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Abstract: Factor XIIIA (FXIIIA) levels are independent predictors of early prognosis after acute
myocardial infarction (AMI) and the Valine-to-Leucine (V34L) single nucleotide polymorphism
(SNP) seems associated with lower AMI risk. Since the long-term AMI prognosis merits deeper
investigation, we performed an observational study evaluating relationships between FXIIIA residual
levels, cardiovascular risk-factors, and inherited genetic predispositions. FXIIIA V34L was genotyped
in 333 AMI patients and a five-year follow-up was performed. FXIIIA levels assessed at day-zero
(d0) and four days after AMI (d4), and conventional risk factors were analyzed, focusing on
the development of major adverse cardiovascular events (MACE). FXIIIA assessed at d0 and
d4 was also an independent MACE predictor in the long-term follow-up (FXIIIAd0, Odds Ratio
(OR) = 3.02, 1.79–5.1, p = 0.013; FXIIIAd4, OR = 4.46, 2.33–8.55, p = 0.0001). FXIIIAd4 showed
the strongest MACE association, suggesting that the FXIIIA protective role is maximized when
high levels are maintained for longer time. Conversely, FXIIIA levels stratified by V34L predicted
MACE at a lesser extent among L34-carriers (Hazard Risk (HR)VV34 = 3.89, 2.19–6.87, p = 0.000003;
HRL34-carriers = 2.78, 1.39–5.57, p = 0.0039), and V34L did not predict all MACE, only multiple-MACE
occurrence (p = 0.0087). Finally, in survival analysis, heart failure and death differed significantly
from stroke and recurrent ischemia (p = 0.0013), with FXIIIA levels appreciably lower in the former
(p = 0.05). Overall, genetically-determined FXIIIA levels have a significant long-term prognostic role,
suggesting that a pharmacogenetics approach might help to select those AMI patients at risk of poor
prognosis in the need of dedicated treatments.
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1. Introduction

After acute myocardial infarction (AMI), several processes aimed at repairing the damaged heart take
place. Among these, the formation of a provisional 3D-fibrin scaffold is crucial for proper lesion healing,
representing the ideal milieu for reparative cells recruitment and local secretome establishment [1].
The lack of activation of cardioprotective mechanisms is a key element to be investigated for the
recognition of predictors for short- and long-term survival, and adverse event occurrence. In a
short-term survival study, we recently demonstrated that after AMI, Factor XIIIA (FXIIIA) circulating
levels are an independent predictor of major adverse cardiovascular events (MACE), in particular
for heart failure (HF) and death [2]. On the contrary, the role of F13A1 gene variants in AMI onset,
recurrence, and in post-AMI outcomes is still controversial, including gender disparities [3–8].

FXIII zymogen circulates in plasma as a protransglutaminase complex of two enzymatic
A-subunits, and two carrier B-subunits (FXIIIA2B2) that prevent the early and wasteful activation
or degradation in blood of the active A-subunits [1]. In the classical model of coagulation,
FXIIIA cross-links fibrin, supporting platelet (PLT) adhesion to damaged tissue and allowing the
maintenance of an elastic architecture. Due to a wide category of FXIIIA substrates, most of them
belonging to the extracellular matrix (ECM), in recent decades, FXIII has gained increasing attention in
regenerative medicine, including processes related to lesion healing, angiogenesis, tissue repairing,
and infections [1,9–14]. The FXIII molecule is now included among novel candidate biomarkers
useful in prognostication of several complex diseases in which cardioprotection is a challenging
goal [15]. Basically, inherited homozygous FXIII deficiency and defects in the F13A1 gene result in
bleeding complications and inefficient wound healing [9,10,16]. FXIIIA and other growth factors
(such as those present in PLT) are particularly relevant during normal healing, and after AMI they
support proper recovery of heart function, and contrast the ischemia-reperfusion injury [12,17–20].
In addition, the F13A1 gene is characterized by a wide allelic heterogeneity, with several single
nucleotide polymorphisms (SNP) of different functional and pharmacogenetic importance [16,21–23].
A common G–to–T polymorphism (rs5985) in the exon 2 of the F13A1 gene causes a valine (V) to leucine
(L) change at codon 34. This site is only three amino acids from the thrombin cleavage site (R37-G38),
and the polymorphism significantly influences the activation rate by thrombin, changing the fibrin
stabilization rate [24,25]. The Valine-to-Leucine (V34L) substitution could be particularly relevant
during any ischemic event affecting the residual FXIIIA circulating levels, and in turn the quality of
healing of the injured tissue, and the clinical outcome [2,3,26–30].

