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Abstract: We report the calculation of boiling points for several alkyl alcohols through

the use of improved  molecular descriptors based on the optimization of

correlation weights of local invariants of graphs. As local invariants we have used the

presence of different chemical elements (i.e. C, H, and O) and the existence of different

vertex degree values (i.e. 1, 2, 3 and 4). The inherent flexibility of the chosen molecular

descriptor seems to be rather suitable to obtain satisfactory enough predictions of the

property under study. Comparison with other similar approximation reveals a very good

behavior of the present method. The use of higher order polynomials do not seem to be

necessary to improve results regarding the simple linear fitting equations. Some possible

future extensions are pointed out in order to achieve a more definitive conclusion

about this approximation.
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I - Introduction

The relationship between molecules and graphs can be considered as a sort of isomorphism. In fact,

if vertices are viewed as atoms and edges as bonds, then graphs represent models of chemical

structures /1,2/. Conversely, if atoms in a molecule are interpreted as vertices and bonds as edges, then

molecules are but illustrations of graphs /3/. That is to say, molecules have all those properties that the

corresponding graphs have, but it is evident that molecules possess many additional properties that go

beyond the mere consequences of the simple connectivity features that graphs encode. Therefore, the

use of graphs as molecular models gives way to a basic problem within the realm of QSAR/QSPR

(Quantitative Structure Activity Relationships/Quantitative Structure Property Relationships) theory

and we can pose it asking how to select those graphs invariants (molecular descriptors) that can be

reliable enough to establish a suitable relationship between biological activities/physicochemical

properties and structure?

The aim of this paper is to deal with this pivotal issue in relation to the calculation of boiling points

(bp) for a selected set of alkyl alcohols. We take as a reference study a recent paper on optimal

molecular descriptors based on weighted path numbers /4/. The main idea is to resort to the

construction of suitable descriptors for optimization through the introduction of an intrinsic flexibility

degree involving a variable part that can be improved in different applications. This feature allows one

to gain a freedom degree which hopefully should lead us to have better molecular descriptors and,

consequently, more satisfactory mathematical relationships between structure and property.

This paper in organized as follows: next section deals with the definition and illustration of the

chosen molecular descriptors based on the optimization of correlation weights of local graph

invariants. Then we show the numerical results obtained via first, second and third order polynomial

relationships for a selected set of alkyl alcohols and comparing them with previous results derived on

the basis of a similar set of molecular descriptors. Section 4 is devoted to discuss the results, analyzing

the similarities and significative differences with regard to other equivalent approaches. The final

section is devoted to present the main conclusions derived from this study and finally several possible

future extensions are pointed out.

II - Correlation Weights of Local Graph Invariants

The last three decades witnessed a meaningful upsurge of interest in applications of graph theory in

chemistry. As pointed out before, constitutional formulae of molecules are chemical graphs where

vertices represent the set of atoms and edges stand for chemical bonds. The pattern of connectedness of

atoms in a molecule is preserved by constitutional graphs. Chemists have since long relied on visual

perception to relate various aspects by constitutional graphs to observable phenomena. However, a

clear and quantitative understanding of the structural basis of chemistry demands the use of precise

mathematical techniques. The applications of matrix theory, graph theory, group theory and

information theory to chemical graphs have produced results which are important in chemistry /5-13/.
Most molecular descriptors in QSAR/QSPR theory are rather "rigid" in the sense the algorithm for

their construction is fixed so that once the molecule is selected, the invariant under consideration can

be computed exactly. There are a large number of this sort of molecular descriptors and they have
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shown to be rather suitable /4/. However, there exists another separate class of molecular descriptors

having an intrinsic flexibility involving a variable part that can be adjusted and optimized for different

applications. Thus, the employment of weighted paths for alkyl alcohols have shown to extend

enormously the approach of variable descriptors to molecules of different chemical composition /4/.
An alternative proposal for this kind of molecular descriptors is the Correlation Weights of the

Local Invariants of Molecular Graphs (CWLIMG) introduced originally by one of us (AAT) /14-16/
and soon afterwards it was applied to study some physical chemistry properties /17,18/. Results were

encouraging enough to promote new efforts to apply this new descriptor for studying other physical

chemistry properties.

The CWLIMG approach is based upon the following scheme. The primary units of analysis are the

atoms with their corresponding vertex degrees. Then, graphs invariants are formulated in the general

form

{ ( ( )),  ( )}iD f CW a i CW ν= (1)

where

D ≡ molecular descriptor

( ) ij
i joined to j

a i a= ∑ (2)

aij is an element of the adjacency matrix A,

νi is the vertex degree value of the i-th vertex, defined as

( )i
j joined to i

a jν = ∑ (3)

CW(a(i)) and CW(νi) are the correlation weights corresponding to atom i.

