum conformations 
observed by the PC vectors and surrounding residues are shown as cartoon. The docked pose is 
coloured in green. (B) The converted 3D surface of FEL with the same colour code as shown in panel 
A. (C) The collected state with lowest kinetic free energy. The protein is in white cartoon, TDT are 
shown by sticks, and the nearby residues are shown as white lines. The hydrogen bonds are indicated 
by yellow dashes. The collected conformation and the nearby 50 frames were used for calculating the 
binding free energy, which are displayed next to panel C. 

2.5.2. The Stable Binding Conformation of αT-TDT  

A large movement of β turn 31–32 (A270–V275) was found in the local PCA in the αT-TDT 
system. The β turn 31–32 can move inward/outward by 2.5 Å (Figure 6A), due to its exposure to the 
solvent and loose secondary structure. Interestingly, the TDT did not shift much accordingly (around 
1.12 Å). The pose with the lowest local free energy was found by the 3D Energy Surface (1.31 kT, 

Figure 5. The search for the lowest free energy poses in TRβ1-TDT MD system by local free energy
landscape (LFEL) and Molecular Mechanics MM/GB and PBSA calculations. (A) The 2D LFEL heat
map. Green star shows the docked conformation with the coordinate (0, 0), and is viewed as a reference
structure. The highest local free energy was defined as 10 kT, which can barely be sampled from all the
conformational space. The bottom left shows the areas for which Principal Component Analysis (PCA)
calculations were carried out. The docked pose is in green. The movements on the PC1 and 2 vectors
from the production phase simulations are shown as porcupine plots alongside with the axis. The scales
of arrows are proportional to the scale of movements observed along each PC. The movements towards
positive direction of PC are in blue, and that of negative direction are in red. TDT are in sticks; blue
and red sticks represent the minimum and maximum conformations observed by the PC vectors and
surrounding residues are shown as cartoon. The docked pose is coloured in green. (B) The converted
3D surface of FEL with the same colour code as shown in panel A. (C) The collected state with lowest
kinetic free energy. The protein is in white cartoon, TDT are shown by sticks, and the nearby residues are
shown as white lines. The hydrogen bonds are indicated by yellow dashes. The collected conformation
and the nearby 50 frames were used for calculating the binding free energy, which are displayed next
to panel C.

2.5.2. The Stable Binding Conformation of αT-TDT

A large movement of β turn 31–32 (A270–V275) was found in the local PCA in the αT-TDT system.
The β turn 31–32 can move inward/outward by 2.5 Å (Figure 6A), due to its exposure to the solvent
and loose secondary structure. Interestingly, the TDT did not shift much accordingly (around 1.12 Å).
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The pose with the lowest local free energy was found by the 3D Energy Surface (1.31 kT, Figure 6B).
The binding free energy of αT-TDT is −2.80 kcal/mol with PBSA and −3.60 kcal/mol with GBSA.
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With the swing movement (along PC1 axis) of β turn 31–32, the NHCO2− group can either detach 
(blue direction) or attach (red direction) to the β turn 31–32 (Figure 7A). The most stable binding 
conformation was found from the LFEL map (0.779 kT, Figure 8A and 8B) as the NHCO2− group 
interacts with β turn 31–32, and the binding pocket is more compact than the docked conformation 
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free energy of αT-CDT is −3.89 kcal/mol with PBSA and −4.26 kcal/mol with GBSA. 