Although V34L is the most studied SNP and is considered the main functional locus among the
several F13A1 gene variants [31], its role in thrombosis and in clinical contexts is quite controversial [32,33],
and might depend on the specific population and disease considered [34–41]. Accordingly, our group
demonstrated that AMI patients had lower MACE occurrence and better one-year survival among
L34-carriers compared to the VV34 homozygotes, also in combination with a second SNP (i.e., FXIIIB
H95R) [3]. Moreover, we demonstrated that V34L could act as a protective inherited predisposition to
ischemic diseases, as well as a risk factor predisposing to intracerebral hemorrhage [41]. Finally we showed
that low circulating FXIIIA levels in the first days after AMI are associated with the worst prognosis in a
short-term survey [2], in line with other reports focused on different pathological contexts [29,42,43].

We here report the extended five-year follow-up of AMI patients, focusing on the relationship
between residual circulating levels of FXIIIA and conventional risk factors stratified by the FXIIIA
V34L genotype, with the aim of recognizing novel molecular predictive biomarkers and therapeutic
strategies useful for cardioprotection programs.

2. Results

2.1. Patient Characteristics

Baseline characteristics of enrolled patients stratified by MACE occurrence are reported in Table 1.
The patient age range was 69.2 ± 12.7 years, 29.4% were female, 240 (72.1%) had ST-elevation
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myocardial infarction (STEMI), and 115 patients (34.53%) developed MACE within the five-year
follow-up period. MACE+ patients were significantly older and had mean left ventricular ejection
fraction (LVEF) significantly lower than MACE− patients. Moreover, they had a significantly lower
rate of family history of cardiovascular events as well as smoking habits, while they showed higher
arterial hypertension, diabetes, and previous myocardial infarction rates. Fibrinogen and C-reactive
protein (CRP) circulating levels were both significantly higher in MACE+, as were Troponin I (TnI)
and, to a lower extent, creatine kinase-MB (CK-MB) peak values (Table 1). Additional clinical details
stratified by FXIIIA genotypes are shown in Supplementary Table S1. Noteworthy is the observation
that MACE+ showed significantly lower total cholesterol and Low-density lipoprotein LDL than the
MACE− counterpart (Supplementary Table S1).

Table 1. Baseline characteristics of patients with (MACE+) and without (MACE−) major adverse
cardiovascular events.

Clinical and Demographic Characteristics Whole Cohort
(n = 333)

MACE+
(n = 115; 34.5%)

MACE−
(n = 218; 65.5%) p

Age, years (mean ± SD) 69.2 ± 12.7 73.8 ± 11.34 65.01 ± 12.22 <0.0001
Male/female (n) (female %) 235/98 (29.4) 75/40 (34.8) 160/58 (26.6) n.s.
STEMI/NSTEMI (% stemi) 240/93 (72.1) 73/42 (63.5) 167/51 (76.6) 0.0145

LVEF (%, mean ± SD) 44.8 ± 11.0 40.9 ± 12.1 46.9 ± 10.0 <0.0001
Family History (%) 33.9 23.9 39.2 0.0065
Hypertension (%) 66.4 76.1 61.2 0.0092
Dyslipidaemia (%) 36.0 34.5 36.8 n.s.

Diabetes (%) 23.2 37.2 15.8 0.0001
Smoking Habit (%) 54.7 46.9 58.8 0.046

Previous MI (%) 27.5 48.7 16.3 0.0001
Fibrinogen (mg/dL) 313.4 ± 107.6 355.1 ± 122.1 296.8 ± 91.4 <0.0001

CRP (mg/dL) 2.6 ± 4.3 3.62 ± 5.16 2.05 ± 3.7 0.002
TnI peak value (ng/mL, mean ± SD) 4.92 ± 6.3 5.47 ± 7.3 3.9 ± 5.0 0.025

CK-MB peak value (ng/mL, mean ± SD) 137.9 ± 159 141.4 ± 205 136.1 ± 163 n.s.

LVEF indicates left ventricular ejection fraction; CRP indicates C-reactive protein; TnI and CK-MB indicate troponin
I and creatine kinase-MB, respectively; n.s. indicates not significant.

2.2. FXIIIA Levels, Genotypes, and MACE

Globally, the FXIIIA L34 variant was present in 126 patients (109 VL34-heterozygotes and
17 LL34-homozygotes), yielding a carrier frequency of 37.8% (32.7% VL34 and 5.1% LL34) and
a L34-allele frequency of 0.215. The remaining 207 patients were homozygous for the common
allele (VV34, 62.2%). Neither the genotype distribution nor the number of L34-carriers versus VV34
homozygote comparisons yielded significant differences between MACE+ and MACE− patients
(Table 2). Among MACE+ patients, 47 were L34-carriers (40.9%) and the remaining 68 were VV34
homozygotes (59.1%). Likewise, among MACE−, 79 were L34-carriers (36.2%) and the remaining
139 were VV34 homozygotes (63.8%). Interestingly, among L34-carriers (n = 126), females clustered in
the MACE+ subgroup if compared with males (♀/♂ratio: MACE+, 20/27; MACE−, 20/59) accounting
for a more than twofold increased risk of experiencing any MACE for those females carrying the
L34-allele (OR = 2.18, 1.01–4.7, p = 0.05).

