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Abstract: Accumulating evidence progressively indicated that microRNAs (miRNAs) play a
significant role in the pathogenesis of diseases through many experimental studies; therefore,
developing powerful computational models to identify potential human miRNA–disease associations
is vital for an understanding of the disease etiology and pathogenesis. In this paper, a weighted
interactive network was firstly constructed by combining known miRNA–disease associations,
as well as the integrated similarity between diseases and the integrated similarity between miRNAs.
Then, a new computational method implementing the newly weighted interactive network was
developed for discovering potential miRNA–disease associations (WINMDA) by integrating the T
most similar neighbors and the shortest path algorithm. Simulation results show that WINMDA
can achieve reliable area under the receiver operating characteristics (ROC) curve (AUC) results of
0.9183 ± 0.0007 in 5-fold cross-validation, 0.9200 ± 0.0004 in 10-fold cross-validation, 0.9243 in global
leave-one-out cross-validation (LOOCV), and 0.8856 in local LOOCV. Furthermore, case studies
of colon neoplasms, gastric neoplasms, and prostate neoplasms based on the Human microRNA
Disease Database (HMDD) database were implemented, for which 94% (colon neoplasms),
96% (gastric neoplasms), and 96% (prostate neoplasms) of the top 50 predicting miRNAs were
confirmed by recent experimental reports, which also demonstrates that WINMDA can effectively
uncover potential miRNA–disease associations.

Keywords: microRNA; diseases; association prediction; computational prediction model;
path selection

1. Introduction

Recently, increasing studies indicated that non-coding RNAs (ncRNAs) play an extensive and
important role in many biological processes such as cell differentiation, ontogenesis, and disease
development [1–3]. In particular, microRNAs (miRNAs), a class of small ncRNAs with a length
of 20–25 nucleotides, was proven to be closely related to the occurrence of many diseases that are
seriously harmful to human health [4,5]; they are able to regulate many functions of eukaryotic
cells and affect various behaviors such as gene expression, cell-cycle regulation, and individual
development [6]. For example, miR-126 was demonstrated to be associated with clear cell human renal
cell carcinoma [7], while miR-34a-5p was proven to have a critical impact on ovarian cancer (OC) cell
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lines via interacting with nuclear paraspeckle assembly transcript 1 (NEAT1) [8]. MicroRNA expression
microarray analysis showed that miR-145 and miR-1 expression is significantly downregulated in
colon cancer tissues [9], and that miR-424 and miR-381 play important roles in tumor regulation,
expression, and even treatment [10]. Therefore, it is necessary to study the association between
miRNAs and diseases in depth and explore the potential relationship between miRNA and some
human diseases [11,12].

The identification of potential miRNA–disease associations can not only play an important
role in the diagnosis, treatment, and prevention of disease, but also effectively addresses the
high cost and long-term shortcomings of traditional biological experiments [13,14]. Up to now,
various miRNA-related heterogeneous biological databases were established and were extended to
various fields of miRNA-related research, such as miRBase [15], Database of Differentially Expressed
miRNAs in Human Cancers (dbDEMC) [16], Human microRNA Disease Database (HMDD) [17],
miR2Disease [18], etc. Based on these datasets, different computational prediction methods were
developed to predict potential miRNA–disease associations [19–24]. For example, in 2012, Chen et al.
developed a prediction method named random walk with restart for miRNA–disease association
(RWRMDA) for inferring potential miRNA–disease associations through combining the semantic
similarity of the disease and the functional similarity of miRNA [25]. In 2014, Chen et al. further
developed a computational model named regularized least squares for miRNA–disease association
(RLSMDA) based on semi-supervised machine learning, which can uncover related miRNAs for
each disease without any known related miRNAs [26]. In 2016, under the basic assumption that
functional similar miRNAs tend to interact with similar diseases, Chen et al. proposed a prediction
model named within and between Score for miRNA–disease association (WBSMDA) by combining the
within score and between score from the opinion of diseases and miRNAs to calculate the score and
predict potential miRNA–disease associations [27]. Furthermore, Zou et al. also developed a machine
learning based method named CATAPULT to uncover relationships between microRNAs and diseases
based on social network analysis methods [28]. Zhu et al. developed a novel path-based method
named PBMDA to predict the relationships between miRNA and disease by integrating different
types of heterogeneous biological datasets and constructing three interlinked sub-graphs [29]. In 2017,
Chen et al. proposed LRSSLMDA where novel miRNA–disease associations were predicted using
sparse subspace learning to map high-dimensional miRNA/disease spaces into a lower-dimensional
subspace [30]. In LRSSLMDA, feature extraction was performed on the integrated similarity to
form the statistical profile and the graph theoretical profile. In 2018, Chen et al. developed a novel
computational model named MDHGI to predict potential miRNA–disease associations using a sparse
learning method to decompose the original adjacency matrix and combing the miRNA functional
similarities network, the disease semantic similarities network, the Gaussian interaction profile kernel
similarities network, and the new adjacency matrix into a heterogeneous graph [31]. Zhao and Wang
presented a distance correlation set-based prediction method named DCSMDA for predicting latent
miRNA–disease associations by constructing the disease/long non-coding RNA (lncRNA)/miRNA
interactive network [32]. Moreover, Chen et al. developed an extreme gradient-boosting machine with a
decision tree named EGBMMDA, seeking potential miRNA–disease associations using vector-covered
statistical measures, graph theoretical measures, and matrix factorization results for miRNAs and
diseases [33]. Chen et al. proposed a rating-integrated bipartite network recommendation-based
prediction method named BNPMDA for predicting potential miRNA–disease association using
agglomerative hierarchical clustering [34].