Figure 6. The search for the lowest free energy poses in αT-TDT MD system by local free energy
landscape (LFEL) and MM/GB and PBSA calculations. (A) The 2D LFEL heat map. The green star
shows the docked conformation with the coordinate (0, 0), and is viewed as a reference structure.
The highest local free energy was defined as 10 kT, which can barely be sampled from all the
conformational space. The bottom left shows the areas for which PCA calculations were carried
out. The docked pose is in green. The movements on PC1 and 2 vectors from the production phase
simulations are shown as a porcupine plot alongside with the axis. The scales of arrows are proportional
to the scale of movements observed along each PC. The movements towards the positive direction of
PC are in blue, and that of negative direction are in red. TDT are in sticks; blue and red sticks represent
the minimum and maximum conformations observed by the PC vectors, and surrounding residues are
shown as cartoon. The docked pose is coloured in green. (B) The converted 3D surface of FEL with
the same colour code as shown in panel A. (C) The collected state with lowest kinetic free energy. The
protein is in white cartoon, TDT are shown by sticks, and the nearby residues are shown as white lines.
The hydrogen bonds are indicated by yellow dashes. The collected conformation and the nearby 50
frames were used for calculating the binding free energy, which are displayed nearby panel C.

2.5.3. The Stable Binding Conformation of αT-CDT

Large synergetic movements between CDT and β turn 31–32 are found by the PC1 and PC2.
With the swing movement (along PC1 axis) of β turn 31–32, the NHCO2

− group can either detach
(blue direction) or attach (red direction) to the β turn 31–32 (Figure 7A). The most stable binding
conformation was found from the LFEL map (0.779 kT, Figure 8A,B) as the NHCO2

− group interacts
with β turn 31–32, and the binding pocket is more compact than the docked conformation with two
more hydrogen bonds found between Q279:O-CDT:N1 and R359:O-CDT:O2. The binding free energy
of αT-CDT is −3.89 kcal/mol with PBSA and −4.26 kcal/mol with GBSA.
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Ile86. For complex αT/TXL, the model of possible interacting hydrogen bonds is depicted in Figure 
8B. The ligand TXL is hydrogen bonded with amino acid residues Thr276, Arg278 and Gly370, while 
compound CDT has hydrogen bond interaction with residues Gln8, Gly17, Trp21, Gln43, Glu47, 
Arg48 and Val62 (Figure 8D), accounting for the better docking score and probable elevated binding 
activity. Evidently, CDT and TXL are buried in different binding sites of the receptor αT (shown in 
Figure 8A) with different surrounding residues because the two compounds differ in structure and 
volume. In particular, the volume of ligand TXL is larger, thus it binds to a wider cavity. Conversely, 
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Figure 7. The search of lowest free energy poses in αT-CDT MD system by local free energy landscape
(LFEL) and MM/GB and PBSA calculations. (A) The 2D LFEL heat map. The green star shows the
docked conformation with the coordinate (0, 0), and is viewed as a reference structure. The highest
local free energy was defined as 10 kT, which can barely be sampled from all the conformational
space. The bottom left shows the areas for which PCA calculations carried out. The docked pose is in
green. The movements on PC1 and 2 vectors from the production phase simulations are shown as a
porcupine plot alongside with the axis. The scales of arrows are proportional to the scale of movements
observed along each PC. The movements towards the positive direction of PC are in blue, and that
of the negative direction are in red. CDT are in sticks; blue red sticks represent the minimum and
maximum conformations observed by the PC vectors and surrounding residues are shown as cartoon.
The docked pose is coloured in green. (B) The converted 3D surface of FEL with the same colour code
as shown in panel A. (C) The collected state with lowest kinetic free energy. The protein is in white
cartoon, CDT are shown by sticks, and the nearby residues are shown as white lines. The hydrogen
bonds are indicated by yellow dashes. The collected conformation and the nearby 50 frames were used
for calculating the binding free energy, which are displayed nearby panel C.

2.6. Conformational Analysis

After MD simulation, the complexes were further visually inspected for binding types and specific
interacting residue.