Correlation weights are calculated by means of an optimization procedure, i.e. they are determined

in such a way to yield the best correlation coefficient for the relationship

( )P F D= (4)

where P stands for the physical chemistry property or biological activity.

There is complete freedom to choose the explicit algebraic form of the f and F functions. The most

general polynomial form of the F function is

0

n
k

k
k

F A P
=

= ⋅∑ (5)
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while there are several possibilities to choose f. Some of the most simple equations for D are

( )( ) ( ){ }i
vertices

D CW a i CW ν= +∑ (6)

( )( ) ( ){  }i
vertices

D CW a i CW ν= ⋅∑ (7)

( )( ) ( ){ }i
vertices

D CW a i CW ν= +∏ (8)

D =  ∏ {CW(i)) . CW(νi)} (9)

vertices

i j{CW(a(i))  CW( ) + CW(a(j))  CW( )}
edges i j

D ν ν
−

= ⋅ ⋅∑ (10)

After computing the optimal CW's values, one resorts to relationship (4) to calculate the final

correlation formula through a least squares procedure (i.e. to determine the optimum coefficients {Ak /

k = 0, 1, ....., n}) for a molecular training set. Then, the predictive capability of the whole method is

tested with a different set of molecules (test set).

Previous results obtained from this method have shown to be suitable enough to predict several

physical chemistry properties /14-18/.

III - Results and Discussion

In order to be able to apply a meaningful test, we choose the same molecular set as that employed by

Randic and Basak /4/ to compute boiling points of 58 alkyl alcohols. Since they used optimal

molecular descriptors based on weighted path numbers, we deem it suitable enough to compare with

our CWLIMG since both approaches employ indices that possess an inherent flexibility involving a

variable part that is optimized for different applications. Besides, the chosen set of 58 alcohols has

been employed in several QSPR/QSAR studies /19-26/.
Regarding the specific analytical form of function f in Eq.(1) we employ he simple relation (5) and

for the relationship between property vs descriptor, we apply formula (4) for n = 1, 2 and 3.

Furthermore, the whole set was partitioned in two equal subsets: a) a training set consisting of 29 alkyl

alcohols (molecules 1, 2, 3, 4, ,6, 8, 9, 11, 14, 16, 18, 20, 22, 26, 27, 29, 34, 35, 37, 39, 41, 44, 45, 48,

49, 52, 53, 56 and 58 in Table 2) and b) a test set including the remaining 29 alcohols (molecules 5, 7,

10, 12, 13 15 17 19 21 23, 24, 25, 28, 30, 31,32, 33, 36, 38, 40, 42, 43,46, 47, 50, 51, 54, 55, and 55 in

Table 2). The choice of the members of each set was made completely at random and the criterion to

measure the goodness degree of the results was the average value of the modulus of residuals (i.e.

average deviations).
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The most significative results are given in tables 1-3, equations 11-13 and Figure 1, and we have

also included previous results taken from Ref. 4 for comparative purposes. Complete data are available

upon request to one of us (EAC).

We give in Table 1 the correlation weights obtained for this set of alkyl alcohols.

Table 1. Correlation weights (CW) for atoms and extended connectivity

value corresponding to the set of alkyl alcohols.

Atom Correlation weight
C 0.287
H 0.462
O 1.000
ννi values
2 1.000
4 0.300
5 2.808
7 0.550
8 3.244
10 2.476
11 1.077
13 2.979
14 0.22
16 2.232

The regression equations using first, second and third order polynomials are:

16.3744 ( 1.70838)  4.53505 ( 0.05990)bp D= ± + ± ⋅ (11)

215.6722 ( 4.3779)  4.59031 ( 0.32198) - 0.00097 (±0.00555) Dbp D= ⋅ ± + ⋅ ± ⋅ ⋅ (12)

2

3

 33.9487 ( 10.6678) 2.27277 ( 1.28183) 0.087196 ( 0.04764)

0.00102 ( 0.00055)

bp D D

D

= ⋅ ± + ⋅ ± ⋅ + ⋅ ± ⋅ −

− ⋅ ± ⋅
(13)

The statistical parameters corresponding to regression equations (11-13) are displayed in Table 2,

where we have also included those values reported by Randic and Basak (see Table 7 in ref. 4).

Table 2. Statistical parameters corresponding to the regression equations.