In most of the abovementioned computational models, researchers constructed an adjacency
matrix A to represent relationships between miRNA and disease. Specifically, if the association
term between miRNA mi and disease dj is recorded in the database, the matrix A(i,j) = 1; otherwise
it is equal to zero. However, since the number of known miRNA–disease associations existing
in these well-known databases is very limited, this results in a sparse matrix; thus, in order to
improve the accuracy of our prediction model, the information about the diseases and miRNAs
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was adopted to construct a weighted interactive network in this paper. Moreover, on the basis
of premises that functionally similar miRNAs may regulate similar diseases and similar diseases
tend to associate with functionally similar miRNAs, a novel prediction model based on the newly
constructed weighted interactive network was developed for miRNA–disease association inference
(WINMDA). Comparing several state-of-the-art computational models, the strong point of WINMDA
lies in the construction of a weighted interactive network and the introduction of the shortest path
between nodes in the weighted interactive network. This also means that WINMDA proposes
an idea for improving the sparseness of the adjacency matrix A and does not need negative
samples to predict potential miRNA–disease associations simultaneously. All prediction results
of potential miRNA–disease associations are shown in the Supplementary files 1–3; researchers
could use these data to guide biological experiments in the future. In addition, the performance
of WINMDA was evaluated by cross-validation and case studies of colon neoplasms, gastric
neoplasms, and prostate neoplasms. Our simulation results show that WINMDA can achieve reliable
area under the receiver operating characteristics (ROC) curve (AUC) results of 0.9183 ± 0.0007,
0.9200 ± 0.0004, 0.9243, and 0.8856 in terms of 5-fold cross-validation, 10-fold cross-validation,
global leave-one-out cross-validation (LOOCV), and local LOOCV, respectively. Additionally,
94% (colon neoplasms), 96% (gastric neoplasms), and 96% (prostate neoplasms) of the top 50
predicting miRNAs were confirmed by dbDEMC [16], miR2Disease [18], and recently published
experimental studies. These results also demonstrate that WINMDA can effectively predict potential
miRNA–disease associations.

2. Results and Case Studies

In this section, we evaluated the predictive performance of WINMDA through the following
experiments: we firstly compared WINMDA with four state-of-the-art methods, namely BNPMDA [34],
PBMDA [29], WBSMDA [27], and RLSMDA [26] in the framework of LOOCV. Then, the process
of five-fold cross-validation was repeated 50 times for our method to evaluate the prediction
performance of WINMDA. Thirdly, the influence of given parameters T and w on the prediction
model was analyzed. Moreover, several case studies were performed to validate the feasibility of our
method. Finally, experimental results regarding the top 50 predicted associations between miRNAs
and four important neoplasms were listed, and we implemented the performance comparisons
between WINMDA and four state-of-the-art methods through observing the rankings of six important
disease-related miRNAs in the case studies.

2.1. Comparison with Existing State-of-the-Art Methods

We evaluated the performance of WINMDA by observing it along with four state-of-the-art
methods to predict the accuracy of potential miRNA–disease associations using global and local
LOOCV. In the global LOOCV, each known disease–miRNA association was alternately used as a test
sample, and other known miRNA–disease associations were considered as a training set, while all
unknown disease–miRNA associations in HMDD were considered as a candidate set. However, in local
LOOCV, for each given disease d, each known miRNA related to d was utilized as a test sample,
while all other known miRNAs related to d were used as training samples, and all other unknown
miRNAs related to d were considered as candidates. Hence, through comparing the scores obtained
from the test sample with other candidate associations, we could evaluate how well this association
was ranked in the candidate set; if the predicted ranking of the test sample was higher than the preset
threshold, then the sample was successfully predicted by the computational model. In other words,
let TP be true positive, TN be true negative, FN be false negative, and FP be false positive; then,
under different threshold settings, the corresponding true positive rate (TPR; sensitivity) and false
positive rate (FPR; specificity) can be obtained as follows:

FPR = FP/(FP + TN) (1)
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TPR = TP/(TP + FN) (2)

Here, sensitivity means that the percentage of the test samples with predicted ranks was higher
than the given threshold, whereas specificity was computed as the percentage of negative samples with
predicted ranks lower than the given threshold. Obviously, after obtaining different TPR and FPR pairs
under different thresholds, the final ROC curve (in which, FPR is the horizontal axis of the coordinate
system and TPR is the longitudinal axis of the coordinate system) could be plotted by connecting
these pairs. Finally, the AUC could be obtained to represent the specific prediction performance of the
computational models. Furthermore, it is obvious that the larger the AUC value is, the more likely the
current classification algorithm is to place a positive sample in front of the negative sample, such that
it can be better classified. Next, for the global LOOCV and local LOOCV, we compared WINMDA with
four state-of-the-art computational methods, namely BNPMDA, PBMDA, WBSMDA, and RLSMDA;
the simulation results are shown in Figures 1 and 2, respectively. From the two figures, it is easy
to see that WINMDA can achieve reliable AUCs of 0.9243 and 0.8856 for global LOOCV and local
LOOCV, respectively, when T = 16 and w = 0.6, which are much higher than the AUCs of 0.9169 and
0.8523 achieved by PBMDA, 0.9082 and 0.8571 achieved by BNPMDA, 0.8030 and 0.8390 achieved by
WBSMDA, and 0.8426 and 0.7169 achieved by RLSMDA. It is obvious that our newly proposed method
WINMDA is superior to these four traditional computational models in global and local LOOCV;
therefore, it can be used as an important tool for discovering potential miRNA–disease associations.

Table 1. The average area under the receiver operating characteristics (ROC) curve (AUC) achieved
by the weighted interactive network for miRNA–disease association inference (WINMDA) under the
frameworks of 5-Fold cross-validation and 10-Fold cross-validation.

LOOCV 5-Fold Cross-Validation 10-Fold Cross-Validation

0.9243 0.9183 ± 0.0007 0.9200 ± 0.0004
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In addition, considering the potential bias of random sample partitioning for performance
assessment, we divide the known miRNA-disease associations by 50 times, and the AUCs were
obtained in the similar way as global LOOCV. As a result, WINMDA achieved the prediction
performance with average AUCs of 0.9183 and 0.9200 with standard deviation of 0.0007 and 0.0004
when using the 5-Fold and 10-Flod cross validation (Table 1).