2.6.1. For CDT

The results from ligand-receptor interaction analyses (Table S39) reveal that the interactions
found in CDT/target complexes are mainly hydrophobic and electrostatic, as well as hydrogen
bond donor and hydrogen bond acceptor. As shown in Table S39 and Figure 3C, the highest-scored
receptor-αT has interactions with residues Gln8, Trp21, Ile24, Leu44, Glu47, Arg48, Val62, Phe83,
and Ile86. For complex αT/TXL, the model of possible interacting hydrogen bonds is depicted in
Figure 8B. The ligand TXL is hydrogen bonded with amino acid residues Thr276, Arg278 and Gly370,
while compound CDT has hydrogen bond interaction with residues Gln8, Gly17, Trp21, Gln43, Glu47,
Arg48 and Val62 (Figure 8D), accounting for the better docking score and probable elevated binding
activity. Evidently, CDT and TXL are buried in different binding sites of the receptor αT (shown in
Figure 8A) with different surrounding residues because the two compounds differ in structure and
volume. In particular, the volume of ligand TXL is larger, thus it binds to a wider cavity. Conversely,
CDT chooses to locate in a slender and narrowed cavity for enhanced activity. Therefore, the two
compounds might bind to different binding sites and possess different orientations, further suggesting
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that a second binding site might exist on the surface of the receptor αT, showing a diverse function
and physiological phenomenon.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  10 of 19 

 

suggesting that a second binding site might exist on the surface of the receptor αT, showing a diverse 
function and physiological phenomenon.  

 
Figure 8. (A) Superposition between the crystallographic structures of the complex 1UTB/TXL with 
the resultant docking pose of 1UTB/CDT. Crystallographic structure and docking structure are 
represented in blue and green, respectively. (B) The enlargement for ligand TXL in the binding site of 
1UTB, which is displayed as stick, hydrogen bonds are shown as dotted yellow lines, and the non-
polar hydrogens were removed for clarity. (C) The active site amino acid residues around CDT. (D) 
The enlargement for ligand CDT in the binding site of 1UTB, which is displayed as stick, hydrogen 
bonds are shown as dotted yellow lines, and the non-polar hydrogens were removed for clarity. 

2.6.2. For TDT 

As illustrated in Table S40, the TDT has hydrophobic, electrostatic hydrogen bonding 
interactions to the receptors with the highest docking scores, suggesting the importance of these 
interactions in TDT binding in screened targets. For instance, contact residues participating in the 
interaction between TDT and αT are principally Gln8, Gly17, Trp21, Ile24, Gln43, Leu44, Glu47, 
Arg48, Val62, Phe83 and Ile86 (Figure 9C). Compound TDT establishes hydrogen bond interactions 
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Val62), as shown in Figure 9B, illustrating that the two different configurations of dityrosine bind to 
the same active pocket. Nevertheless, TDT and TXL are not overlapped in the same pocket (Figure 
9A), which is similar to CDT, indicating an alternative strategy of binding. However, there are also 
some differences between CDT and TDT. It is evidenced that the group at Site 1 for CDT turns ~90° 
relative to that of TDT; in mechanistic terms, we think that the trans-conformation is more stable than 
the cis-conformation. However, the two different conformations might exist simultaneously in 
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microtubule dynamics, then resulting in cell cycle arrest and apoptosis [27]. In addition, evidence 
also indicates that misfolded αT monomers are highly toxic and would quickly degrade, leading to 

Figure 8. (A) Superposition between the crystallographic structures of the complex 1UTB/TXL with the
resultant docking pose of 1UTB/CDT. Crystallographic structure and docking structure are represented
in blue and green, respectively. (B) The enlargement for ligand TXL in the binding site of 1UTB, which
is displayed as stick, hydrogen bonds are shown as dotted yellow lines, and the non-polar hydrogens
were removed for clarity. (C) The active site amino acid residues around CDT. (D) The enlargement
for ligand CDT in the binding site of 1UTB, which is displayed as stick, hydrogen bonds are shown as
dotted yellow lines, and the non-polar hydrogens were removed for clarity.