Equation Set Regression
coefficient (r)

Standard
Error (s)

Fischer
ratio (F)

Average
Deviation

Linear [Eq. (11)] Training
Test

0.9953
0.9948

2.903
3.025

5733
2595

2.20
2.50

Quadratic [Eq. (12)] Training
Test

0.9953
0.9948

3.008
2.833

2764
1296

2.20
2.48

Cubic [Eq. (13)] Training
Test

0.9954
0.9949

2.874
2.871

2018
841

2.03
2.63

Randic and Basak two
descriptors /4/

Complete 0.9938 4.039 2193 2.90
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Figure 1 shows the regression of the calculated bp (Eq.(11)) versus the experimental bp and Table 3

presents the experimental and calculated bp, together with the corresponding residuals.

Figure 1. Experimental versus theoretical boiling points of alkyl alcohols.

Table 3. Experimental and calculated boiling points (°C) of alkyl alcohols

(residuals, defined as {bp[exp.] - bp[calc.]}, are given between parentheses).

Alkyl alcohol bp exp. bp calc. (eq.11) Bp calc. ref. /4/
1. methanol 64.7 64.68 (0.02) 65.24 (-0.54)

2. ethanol 78.3 77.36 (0.94) 77.69 (0.61)

3. 1-propanol 97.2 96.80 (0.4) 96.42 (0.77)

4. 2-propanol 82.3 78.24 (4.06) 84.11 (-1.81)

5. 1-butanol 117.7 116.25 (1.45) 115.67 (2.03)

6. 2-butanol 99.6 97.68 (1.92) 102.43 (-2.83)

7. 2-methyl-1-propanol 107.9 109.79 (-1.89) 109.15 (-1.25)

8. 2-methyl-2-propanol 82.4 84.97 (-2.57) 84.52 (-2.12)

9. 1-pentanol 137.8 135.69 (2.11) 134.92 (2.88)

10. 2-pentanol 119.0 117.13 (1.87) 121.68 (-2.68)

11. 3-pentanol 115.3 117.13 (-1.83) 120.75 (-5.45)

12. 2-methyl-1-butanol 128.7 129.34 (-0.64) 127.97 (0.73)

13. 3-methyl-1-butanol 131.2 129.23 (1.97) 128.90 (2.30)

14. 2-methyl-2-butanol 102.0 104.41 (-2.41) 102.41 (-0.41)

15. 3-methyl-2-butanol 111.5 110.67 (0.83) 114.72 (-3.22)

16. 2,2-dimethyl-1-propanol 113.1 117.11 (4.01) 115.84 (-2.74)

17. 1-hexanol 157.0 155.13 (1.87) 154.17 (2.83)

18. 2-hexanol 139.9 136.57 (3.33) 140.92 (-1.02)
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Alkyl alcohol bp exp. bp calc. (eq.11) Bp calc. ref. /4/
19. 3-hexanol 135.4 136.57 (-1.17) 139.99 (-4.59)

20. 2-methyl-1-pentanol 148.0 148.68 (-0.68) 147.22 (0.78)

21. 3-methyl-1-pentanol 152.4 148.68 (3.72) 147.72 (4.8)

22. 4-methyl-1-pentanol 151.8 148.68 (3.12) 148.15 (3.65)

23. 2-methyl-2-pentanol 121.4 123.86 (-2.46) 121.66 (-0.25)

24. 3-methyl-2-pentanol 134.2 130.11 (4.09) 133.55 (0.65)

25. 4-methyl-2-pentanol 131.7 130.11 (1.59) 134.90 (-3.20)

26. 2-methyl-3-pentanol 126.5 130.11 (-3.61) 134.31 (-7.81)

27. 3-mehtyl-3-pentanol 122.4 123.86 (-1.46) 120.30 (2.10)

28. 2-ethyl-1-butanol 146.5 148.68 (-2.18) 146.79 (-0.29)

29. 2,2-dimethyl-1-butanol 136.8 136.55 (0.25) 134.37 (2.43)

30. 2,3-dimethyl-1-butanol 149.0 142.22 (6.78) 140.77 (8.23)

31. 3,3-dimethyl-1-butanol 143.0 136.55 (6.45) 136.11 (6.89)

32. 2,3-dimethyl-2-butanol 118.6 117.40 (1.20) 114.28 (4.32)

33. 3,3-dimethyl-2-butanol 120.0 117.99 (2.01) 121.00 (-1.00)

34. 1-heptanol 176.3 174.57 (1.73) 173.41 (2.87)

35. 3-heptanol 156.8 156.01 (0.79) 159.24 (-2.44)

36. 4-heptanol 155.0 156.01 (-1.01) 159.24 (-4.24)

37. 2-methyl-2-hexanol 142.5 143.30 (-0.80) 140.9 (1.60)

38. 3-methyl-3-hexanol 142.4 143.30 (-0.90) 139.55 (2.85)

39. 3-ethyl-3-pentanol 142.5 143.30 (-0.80) 138.37 (4.13)