2.2. Evaluation of the Effects of Parameters

There are two kinds of important parameters existing in our newly proposed model of WINMDA,
as illustrated in Equation (22), one is w and the other is T.

2.2.1. Effects of Parameter T

From Equations (20), (21), and (22), it is easy to know that parameter T will have important
effects on the accuracy of our prediction model WINMDA. For instance, if the value of T is too large,
then lots of noise data will be included, which will reduce the predictive performance of WINMDA.
Alternatively, if the value of T is too small, then the useful associations may not be sufficient for accurate
estimation of potential associations between some specific diseases and miRNAs. Hence, in order to
evaluate the effects of parameter T, we set the value of T ranging from 1–20 during the implementation
of WINMDA, and the simulation results are shown in Table 2. From Table 2, it is easy to see that
the AUCs achieved by WINMDA varied with the different values of T. Specifically, the prediction
performance of WINMDA increased upon increasing of the value of T, while T varied from 1 to 16,
which indicates that the number of useful neighbors is positively related to the prediction performance
of our model. Meanwhile, it is easy to find that the AUC will decline when T > 16, which indicates that
an excess of noise data will markedly interfere with our prediction model WINMDA. Therefore, it was
determined as best to set T to 16 for WINMDA in this paper.

Table 2. Effects of T on the prediction performance of WINMDA when w = 0.6.

T AUC T AUC

1 0.9145 12 0.9241
2 0.9160 16 0.9243
5 0.9222 18 0.9242
8 0.9244 20 0.9188
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2.2.2. Effects of Parameter w

In this section, to investigate the effects of parameter w on the prediction performance of
WINMDA, we set w to different values ranging from 0–1, while implementing WINMDA under
LOOCV, and the results are shown in the Table 3. It is obvious that the variation of the value of w has an
important influence on the performance of our prediction model WINMDA. Specifically, from Table 3,
it is obvious that WINMDA can achieve the maximum AUC value when w is set to 0.6. Hence, we set
w to 0.6 in this paper.

Table 3. Effects of w on the prediction performance of WINMDA when T = 16.

w AUC w AUC

0 0.9135 0.6 0.9243
0.1 0.9188 0.7 0.9239
0.2 0.9209 0.8 0.9222
0.3
0.4
0.5

0.9216
0.9235
0.9241

0.9
1

0.9189
0.9160

2.3. Case Studies

Recently, increasing evidence demonstrated that miRNAs play an extensive and important role
in the physiological processes of the body [35]. In addition, in developed countries such as the
United States and throughout Europe, cancer is the second leading cause of human death, while it
ranks second or third in developing countries [36]. Therefore, in order to further evaluate the accuracy
of WINMDA in predicting potential disease–miRNA associations, we chose three kinds of cancers, i.e.,
colon neoplasms, gastric neoplasms, and prostate neoplasms, as case studies for WINMDA, and the
prediction results were verified by recently published experimental studies and two databases, namely
miR2Disease and dbDEMC. During the simulation, for each kind of cancer, all known related miRNAs
were considered as seed miRNAs, and the other miRNAs were considered as candidate miRNAs.
In addition, all candidate miRNAs associated with colon neoplasms, gastric neoplasms, and prostate
neoplasms were ranked in descending order according to our prediction results, as illustrated in
Tables 4–6, respectively.

Recently, colon cancer (colon neoplasms) ranks third among the most common female cancers
and second among the most common male cancers in the world [37]. Each year, more than one million
people died from colon cancer [38]. The incidence rates vary widely around the world, depending
on lifestyle, environment, and heredity [39]. Recent studies reported that miRNAs are closely related
to the diagnosis, prognosis, and chemo-sensitivity of colon cancer, which indicates that miRNAs can
be used as a marker for the early diagnosis of colon cancer and as a guideline for various stages
of colon cancer [40]. Hence, case studies on colon cancer-related miRNAs were implemented to
further verify the predictive ability of WINMDA and, as a result, 10 of the top 10 and 47 of the top
50 candidate miRNAs were shown to be associated with colon neoplasms by miR2Disease, dbDEMC,
and other known experimental studies (Table 4). For example, some researchers confirmed that
the overexpression of miR-143 (ranked first in the WINMDA forecast list) reduces cell proliferation
and migration of mutant KRAS HCT116 colon cancer cells [41]. Additionally, experimental studies
also found that miR-20a is a member of the miR-17 miRNA family, which is part of the regulatory
machinery that defines the pro-tumorigenic differentiation of stromal fibroblasts. In stromal fibroblasts,
miR-20a (ranked second in the WINMDA forecast list) can modulate chemokine C–X–C ligand 8
(CXCL8) function, thereby influencing tumor latency [42]. Moreover, some researchers found that
the rs35301225 polymorphism in miR-34a (ranked third in the WINMDA forecast list) is involved
in the development of human colon cancer via downregulation of tumor-promoting gene E2F1 as a
tumor suppressor, and the C/A single-nucleotide polymorphism of miR-34a promotes colon cancer
cell proliferation via upregulating E2F1 [43].
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In recent years, it was reported that gastric cancer (gastric neoplasms) is one of the most common
malignant tumors of the digestive tract in the world, and Japan, South Korea, and China are high-risk
areas for gastric cancer [44]. Therefore, it is necessary to explore the mechanism of miRNA in the
development of gastric cancer and provide a basis for the early diagnosis of gastric cancer. We used
potential gastric cancer-associated miRNAs as a case study to further illustrate the predictive power
of WINMDA in this section. As a result, 10 of the top 10 and 48 of the top 50 potential gastric
cancer-related miRNAs were validated by miR2Disease, dbDEMC, and other known experimental
studies (Table 5). For example, gene UHRF1 plays a significant role in the development of gastric
cancer. Furthermore, Zhou et al. identified and verified miR-146b (ranked first in our prediction list)
and miR-146a as direct upstream regulators of UHRF1 in gastric cancer metastasis. [45]. In addition,
according to the target genes of miR-143 (ranked seventh in our prediction list), IGF1R and BCL2,
which are related to cisplatin resistance, we can regulate the resistance of human gastric cancer cells to
cisplatin via differential expression of IGF1R and BCL2 in gastric cancer tissues and cell lines [46].