2.6.2. For TDT

As illustrated in Table S40, the TDT has hydrophobic, electrostatic hydrogen bonding interactions
to the receptors with the highest docking scores, suggesting the importance of these interactions in
TDT binding in screened targets. For instance, contact residues participating in the interaction between
TDT and αT are principally Gln8, Gly17, Trp21, Ile24, Gln43, Leu44, Glu47, Arg48, Val62, Phe83 and
Ile86 (Figure 9C). Compound TDT establishes hydrogen bond interactions with the same residues
of the pocket occupied by CDT (Gln8, Gly17, Trp21, Gln43, Glu47, Arg48 and Val62), as shown in
Figure 9B, illustrating that the two different configurations of dityrosine bind to the same active pocket.
Nevertheless, TDT and TXL are not overlapped in the same pocket (Figure 9A), which is similar to
CDT, indicating an alternative strategy of binding. However, there are also some differences between
CDT and TDT. It is evidenced that the group at Site 1 for CDT turns ~90◦ relative to that of TDT;
in mechanistic terms, we think that the trans-conformation is more stable than the cis-conformation.
However, the two different conformations might exist simultaneously in nature, and transform each
other, displaying dissimilar functions.

Furthermore, αT is a popular target for numerous small ligands which would change microtubule
dynamics, then resulting in cell cycle arrest and apoptosis [27]. In addition, evidence also indicates
that misfolded αT monomers are highly toxic and would quickly degrade, leading to Parkinson′s
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disease [28]. This might hint that dityrosine could be responsible for mediating biochemical responses,
such as cancer and Parkinson′s disease.
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is secured by residues Phe272a, Ile275a, Ile276a, Ala279a, Met310a, Met313a, Arg320a, Thr329a, 
Leu330a, Leu341a, Gly344a, and Leu346a. Compared with ligand IH5, TDT maintains the hydrogen 
bond interaction to Asn331 (Figure 10B and Figure 10C), suggesting the importance of this interaction 
in ligand binding to TRβ1. The other ligand-receptor hydrogen bond interactions have diminished, 
which are compensated by alternative hydrogen bond interactions to residues Phe272, Met313 and 
Thr329.  

Additionally, TRβ1 is a ligand-dependent transcription factor, regulating gene expression 
located in skeletal, intestinal and cardiac muscles, the liver and the central nervous system, and 
controlling heart rate, and triglyceride and cholesterol levels [29,30]. Thus, the pharmacological 
actions of TRβ1 are related to obesity, hypercholeaterolemia and diabetes [31–34]. Although Baudry 
et al. [35] showed that dityrosine formation is related to a physiological process, thyroid hormone 
synthesis, mechanisms involving this receptor have not yet been considered. The theoretical 
molecular docking applied in this work showed that TDT might interact with nuclear receptor TRβ1, 
which was also proven in research by Li et al. [36], revealing that oxidized casein impaired the 
antioxidant defense system and induced hepatic and renal injury in mice.  
  

Figure 9. (A) Superposition between the crystallographic structures of the complex 1UTB/TXL with the
resultant docking pose of 1UTB/TDT. Crystallographic structure and docking structure are represented
in blue and green, respectively. (B) The enlargement for ligand TDT in the binding site of 1UTB, which
is displayed as stick, hydrogen bonds are shown as dotted yellow lines, and the non-polar hydrogens
were removed for clarity. (C) The active site amino acid residues around TDT. (D) Superposition
between the resultant docking pose of 1UTB/CDT with the docking pose of 1UTB/TDT, which are
represented in white and yellow, respectively.

Shown in Figure 10 is another TDT possible binding receptor thyroid hormone receptor β1 (TRβ1).
In order to identify the structural similarity and divergence of the active sites between TDT and
IH5, the docking mode of TDT/1NAX is superimposed on the structure of IH5/1NAX, as shown in
Figure 10A, the two compounds bind to the same pocket. As listed in Table S40, compound TDT is
secured by residues Phe272a, Ile275a, Ile276a, Ala279a, Met310a, Met313a, Arg320a, Thr329a, Leu330a,
Leu341a, Gly344a, and Leu346a. Compared with ligand IH5, TDT maintains the hydrogen bond
interaction to Asn331 (Figure 10B,C), suggesting the importance of this interaction in ligand binding to
TRβ1. The other ligand-receptor hydrogen bond interactions have diminished, which are compensated
by alternative hydrogen bond interactions to residues Phe272, Met313 and Thr329.