FXIIIA levels at day-four were significantly lowered compared to day-zero in the entire AMI
group regardless of the presence of MACE, as well as in the L34- or VV34-subgroups (Table 2). It is
noteworthy that subanalysis of FXIIIA levels within the different FXIIIA genotypes always ascribed
to L34-carriers the lowest values both at day-zero and at day-four. Of note, in the MACE+ subgroup
this difference did not reach statistical significance, probably because MACE+ patients presented at
day-zero with the lowest FXIIIA levels, regardless of the FXIIIA genotypes.
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Table 2. FXIIIA levels assessed at admission (d0) and four days after AMI (d4) in the whole group, and in the VV34- and L34-carriers stratified by presence (MACE+)
or absence (MACE−) of major adverse cardiovascular events.

FXIIIA Genotype and Level Whole Group (n = 333) MACE+ (n = 115) MACE− (n = 218) p *

FXIIIA V34L n (%)

VV34 VL34 LL34 VV34 VL34 LL34 VV34 VL34 LL34

207 (62.2) 109 (32.7) 17 (5.1) 68 (59.1) 40 (34.8) 7 (6.1) 139 (63.8) 69 (31.7) 10 (4.6) n.s.

207 (62.2) 126 (37.8) 68 (59.1) 47 (40.9) 139 (63.8) 79 (36.2) n.s.

FXIIIA-d0 (%, mean ± SD) 99.4 ± 29.8 90.2 ± 29.4 103.8 ± 29.0 <0.0001

FXIIIA-d4 (%, mean ± SD) 85.5 ± 29.8 74.5 ± 28.0 91.4 ± 28.4 <0.0007

p <0.0001 <0.0001 <0.0001

VV34 L34-carriers p VV34 L34-carriers p VV34 L34-carriers p
FXIIIA-d0 (%, mean ± SD) 103.7 ± 28.6 92.4 ± 30.4 0.00092 93.5 ± 26.6 85.8 ± 32.6 n.s. 108.2 ± 28.3 96.1 ± 28.6 0.0029
FXIIIA-d4 (%, mean ± SD) 90.1 ± 26.6 78.9 ± 26.7 0.0029 77.7 ± 26.5 69.8 ± 31.1 n.s. 96.8 ± 24.4 83.9 ± 22.6 0.0022

p <0.00001 0.00096 - 0.0034 0.037 - 0.0027 0.0085 -

* p values refer to the comparison between MACE+ and MACE−; n.s. indicates not significant.
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By stratifying FXIIIA levels into quartiles (I-quartile = 25th percentile), those patients with FXIIIA
within the I-quartile (FXIIIAd0 < 76.8% and FXIIIAd4 < 63.9%) showed a higher risk of developing any
MACE (OR = 3.02, 1.79–5.10, p = 0.0138; and OR = 4.46, 2.33–8.55, p = 0.0001; at day-zero and day-four,
respectively). As shown in Figure 1A, both at day-zero and day-four the number of L34-carriers
significantly decreased as the levels of FXIIIA increased from the I to IV quartiles, whereas VV34
homozygotes showed the opposite trend. Similarly, with stronger significance, the rate of MACE
occurrence was inversely related to FXIIIA quartiles both at day-zero and day-four (Figure 1B),
and this was more evident among VV34 homozygotes (p = 0.0064) than in the L34-carriers (p = 0.06)
(Figure 2A). However, the risk of experiencing any MACE having FXIIIA at day-zero within the
I-quartile was comparable in both classes of genotypes (OR = 2.76, 1.27–5.99, p = 0.0109; and OR = 3.22,
1.55–6.68, p = 0.0018; for L34-carriers and VV34 homozygotes, respectively). Interestingly, the same
risk-score calculation computed at day-four strongly increased in both genotypes (OR = 4.27, 1.65–10.99,
p = 0.0036; and OR = 4.95, 1.96–12.47, p = 0.0007; for L34-carriers and VV34 homozygotes, respectively),
as supported by the trends shown in Figure 2B, suggesting once more that FXIIIA reaches its full
biomarker predictive role at day-four.