Prostate cancer (prostate neoplasms) is the third most common type of cancer. In 2012,
the incidence rate of prostate cancer in the neoplasm registration area in China was 99.2%,
which ranked sixth in the incidence of male malignant tumors [47]. However, early patients with
prostate tumors have only subtle symptoms that make it difficult to detect cancer at an early
stage [48]. Increasing studies confirmed that some miRNAs are related to prostate neoplasms.
Therefore, case studies about prostate cancer-related miRNAs were implemented to further verify
the predictive ability of WINMDA in this section. As a result, nine of the top 10 and 48 of
the top 50 predicted prostate cancer-related miRNAs were validated by miR2Disease, dbDEMC,
and other known experimental studies (Table 6). For example, Chu et al. selected single-nucleotide
polymorphisms (SNPs) in the 1000 bp upstream from the transcription start site of hsa-miR-143 (ranked
first in our prediction list) precursor in the dbSNP database with the condition that MAF > 0.05 in
the Chinese population and finally identified that rs4705342 T > C was associated with the risk
of prostate cancer, and that the C allele had a protective effect [49]. Wang et al. explored the
effects of miR-182 (ranked second in our prediction list) on the growth, migration, and apoptosis of
prostate cancer cells using qRT-PCR analysis. Moreover, they found that miR-182 plays an important
role in prostate cancer, which enhances HIF1α signaling by targeting PHD2 and FIH1 in prostate
cancer [50]. Furthermore, Taddei et al. confirmed that hsa-miR-210 (ranked fourth in our prediction list)
overexpression increased senescence-associated features in young fibroblasts and converted them into
cancer-associated fibroblast-like cells. These senescent fibroblasts can induce epithelial–mesenchymal
transition in prostate cancer cells, support tumor angiogenesis, and recruit endothelial precursor cells,
thus contributing to cancer progression [51].

In order to further illustrate the high efficiency of our method, we compared the performances of
PBMDA, WBSMDA, LRLSMDA, and our model WINMDA by counting the top 50 disease-associated
miRNAs in the predicted results and observing how many disease-related miRNAs were identified
by miR2Disease, dbDEMC, and recent biological experimental studies (Table 7) in the case studies of
six important diseases. As a result, from Table 7, it is easy to see that WINMDA is more effective than
other methods in general. In addition, as a global computational model, WINMDA can not only achieve
reliable prediction performances, but also simultaneously predict all potential associations between
the diseases and miRNAs in HMDD, which means that potential associations with high predicted
values obtained by WINMDA can be used preferentially for biological experiment verification and
public release. Hence, we may easily reach a conclusion that our newly proposed model WINMDA is
of great value in predicting potential miRNA–disease associations.
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Table 4. The potential top 50 predicted microRNAs (miRNAs) related to colon neoplasms obtained by
WINMDA based on known associations in the Human microRNA Disease Database (HMDD) database.

Top 1–25
miRNAs Evidence Top 26–50

miRNAs Evidence

hsa-mir-143 dbDEMC and miR2Disease hsa-let-7e dbDEMC
hsa-mir-20a dbDEMC and miR2Disease hsa-mir-486 26895105
hsa-mir-34a dbDEMC and miR2Disease hsa-mir-133b dbDEMC and miR2Disease
hsa-mir-210 dbDEMC hsa-mir-200a unconfirmed
hsa-mir-21 dbDEMC and miR2Disease hsa-mir-141 dbDEMC and miR2Disease
hsa-mir-155 dbDEMC and miR2Disease hsa-let-7f dbDEMC and miR2Disease
hsa-mir-95 dbDEMC and miR2Disease hsa-mir-29a dbDEMC and miR2Disease

hsa-mir-146a dbDEMC hsa-mir-181a dbDEMC and miR2Disease
hsa-mir-16 dbDEMC hsa-mir-9 dbDEMC and miR2Disease

hsa-mir-125b dbDEMC hsa-mir-29b dbDEMC and miR2Disease
hsa-mir-92a unconfirmed hsa-let-7c dbDEMC
hsa-mir-31 dbDEMC and miR2Disease hsa-let-7d dbDEMC
hsa-mir-223 dbDEMC and miR2Disease hsa-mir-196a dbDEMC and miR2Disease
hsa-mir-221 dbDEMC and miR2Disease hsa-let-7i dbDEMC
hsa-mir-222 dbDEMC hsa-mir-142 23619912
hsa-let-7a dbDEMC and miR2Disease hsa-mir-1 dbDEMC and miR2Disease

hsa-mir-19b dbDEMC and miR2Disease hsa-mir-133a dbDEMC and miR2Disease
hsa-mir-15a dbDEMC hsa-mir-192 dbDEMC and miR2Disease
hsa-mir-18a dbDEMC and miR2Disease hsa-mir-150 26455323

hsa-mir-200b dbDEMC hsa-mir-203 dbDEMC and miR2Disease
hsa-mir-19a dbDEMC and miR2Disease hsa-mir-451a 25484364
hsa-let-7b dbDEMC and miR2Disease hsa-let-7g dbDEMC and miR2Disease
hsa-mir-24 miR2Disease hsa-mir-124 dbDEMC

hsa-mir-199a unconfirmed hsa-mir-224 dbDEMC and miR2Disease
hsa-mir-200c dbDEMC and miR2Disease hsa-mir-146b 28466779

Table 5. The potential top 50 predicted miRNAs related to gastric neoplasms obtained by WINMDA
based on known associations in the HMDD database.