Additionally, TRβ1 is a ligand-dependent transcription factor, regulating gene expression located
in skeletal, intestinal and cardiac muscles, the liver and the central nervous system, and controlling
heart rate, and triglyceride and cholesterol levels [29,30]. Thus, the pharmacological actions of TRβ1
are related to obesity, hypercholeaterolemia and diabetes [31–34]. Although Baudry et al. [35] showed
that dityrosine formation is related to a physiological process, thyroid hormone synthesis, mechanisms
involving this receptor have not yet been considered. The theoretical molecular docking applied in this
work showed that TDT might interact with nuclear receptor TRβ1, which was also proven in research
by Li et al. [36], revealing that oxidized casein impaired the antioxidant defense system and induced
hepatic and renal injury in mice.



Int. J. Mol. Sci. 2019, 20, 115 12 of 19

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  12 of 19 

 

A

B C
 

Figure 10. (A) Superposition between the crystallographic structures of the complex 1NAX/IH5 with 
the resultant docking pose of 1NAX/TDT. Crystallographic structure and docking structure are 
represented in blue and green, respectively. (B) The enlargement for ligand TDT in the binding site 
of 1NAX, which is displayed as stick, hydrogen bonds are shown as dotted yellow lines, and the non-
polar hydrogens were removed for clarity. (C) The enlargement for ligand IH5 in the binding site of 
1NAX, which is displayed as stick, hydrogen bonds are shown as dotted yellow lines, and the non-
polar hydrogens were removed for clarity. 

Besides the above discussed receptors, some other receptors are also targets for CDT and TDT. 
The binding scores for these targets toward CDT/TDT are higher than −10.0 kcal/mol, and lower than 
−9.0 kcal/mol. In addition, the docking scores are better than those co-crystallized ligands, suggesting 
that these receptors would be weak targets for CDT/TDT, shown in Table S39 and Table S40.  

3. Materials and Methods  

3.1. Preparation of Ligand and Target Structures  

Dityrosine structure was downloaded from PubChem Compound of NCBI. The three-
dimensional structure was optimized by molecular dynamics simulations, which were carried out 
using the NAMD2.9 MD package [37]. Partial charges were calculated with AM1 in MOPAC7 and 
fitted into the AM1-bcc type of charge. The generalized AMBER force field (GAFF) [38] was assigned 
by using Antechamber [39]. During the procedure of minimization, two different conformations were 
identified, as shown in Figure 11 Then, the output file was translated to pdbqt format using 
AutoDockTools [40].  

A text-mining step was firstly performed to select targets that may have connection with 
dityrosine in scientific reports, however, few studies have been committed to dityrosine-target 
systems. Therefore, the PDTD database, a useful resource for identifying receptors for active 
compounds or existing drugs [41] consisting of 1044 kinds of potential drug target molecules, was 
chosen as our candidate screening set. The database is related to diverse diseases, biological functions 
and signaling pathways, incorporating enzymes, receptors, monoclonal antibody, regulatory factors 
and hormones. Then, polar hydrogen atoms and Kollman charges were assigned to the potential drug 

Figure 10. (A) Superposition between the crystallographic structures of the complex 1NAX/IH5
with the resultant docking pose of 1NAX/TDT. Crystallographic structure and docking structure are
represented in blue and green, respectively. (B) The enlargement for ligand TDT in the binding site
of 1NAX, which is displayed as stick, hydrogen bonds are shown as dotted yellow lines, and the
non-polar hydrogens were removed for clarity. (C) The enlargement for ligand IH5 in the binding
site of 1NAX, which is displayed as stick, hydrogen bonds are shown as dotted yellow lines, and the
non-polar hydrogens were removed for clarity.