40. 2,3-dimethyl-2-pentanol 139.7 136.84 (2.86) 133.11 (6.59)

41. 3,3-dimethyl-2-pentanol 133.0 137.43 (-4.43) 139.67 (-6.57)

42. 2,2-dimethyl-3-pentanol 136.0 137.43 (-1.43) 139.32 (-3.32)

43. 2,3-dimethyl-3-pentanol 139.0 136.84 (2.16) 132.18 (6.82)

44. 2,4-dimethyl-3-pentanol 138.8 143.10 (-4.30) 145.34 (-6.54)

45. 1-octanol 195.2 194.01 (1.19) 192.58 (2.62)

46. 2-octanol 179.8 175.45 (4.35) 179.33 (0.47)

47. 2-ethyl-1-hexanol 184.6 187.56 (-2.96) 185.29 (-0.69)

48. 2,2,3-trimethyl-3-pentanol 152.2 144.16 (8.04) 152.78 (-0.57)

49. 1-nonanol 213.1 213.45 (-0.35) 211.91 (1.19)

50. 2-nonanol 198.5 194.89 (3.61) 198.66 (-0.16)

51. 3-nonanol 194.7 194.89 (-0.19) 197.73 (-3.03)

52. 4-nonanol 193.0 194.89 (-1.89) 197.73 (-4.73)

53. 5-nonanol 195.1 194.89 (0.21) 197.73 (-2.63)

54. 7-methyl-1-octanol 206.0 207.00 (1.00) 205.46 (0.54)

55. 2,6-dimethyl-4-heptanol 178.0 181.99 (-3.99) 185.69 (-7.69)

56. 3,5-dimethyl-4-heptanol 187.0 181.99 (5.01) 183.83 (3.17)

57. 3,5,5-trimethyl-1-hexanol 193.0 188.43 (4.57) 186.98 (6.02)

58. 1-decanol 230.2 232.86 (-2.66) 231.15 (-0.95)
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The comparison of the different theoretical results tell us that regressions based on first order

equation is good enough and results do no improve in a meaningful way when using higher order

relationships. The average deviations for the two molecular sets (i.e. training set and test set) are rather

similar, although naturally it is better for the first set. The comparison of our results with those taken as

a reference /4/ seems to indicate the higher quality of those computed on the basis of CWLIMG. The

main purpose of this work is not just to perform a close contrast with Randic and Basak's paper, but

since these authors pointed out that  "... the examples given clearly show the high-quality results
based on optimal molecular descriptors ...", as it really is, the comparison of both sets of results here

is useful to derive some valid conclusions on the present method employing CWLIMG.

The average deviations are lower for our calculations, and it results more meaningful when on takes

into account that data taken from ref. 4 is based upon a two variables equation (descriptors p1 and p2,

i.e. weighted paths of length one and length two, respectively, Eqs. 7 and 10 in ref.4). Besides, one

must take into account that our results for the molecular test set are completely predictive, that is to

say, they were no included in the molecular set employed to determine the fitting equation, while the

Randic and Basak's results do not make this differentiation (i.e. the whole set of 58 molecules was used

to calculate the regression relationships), so that there is not any  genuine prediction within their

values. In order to justify our claim of having gotten better results, it is instructive to note that, in

general, the statistical parameters for the test set are even better than those of Randic and Basak's

corresponding values for the whole set of 58 molecules. Another way to recognize the better quality of

our predictions is considering the number of predicted bp with a deviation larger than 5°C. In fact, our

predicted set of bp registers just 4 cases, while Randic and Basak's data present 10 predictions with a

deviation larger than 5°C.

We have tried other alternative ways to choose the members of the training and test sets, but final

results are practically the same.

IV - Conclusions

The results presented in this paper clearly show the very good outcomes arising from the use of the

CWLIMG which, on one hand uses just only one molecular descriptor and on the other hand give

correlations with significative reduced deviations with regard to other similar approaches. It seems to

be a very good prospect in resorting to molecular descriptors having an intrinsic flexibility, as it is the

case of the present one, because they yield quite satisfactory predictions.

In addition, it is not necessary to employ higher order polynomial relationships in order to improve

linear equations or/and to be dependent upon the choice of the training set to get the most suitable

fitting equation.

Present results agree with those published before on the use of CWLIMG /14-18/ and they further

illuminate the appropriateness of using this molecular descriptor within the realm of QSAR/QSPR

theory.

Perhaps, before establishing more definitive conclusions about the goodness degree of this sort of

flexible molecular descriptor it should be necessary and convenient to study other molecular sets

and/or other physical chemistry properties and biological activities. At present, research along these
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lines are under development in our laboratories and results will be published elsewhere in the near

future.
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