Top 1–25
miRNAs Evidence Top 26–50

miRNAs Evidence

hsa-mir-146b 26673617 hsa-mir-20a 29450946
hsa-mir-130a 25834316 hsa-mir-375 21343377

hsa-mir-21 miR2Disease hsa-mir-17 30024601
hsa-mir-146a 28922434 hsa-mir-222 miR2Disease
hsa-mir-155 26950485 hsa-mir-101 28944848
hsa-mir-145 miR2Disease hsa-mir-199a 24655788
hsa-mir-143 miR2Disease hsa-mir-22 28482669
hsa-mir-200a 25740983 hsa-mir-196a 24527072
hsa-mir-200b 25740983 hsa-mir-223 22270966
hsa-mir-126 26464628 hsa-mir-7 26261179
hsa-mir-200c 27766962 hsa-mir-34c 18803879

hsa-let-7a miR2Disease hsa-mir-122 29509059
hsa-mir-141 miR2Disease hsa-mir-218 27696291
hsa-mir-34a 25834316 hsa-mir-34b unconfirmed
hsa-mir-142 21343377 hsa-mir-10b 25190020
hsa-mir-31 19598010 hsa-mir-103a 29754469
hsa-mir-16 miR2Disease hsa-mir-27a miR2Disease

hsa-mir-192 24981590 hsa-mir-150 20067763
hsa-mir-486 26895105 hsa-mir-18a 26950485
hsa-mir-221 miR2Disease hsa-mir-19a 22802949
hsa-mir-107 miR2Disease hsa-mir-106a miR2Disease

hsa-let-7f 21533124 hsa-mir-9 28418879
hsa-let-7g 25972194 hsa-mir-451a unconfirmed

hsa-mir-133b 23296701 hsa-mir-124 27041578
hsa-mir-125b 24846940 hsa-mir-1 25874496
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Table 6. The potential top 50 predicted miRNAs related to prostate neoplasms obtained by WINMDA
based on known associations in the HMDD database.

Top 1–25
miRNAs Evidence Top 26–50

miRNAs Evidence

hsa-mir-143 dbDEMC and miR2Disease hsa-mir-15a dbDEMC and miR2Disease
hsa-mir-182 dbDEMC and miR2Disease hsa-mir-181b dbDEMC and miR2Disease
hsa-mir-96 dbDEMC and miR2Disease hsa-mir-375 dbDEMC and miR2Disease
hsa-mir-34a dbDEMC and miR2Disease hsa-mir-200a dbDEMC
hsa-mir-210 miR2Disease hsa-mir-34b dbDEMC
hsa-mir-150 dbDEMC hsa-mir-34c dbDEMC
hsa-mir-92a Unconfirmed hsa-let-7b dbDEMC and miR2Disease
hsa-mir-141 miR2Disease hsa-mir-218 dbDEMC and miR2Disease
hsa-mir-21 dbDEMC and miR2Disease hsa-mir-101 dbDEMC and miR2Disease
hsa-mir-222 dbDEMC and miR2Disease hsa-mir-124 dbDEMC
hsa-mir-31 dbDEMC and miR2Disease hsa-mir-223 dbDEMC and miR2Disease

hsa-mir-146b 25712341 hsa-let-7a dbDEMC and miR2Disease
hsa-mir-221 dbDEMC and miR2Disease hsa-mir-224 dbDEMC and miR2Disease
hsa-mir-203 26499781 hsa-mir-205 dbDEMC and miR2Disease
hsa-mir-126 dbDEMC and miR2Disease hsa-let-7d dbDEMC and miR2Disease
hsa-mir-200b Unconfirmed hsa-mir-1 dbDEMC
hsa-mir-200c dbDEMC hsa-let-7c dbDEMC and miR2Disease
hsa-mir-146a miR2Disease hsa-mir-127 dbDEMC and miR2Disease
hsa-mir-17 miR2Disease hsa-mir-135b dbDEMC
hsa-mir-100 dbDEMC and miR2Disease hsa-mir-214 dbDEMC and miR2Disease
hsa-mir-16 dbDEMC and miR2Disease hsa-mir-93 26124181

hsa-mir-199a dbDEMC and miR2Disease hsa-mir-708 22552290
hsa-mir-20a miR2Disease hsa-mir-155 dbDEMC
hsa-mir-133b dbDEMC hsa-mir-133a dbDEMC
hsa-mir-27b dbDEMC and miR2Disease hsa-mir-195 dbDEMC and miR2Disease

Table 7. Effects of w on the prediction performance of WINMDA when T = 16.

Disease WINMDA BNPMDA PBMDA WBSMDA RLSMDA

Breast neoplasms 44 48 46 36 42
Colon neoplasms 47 45 47 45 46
Gastric neoplasms 48 43 46 43 44
Kidney neoplasms 45 43 42 42 45
Liver neoplasms 48 45 45 46 46

Prostate neoplasms 48 44 45 42 44

3. Discussion

Increasing studies based on biological experiments indicated that miRNAs are closely related to
the occurrence of many diseases that are seriously harmful to human health, and the identification of
potential miRNA–disease associations can not only play an important role in the diagnosis, treatment,
and prevention of disease, but also effectively addresses the high cost and long-term shortcomings
of traditional biological experiments. In this article, we developed a novel prediction model called
WINMDA to predict potential relationships between miRNAs and diseases based on premises that
functionally similar miRNAs may regulate similar diseases and similar diseases tend to associate
with functionally similar miRNAs. In WINMDA, we firstly integrated disease semantic similarity,
Gaussian interaction profile kernel similarity, and miRNA function similarity, and then constructed
a weighted interactive network for potential miRNA–disease prediction. The important difference
between WINMDA and previous state-of-the-art prediction models is that the problem of limited
known miRNA–disease associations was considered in WINMDA and the shortest paths in the
weighted interactive network were adopted to solve the problem. Moreover, we evaluated the
predictive performance of WINMDA through LOOCV (including global LOOCV and local LOOCV),
k-fold cross-validation, and several case studies. Experimental results show that WINMDA can
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effectively uncover potential disease–miRNA candidates, which means that it can be used as a reliable
and accurate calculation model for finding potential miRNA–disease associations.