Besides the above discussed receptors, some other receptors are also targets for CDT and TDT.
The binding scores for these targets toward CDT/TDT are higher than −10.0 kcal/mol, and lower than
−9.0 kcal/mol. In addition, the docking scores are better than those co-crystallized ligands, suggesting
that these receptors would be weak targets for CDT/TDT, shown in Tables S39 and S40.

3. Materials and Methods

3.1. Preparation of Ligand and Target Structures

Dityrosine structure was downloaded from PubChem Compound of NCBI. The three-dimensional
structure was optimized by molecular dynamics simulations, which were carried out using the
NAMD2.9 MD package [37]. Partial charges were calculated with AM1 in MOPAC7 and fitted into
the AM1-bcc type of charge. The generalized AMBER force field (GAFF) [38] was assigned by using
Antechamber [39]. During the procedure of minimization, two different conformations were identified,
as shown in Figure 11 Then, the output file was translated to pdbqt format using AutoDockTools [40].

A text-mining step was firstly performed to select targets that may have connection with dityrosine
in scientific reports, however, few studies have been committed to dityrosine-target systems. Therefore,
the PDTD database, a useful resource for identifying receptors for active compounds or existing
drugs [41] consisting of 1044 kinds of potential drug target molecules, was chosen as our candidate
screening set. The database is related to diverse diseases, biological functions and signaling pathways,
incorporating enzymes, receptors, monoclonal antibody, regulatory factors and hormones. Then,
polar hydrogen atoms and Kollman charges were assigned to the potential drug targets, ensuring that
the pronation states were right, and water molecules were removed from the crystal structures.
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Figure 11. (A) Chemical structure of dityrosine. (B) Three-dimensional structure of CDT.
(C) Three-dimensional structure of TDT.

3.2. Inverse Virtual Screening

For molecular docking, a grid box in AutoDockTools was used to determine the docking
coordinates [42]. All dockings were confined in a grid box with dimensions of 60 × 60 × 60 Å,
grid spacing of 0.375 Å, and the grid center was designated according to the original ligands embedded
in the receptors [43]. Molecular docking simulations were performed using Autodock-Vina software,
which combines knowledge-based potentials and empirical scoring functions and Iterated Local Search
global optimizer algorithm for the local optimization [44]. It is widely used due to its speed and
accuracy for docking calculations [45].

An initial screening procedure was performed to rank the receptors as dityrosine targets, and
the parameters in the configuration file were set as follows: energy_range 1.5, num_ modes 20, and
exhaustiveness 25.

3.3. Refinement Docking Experiments

A refinement experiment was further carried out on receptors with lower docking scores (lower
than −8.0 kcal/mol). In this step, energy range of 1.5, number of modes of 50, and an exhaustiveness
of 100 were employed.

3.4. Validation

The validation procedure requires the identification of molecules with known activity against the
target. Thus, to validate the reasonability of molecular docking and further screen the dityrosine-target
complexes with higher binding scores, molecular docking simulations were performed on complexes
presenting high affinity scores lower than −9.0 kcal/mol using the screened targets and the
co-crystallized ligands. During molecular docking, the original ligands, other substructures, and
water molecules were removed from the crystal structures, and the relevant co-crystallized ligands
and targets were prepared and docked using the same parameters as that described in Sections 3.2–3.4.

The resulted docking scores were employed for further comparison, dityrosine-target complexes
with binding scores higher than those co-crystalized ligand-target complexes would be retained. In
addition, a detailed conformational analysis based on dityrosine-target and co-crystalized ligand-target
was carried out to examine the docking pose predicted by AutoDock Vina with respect to the
experimental data.