Although WINMDA achieved effective performance in predicting candidate relationships
between miRNAs and diseases, there are still some existing limitations that can be improved in the
future. Firstly, the parameters T and w play important roles in WINMDA, and the selection of suitable
values for T and w are critical problems that shall be addressed in future studies. Secondly, the assigned
weight may not be accurate enough, as it was on the basis of premises that functionally similar miRNAs
may regulate similar diseases and similar diseases tend to associate with functionally similar miRNAs.
Finally, a weighted interactive network was constructed in WINMDA based on the disease similarity,
miRNA similarity, fig:ijms-405460-f003and known miRNA–disease associations. The performance
of WINMDA will be further improved considering more databases storing other information about
diseases, miRNAs, and miRNA–disease associations.

4. Materials and Methods

4.1. Construction of the miRNA–Disease Interactive Network

In order to construct the miRNA–disease interactive network, we firstly downloaded known
miRNA–disease associations from the HMDD database on 14 July 2018. After eliminating duplicate
values, erroneous data, and disorganized data, human miRNA–disease associations were downloaded
from the HMDD database, which includes 5430 experimentally validated human miRNA–disease
associations involving 495 miRNAs and 383 diseases. (Supplementary file 4) have been collected.
Let D represent the number of different disease items and M represent the number of different miRNA
items in the HMDD database, respectively; let SD = {d1, d2, ..., dD} represent the set of these D different
diseases, and SM= {mD+1, mD+2, ..., mD+M} represent the set of these M different miRNAs. Then, we can
construct an miRNA–disease interactive network G = (V, E), where V = SD∪SM = {d1, d2, ..., dD, mD+1,
mD+2..., mD+M} is the set of vertices, E is the edge set of G, and ∀ di ∈ SD, mj ∈ SM. There is an edge
between di and mj in E if and only if there is an association between mj and di in the database of
HMDD. Thereafter, based on the newly constructed miRNA–disease interactive network G, for any
given di ∈ SD and mj ∈ SM, we can obtain a D ×M dimensional matrix DMM as follows:

DMM(i, j) =

{
1 i f di is related to mj in HMDD

0 otherwise
(3)

4.2. Calculation of the Disease Semantic Similarity

For any two diseases di and dj that belong to SD, the semantic similarity between di and dj was
calculated according to the following steps:

Step 1: Firstly, we collected the Medical Subject Headings (MeSH) descriptors of di and dj from
the National Library of Medicine (http://www.nlm.nih.gov/).

Step 2: Secondly, we constructed direct acyclic graphs (DAGs) corresponding to di and dj
separately and, as illustrated in the Figure 3, for any given disease H, its DAG can be represented as
DAG(H) = (N(H), E(H)), where N(H) is the node set and E(H) is the edge set. Moreover, in DAG(H), each
node corresponds to a different disease MeSH descriptor, and all the MeSH descriptors are connected
by a direct edge from a more general term (called a parent node) to a more specific term (called a
child node). Furthermore, N(H) consists of the node H itself and its ancestor nodes; E (H) consists of
corresponding direct edges from a parent node to a child node, and each edge in E(H) represents the
relationship between these two nodes connected by it.

http://www.nlm.nih.gov/
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Step 3: Thirdly, based on the newly constructed DAG(H), let d be an ancestor node of H in
DAG(H); then, we defined the contribution of an ancestor node d to the semantic value of the disease
H and the contribution of the semantic value of disease H itself as follows:{

DH(d) = 1 i f d = H;

DH(d) = ∑{α × β× DH(d∗)|d∗ ∈ children o f d} i f d 6= H.
(4)

Here, the parameter α is a semantic contribution attenuation factor with a value between zero and
one, and its value was set to 0.5 in this paper according to previous state-of-the-art methods [52,53].
The parameter β is the number of addresses or codes included in the node d∗, which indicates the
weight of the contribution of disease d∗ for H in DAG(H).

Obviously, according to Equation (2), it is easy to know that an ancestor node d with
a larger number of child nodes in DAG(H) will make a more significant contribution to the
semantic value of H. For instance, in DAG(BN) of Figure 3, the entry on “central nervous system
neoplasms” includes two addresses or codes: C04.588.614.250 and C10.551.240; however, the entry
on “brain diseases” includes only one code: C10.228.140. Thus, the contribution of “central nervous
system neoplasms” to the semantic value of the “brain neoplasms” is 2 × α × 1, while the contribution
of “brain diseases” to the semantic value of the “brain neoplasms” is 1 × α × 1 only.

Step 4: Next, based on Equation (2), we calculated the sematic value of disease H by accumulating
the contributions of all disease terms to H in DAG(H) as follows:

TS(H) = ∑
d∈S(H)

DH(d) (5)
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For example, according to Equation (3), in DAG(BN) of Figure 3, the semantic
value of the disease “brain neoplasms” can be obtained by “the contributions of
‘brain neoplasms’ to it” (= 1 × 1) + “the contributions of ‘central nervous system neoplasms’
to it” (= 2 × 0.5) + “the contributions of ‘brain diseases’ to it” (= 1 × 0.5) + “the contributions
of ‘nervous system neoplasms’ to it” (= 2 × 0.5 × 0.5) + “the contributions of ‘central nervous
system diseases’ to it” (= 1 × 0.5 × 0.5) + “the contributions of ‘nervous system diseases’ to
it” (= 1 × 0.5 × 0.5 × 0.5 + 1 × 0.5 × 0.5 × 0.5) + “the contributions of ‘neoplasms by site’ to it”
(= 1 × 0.5 × 0.5 × 0.5) + “the contributions of ‘neoplasms’ to it” (= 1 × 0.5 × 0.5 × 0.5 × 0.5) = 3.6875.

Step 5: Finally, we defined the semantic similarity between di and dj as follows:

SDD
(
di, dj

)
=

∑d∈S(di)∩S(dj)

(
Ddi (d) + Ddj(d)

)
TS(di) + TS

(
dj
) (6)

Additionally, for any two diseases da and db that belong to SD, if da and db do not have semantic
similarity, we define SDD(da, db) = −1; then, based on Equation (4), it is obvious that we can obtain a
D × D dimensional disease semantic similarity matrix SDD (i, j).

4.3. Calculation of the miRNA Functional Similarity

Considering that, in the HMDD database, one miRNA may be associated with multiple disease
items and vice versa, and, according to the state-of-the-art literature [39], the functional similarity can
be obtained by integrating the semantic similarity of the two groups of diseases associated with these
two miRNAs, then, for any two diseases mi and mj that belong to SM, the functional similarity between
mi and mj can be calculated according to the following steps:

Step 1: Firstly, let dx be any given disease, and Dgroup= {dy1, dy2, dy3 . . . . dyr} be a set consisting
of r different diseases, and then the semantic similarity between dx and Dgroup can be calculated as
follows:

SS(dx, Dgroup) =
max

1 ≤ i ≤ r
(SDD(dx, dyi)) (7)

For example, let da, db, and dc be three kinds of diseases, Dgroup = {db, dc}, SDD (da, db) = 0.7,
and SDD (da, dc) = 0.8; then, the semantic similarity between da and Dgroup is SS (da, Dgroup) = max
{SDD (da, db), SDD (da, dc)} = 0.8.

Step 2: Secondly, let Dgroupi and Dgroupj be the sets of diseases associated with mi and mj,
respectively; supposing that there are N and M different diseases in Dgroupi and Dgroupj, then we
calculated the functional similarity between mi and mj as follows:

SMM
(
mi, mj

)
=

∑1≤i≤M SS(di, Dgroupi) + ∑1≤j≤N SS
(
dj, Dgroupj

)
M + N

, (8)

where di ∈Dgroupj and dj ∈Dgroupi. For example, let Dgroup1 = {X, Y}, Dgroup2 = {X, Z}, supposing that
SDD(X, Y) = 0.6, SDD(X, Z) = 0.7, and SDD(Y, Z) = 0.5, then MM(m1,m2) can be obtained as follows:

SMM(m1, m2) =
SS(X,Dgroup1)+SS(Y,Dgroup2)+SS(X,Dgroup1)+SS(Z,Dgroup2)

2+2

= SDD(X,X)+SDD(Y,X)+SDD(X,X)+SDD(Z,X)
4 = 1+0.6+1+0.7

4 = 0.825.

Additionally, for any two miRNAs ma and mb that belong to SM, if ma and mb do not have semantic
similarity, we define SMM(ma, mb) = −1; then, based on Equation (6), it is obvious that we can obtain
an M ×M dimensional miRNA functional similarity matrix SMM (i, j).
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4.4. Disease Gaussian Interaction Profile Kernel Similarity Measurement

On the basis of premises that functionally similar miRNAs may regulate similar diseases and
similar diseases tend to associate with functionally similar miRNAs, let DLP(di) represent the i-th
row in the matrix DMM; then, for any two diseases di and dj that belong to SD, we can calculate the
Gaussian interaction profile kernel similarity between them as follows:

DGS
(
di, dj

)
= exp

(
−

D×
∣∣∣∣DLP(di)− DLP

(
dj
)∣∣∣∣2

∑D
i=1||DLP(di)||2

)
(9)

Additionally, based on previous work [54], we can further improve the disease Gaussian
interaction profile kernel similarity using a logistic function as follows:

FDGS(i, j) =
1

1 + e−15∗DGS(di ,dj)+log (9999)
(10)

4.5. MicroRNA Gaussian Interaction Profile Kernel Similarity Measurement

On the basis of premises that functionally similar miRNAs may regulate similar diseases and
similar diseases tend to associate with functionally similar miRNAs, let MLP(mi) represent the i-th
column in the matrix DMM; then, for any two miRNAs mi and mj that belong to SM, we can calculate
the Gaussian interaction profile kernel similarity between them as follows:

FMGS(i, j) = exp

(
−

M ∗
∣∣∣∣MLP(mi)−MLP

(
mj
)∣∣∣∣2

∑M
i=1||MLP(mi)||2

)
. (11)

4.6. Calculation of the Integrated Similarity

Based on Equations (6) and (10), the disease integrated similarity matrix FDD can be calculated
based on the disease semantic similarity matrix (SDD) and the disease Gaussian interaction profile
kernel similarity matrix (FDGS) as follows:

FDD(i, j) =

{
SDD(i, j) i f SDD(i, j) ≥ 0,

FDGS(i, j) otherwise.
(12)

Similarly, based on Equations (8) and (11), the miRNA integrated similarity matrix FMM can
be calculated based on the miRNA functional similarity matrix (SMM) and the miRNA Gaussian
interaction profile kernel similarity matrix (FMGS) as follows:

FMM(i, j) =

{
SMM(i, j) i f SMM(i, j) ≥ 0,

FMGS(i, j) otherwise.
(13)

4.7. Construction of the Weighted Interactive Network

For any given miRNA mi ∈ SM, we define the miRNA mx ∈ SM as the most related miRNA to mi,
if mx satisfies the following:

FMM(mx, mi) =
max

1 ≤ l ≤ M
(FMM(ml , mi)), where mx 6= mi. (14)

Thereafter, as illustrated in Figure 4, we can construct the weighted interactive network according
to the following four steps:
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Step1: Firstly, for any given disease di∈ SD, we define the miRNA mj as a potential miRNA to
di if and only if mj satisfies DMM(i,j) = 0; otherwise, we define the miRNA mj as a known miRNA to
di. Hence, according to premises that functionally similar miRNAs may regulate similar diseases and
similar diseases tend to associate with functionally similar miRNAs, it is reasonable to assume that the
miRNA mj is related to di if mj is a potential miRNA to di, mx is a most related miRNA to mj, and mx

is also a known miRNA to di at the same time. Thereafter, based on this assumption, for any given
disease di ∈ SD and any given miRNA mj ∈ SM, we can define the weight between di and mj as follows:

DMW(i, j) =



1

exp

(
max

x∈MRM(mj)
SMM(j,x)

) i f DMM(i, j) = 0 and DMM(i, x) 6= 0,

1
exp(DMM(i,j)) i f DMM(i, j) 6= 0,

0 otherwise.