3.5. MD Process

The docked poses of TDT and CDT with the receptors were used as the starting conformations
for the MD simulations. The inputs for generating the parameters of ligands (TDT and CDT) were
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created by using Antechamber of Ambertools 18 [46]. The RESP charges [47] of the ligands were
obtained by calculating the Density Function Theory (DFT) function of /6-31G** from Gaussian
09 [48,49]. The bond constants were obtained from Amber GAFF. In the refined homology model
of alpha-tublin (αT), G2P was modelled as in the electron crystallography structure of αT (PDBID:
1TUB) [50]. The generation of G2P parameters followed the same approach as carried onto the ligands.
Importantly, the dihedral angles of O1-P1-O2-P2 and O2-P2-C3A-P3 were frozen in the quantum
mechanism calculation of the optimizing step to prevent the self-protonation of G2P. The proteins of
the 3 systems were then defined by AMBER 14SB force field [51], and counter ions (Cl- and Na+) were
added in the systems to neutralise the overall charges of the systems. Following this, the periodic
solvent box with Å TIP3P water layers was added in each system [52]. The final system of TRB1-TDT
was 89.27 × 77.89 × 72.48 Å3 (40,815 atoms), and αT-CDT: 86.46 × 89.86 × 85.91 Å3 (54,041 atoms),
αT-TDT: 86.46 × 89.86 × 85.91 Å3 (54,047 atoms).

The MD processes were performed by the AMBER v18 (PMEMD) with CUDA acceleration on a
2 × NVIDIA GTX1080 Centos 7.2 × 86 computer [47]. The solvated systems were firstly minimized by
10,000 steps to remove bad contacts between water, ions and the complex systems. The equilibrium
simulations with Langevin thermostats included 3 steps: 50 ps of heating and 50 ps of density
equilibration with weak restraints (2 kcal/mol) on the complex followed by 500 ps of constant pressure
(1 atm) equilibration at 300 K at a time step of 2 fs. The nonbonded cut-off was set to 10.0 Å and
SHAKE [53] was applied for the hydrogen bonds. The production phase was then conducted with
NVT resemble and conformations were collected every 10 ps. Each system was simulated for 60 ns
with 3 replicates by setting different velocities of random seeds.

3.6. Stability Analysis

The resilience and the elasticity of the proteins and the ligands were investigated by calculating
the root mean square deviation (RMSD) of the backbone atoms (Cα, N, O, C) and the heavy atoms of
the docked-in ligands along the production phase simulations. The residue flexibility was checked
by calculating the root mean square fluctuation (RMSF) of the backbone atoms based on each residue
contribution. The trajectories were aligned by the Cα atoms of the starting structures of MD simulations
beforehand to eliminate the rotation and transitions of the whole systems. The RMSD/RMSF analysis
were performed by using Gromacs v 5.11 [54].

3.7. Local PCA

To search each stable binding pose with minimum local free energy of the binding pocket, principle
component analysis (PCA) was performed firstly on the combined replicates of each production phase
MD system by Gromacs v 5.11 [54]. In each system, the residues within 4.5 Å around the ligand
and the heavy atoms of the ligand were both used for generating the displacement matrix of PCA.
In the essential dynamic analysis (EDA), the top two PC vectors calculated from PCA were used for
distinguishing the top two significant movements of the binding pocket in each system. The combined
trajectories were then projected onto a subspace which was define by PC1 and PC2. We then calculated
the possibility of the microstates found in the subspace for the following analysis.