(15)

Step 2: Secondly, according to Equation (10), for any two given diseases di and dj that belong to
SD, we define the weight between di and dj as follows:

DW(i, j) =
1

exp(FDD(i, j))
. (16)

From Equation (14), it is easy to know that the higher the semantic similarity between di and dj is,
the smaller the weight between di and dj will be.

Step 3: Similarly, according to Equation (11), for any two given miRNAs mi and mj that belong to
SM, we define the weight between mi and mj as follows:

MW(i, j) =
1

exp(FMM(i, j))
(17)
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From Equation (15), it is also easy to know that the higher the functionally similarity between mi
and mj is, the smaller the weight between mi and mj will be.

Thereafter, based on above three steps, for i ∈ [1,D + M] and j ∈ [1,D + M], a weighted
miRNA–disease interactive network can finally be constructed as follows:

GFW(i, j) =


DW

(
di, dj

)
, i f i ∈ [1, D] and j ∈ [1, D],

DMW
(
di, mj

)
, i f i ∈ [1, D] and j ∈ [D, D + M],

DMW
(
mi, dj

)
, i f i ∈ [D, D + M] and j ∈ [1, D],

MW
(
mi, mj

)
, i f i ∈ [D, D + M] and j ∈ [D, D + M].

(18)

4.8. Calculation of the Shortest Path Based on the Weighted Interactive Network

For any two given nodes A and B in the weighted interactive network G, supposing that there
is a path P consisting of n hops such as P0(=A), P1, P2, . . . ,Pn(=B) from A to B in G, then we define
the weights of path P as ∑n−1

i=0 GFW(i, i + 1). In addition, among all the paths from A to B in G, a path
from A to B with smallest weights is called the shortest path from A to B. Thereafter, it is reasonable to
assume that, for any two given nodes A and B in the weighted interactive network G, the smaller the
weight of the shortest path from A to B is, the more related to each other the nodes A and B will be.
Thus, based on this assumption, for any two given nodes A and B in the weighted interactive network
G, we can design an algorithm for searching the shortest path from A to B in G as follows:

Step 1: Initially, we define that S = {V0} is a set consisting of an arbitrary node V0 in G, T is a set
consisting of all nodes in G other than V0, and DD is a matrix defined as follows:

DD(i, j) =

{
GFW(i, j) i f GFW(i, j) > 0,

∞ i f GFW(i, j) = 0,
(19)

where i ∈ [1,D+M] and j ∈ [1,D+M].
Step 2: Next, we select a node Vk from T randomly, if Vk satisfies that Vk /∈ S and the distance

from Vk to S is smaller than the distance from any other node other than Vk in T to S. Here, we define
the distance from a node x in G to a node set V in G as the smallest value of the distances between x
and all nodes in V.

Step 3: Thereafter, if DD (i, j) > DD (i, k) + DD (k, j), then we further modify DD(i,j) to
DD(i, j) = DD(i, k) + DD(k, j) in the matrix DD.

Step 4: After repeating step 2 and step 3 until all nodes in G are included in S, then it is obvious
that we can transfer the matrix DD to a (D + M) × (D + M) dimensional shortest path matrix (SPM).

4.9. Calculation of the Shortest Path Based on the Weighted Interactive Network

Considering the fact that known miRNA–disease associations are very sparse, for a specific
disease di and a specific miRNA mj, as illustrated in Figure 5, in this section, we adopt the concept of T
most similar neighbors to estimate the association between di and mj according to the following steps:
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most similar neighbors.

Step 1: Firstly, for the disease di, let DKi = {di1, di2, di3 . . . ., diT} be a set consisting of the first T
nodes in SD after sorting the nodes in SD by the disease integrated similarity between them with di in
descending order, and, for the miRNA mj, let MKj = {mj1, mj2, mj3 . . . ., mjT} be a set consisting of the
first T nodes in SM after sorting the nodes in SM by the miRNA integrated similarity between them
with mj in descending order.

Step 2: Secondly, according to premises that functionally similar miRNAs may regulate similar
diseases and similar diseases tend to associate with functionally similar miRNAs, we calculate the
association between di and MKj and the association between mj and DKi as follows:

SDM
(
di, MKj

)
= ∑

1<q<T
SPM

(
di, mjq

)
(20)

SMD
(
mj, MDi

)
= ∑

1<q<T
SPM

(
mj, diq

)
(21)

Step 3: In order to optimize the prediction results, by integrating the above two associations and
the matrix SPM, we can obtain our final prediction results as follows:

FPR(i, j) = w×
(
SDM

(
di, MKj

)
+ SMD

(
mj, MDi

))
2× T

+ (1− w)× SPM(i, j) (22)

where w is a weight coefficient with a value from zero to one.
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5. Conclusions

In this article, the effective predictive performance of WINMDA was mainly due to several
reasons. Firstly, the sematic disease similarity, functional miRNA similarity, and Gaussian interaction
profile kernel similarity were integrated. Secondly, we proposed a new method for calculating the
semantic similarity of diseases. Thirdly, we constructed a weighted interactive network-based disease
similarity, miRNA similarity, and known miRNA–disease associations. Fourthly, the concept of T
most similar neighbours was introduced. Finally, an algorithm for searching the shortest path in the
weighted interactive network was introduced. Furthermore, in future work, multiple heterogeneous
biological data can be collected and pre-processed to be utilized in the weighted interactive network,
thus improving the performance of prediction algorithms.
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