3.8. Local Free Energy Landscape

The local free energy F(a) of each microstate a was estimated by a weighted-histogram analysis
(WHAM) approach [55,56], In the WHAM approach, the local free energy of a given number of
microstates that represented the configurations observed by the PC1 and 2 subspace. Thus, the free
energy of a microstate a was described as:

F(a) = −Tlog ∑i ni
a

∑j e
1
T ( f j−V j

a )
(1)
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where ni
a represents the frequency of the microstate a observed in trajectory i. The normalization

constants f j are self-consistently determined as in the WHAM method [56]. We used the correction
method from Marinelli et al. (2009) to describe the variation of the bias over different conformations
assigned to the same cluster a [56]. Vi

a is the bias potential acting on microstate a, which was estimated
as the time average of the history-dependent potential acting on the trajectory i multiplied by Sa, the
center of microstate a:

Vi
a = Vi

G (Sa) =
1

tsim − teq

∫ tsim

teq
dt′Vi

G
(
Sa, t′

)
(2)

where tsim is the 60 ns total production simulation time of each system and teq is the beginning of
production phase, which is the last time frame of equilibrium when the bias potentials become stable.
Therefore, according to Equations (1) and (2), we converted the possibility 2D map to the 2D local
free energy landscape (LFEL) heat map and 3D LFEL surface map using Gromacs v5.11 [54] and
Mathematica v11.3 [57].

3.9. Binding Free Energy Calculation

Since the states with lowest local free energy were found by LFEL, the nearest poses (100 frames)
around that with lowest local free energy were chosen to further calculate the Gibbs binding free
energies (∆Gbinding) between receptors (TRβ1 and αT) and ligands (TDT, CDT) by performing MM/PB
and GBSA [58,59] with MMPBSA.py.MPI [60]. The process can be summarized as:

∆Gbinding = ∆Gcom −
(

∆Grec + ∆Glig

)
∆Gcom/rec/lig = ∆H − T∆S

∆H = ∆Egas + ∆Gsol

∆Egas = ∆Eint + ∆Evdw + ∆Eele

∆Gsol = ∆GPB/GB + ∆GNP

∆GNP = γSASA + β

where ∆Gcom, ∆Grec and ∆Glig represent the free energies of the complex, the receptor and the ligand,
respectively. Each of the terms (∆Gcom/rec/lig) is equal to the discrepancy between enthalpy contribution
(∆H) and the conformational entropy (T∆S). T is the temperature of the simulated environment. ∆S is
the entropy of the molecule, estimated from a normal-mode analysis of harmonic frequencies calculated
at the molecular mechanics (MM) level [58]. Enthalpy (∆H) consists of the internal energy from the
gas phase (∆Egas) and the solvation free energy (∆Gsol). ∆Egas is the standard gas phase energy, which
includes internal energy (∆Eint), van der Waals interactions (∆Evdw), and electrostatic energies (∆Eele).
Since complex molecular dynamic simulations were only performed here, the ∆Eint to the binding
free energy was zero. The solvation energy ∆Gsol is the sum of a non-polar energy (∆GNP) and an
electrostatic energy (∆GPB/GB). was calculated from the Poisson–Boltzmann function with the default
cavity radii from AMBER pomtop files. The dielectric constant was set to 1 for the interior solute and
80 for the exterior solvent. ∆GGB is an alternative part for ∆GGB which uses the Hawkins, Cramer, and
Truhlar pairwise generalized Born model [61,62] with the parameters described by Tsui and Case [63].
The linear combinations of pairwise overlaps (LCPO) approach [64] was used to calculate the solvent
accessible surface area (SASA) for the estimation of the non-polar solvation. γ (0.00542 kcal/mol × Å2)
and β (0.92 kcal/mol) are taken from a linear regression of the solvation free energy of a set of small
apolar molecules in water [65,66].

4. Conclusions

In this work, a library of receptors was screened against dityrosine, including CDT and TDT,
on the basis of the inverse virtual screening method. The results of inverse virtual screening were
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sorted by energies from the highest to the lowest binding scores. Therefore, the targets with good
binding affinities were identified by evaluation of the predicted binding energies. Taken as a
whole, some receptors related to significant diseases, such as cancer, Parkinson′s disease, obesity,
hypercholeaterolemia, diabetes, and inflammation, would be considered as possible targets for
CDT/TDT, which would lay the foundation for further experimental analysis.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/1/
115/s1.
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