Int. J. Mol. Sci. 2018, 19, x 5 of 16 

 

By stratifying FXIIIA levels into quartiles (I-quartile = 25th percentile), those patients with FXIIIA 
within the I-quartile (FXIIIAd0 < 76.8% and FXIIIAd4 < 63.9%) showed a higher risk of developing any 
MACE (OR = 3.02, 1.79–5.10, p = 0.0138; and OR = 4.46, 2.33–8.55, p = 0.0001; at day-zero and day-four, 
respectively). As shown in Figure 1A, both at day-zero and day-four the number of L34-carriers 
significantly decreased as the levels of FXIIIA increased from the I to IV quartiles, whereas VV34 
homozygotes showed the opposite trend. Similarly, with stronger significance, the rate of MACE 
occurrence was inversely related to FXIIIA quartiles both at day-zero and day-four (Figure 1B), and 
this was more evident among VV34 homozygotes (p = 0.0064) than in the L34-carriers (p = 0.06) 
(Figure 2A). However, the risk of experiencing any MACE having FXIIIA at day-zero within the I-
quartile was comparable in both classes of genotypes (OR = 2.76, 1.27–5.99, p = 0.0109; and OR = 3.22, 
1.55–6.68, p = 0.0018; for L34-carriers and VV34 homozygotes, respectively). Interestingly, the same 
risk-score calculation computed at day-four strongly increased in both genotypes (OR = 4.27, 1.65–10.99, 
p = 0.0036; and OR = 4.95, 1.96–12.47, p = 0.0007; for L34-carriers and VV34 homozygotes, respectively), as 
supported by the trends shown in Figure 2B, suggesting once more that FXIIIA reaches its full 
biomarker predictive role at day-four. 

 

Figure 1. (A) Distribution of patients carrying FXIIIA VV34 genotype or L34-allele stratified by FXIIIA 
quartiles (I-IV) assessed at baseline (d0; left panel) and four days (d4; right panel) after AMI. Patients 
having FXIIIA levels in the first quartile had a non-significant slight overrepresentation of L34-carriers 
both at d0 and at d4. Their frequency significantly decreased from the first to the fourth quartile, the 
opposite of the frequency for the VV34 genotype (p = 0.0014 and p = 0.023 at d0 and d4, respectively). 
(B) Distribution of patients with and without major adverse cardiovascular events (MACE+ and 
MACE-) stratified by FXIIIA quartiles (I-IV) assessed at baseline (d0; left panel) and four days (d4; 
right panel) after AMI. Patients having FXIIIA levels in the first quartile had a non-significant slight 
overrepresentation of MACE+ at d0, whilst at d4 they were significantly overrepresented (p = 0.0001). 
MACE+ frequency significantly decreased from the first to the fourth quartile, the opposite to that of 
MACE- (p = 0.00016 and p < 0.00001 at d0 and d4 respectively).  

Figure 1. (A) Distribution of patients carrying FXIIIA VV34 genotype or L34-allele stratified by
FXIIIA quartiles (I-IV) assessed at baseline (d0; left panel) and four days (d4; right panel) after AMI.
Patients having FXIIIA levels in the first quartile had a non-significant slight overrepresentation of
L34-carriers both at d0 and at d4. Their frequency significantly decreased from the first to the fourth
quartile, the opposite of the frequency for the VV34 genotype (p = 0.0014 and p = 0.023 at d0 and
d4, respectively); (B) Distribution of patients with and without major adverse cardiovascular events
(MACE+ and MACE−) stratified by FXIIIA quartiles (I-IV) assessed at baseline (d0; left panel) and four
days (d4; right panel) after AMI. Patients having FXIIIA levels in the first quartile had a non-significant
slight overrepresentation of MACE+ at d0, whilst at d4 they were significantly overrepresented
(p = 0.0001). MACE+ frequency significantly decreased from the first to the fourth quartile, the opposite
to that of MACE− (p = 0.00016 and p < 0.00001 at d0 and d4 respectively).
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Figure 2. (A). Distribution of patients with and without major adverse cardiovascular events (MACE+
and MACE−) stratified by FXIIIA quartiles (I-IV) assessed at baseline (d0) among L34-carriers
(left panel) and VV34-homozygotes (right panel). Patients having FXIIIA levels in the first quartile
had a non-significant slight overrepresentation of MACE+ among L34-carriers or VV34-homozygotes.
MACE+ frequency significantly decreased from the first to the fourth quartile, the opposite to that
of MACE−, and this was more evident among VV34-homozygotes (p = 0.06 and p = 0.0064 among
L34-carriers and VV34-homozygotes, respectively); (B) Distribution of patients with and without major
adverse cardiovascular events (MACE+ and MACE−) stratified by FXIIIA quartiles (I-IV) assessed at
day-four (d4) among L34-carriers (left panel) and VV34-homozygotes (right panel). Patients having
FXIIIA levels in the first quartile had MACE+ overrepresented both among L34-carriers (p = 0.0036)
and VV34-homozygotes (p = 0.0007). The fall in MACE+ occurrence was more evident among the VV34
genotype (p = 0.0105 and p = 0.00013 among L34-carriers and VV34-homozygotes, respectively).

2.3. Survival Analysis and Predictive Model

Survival analyses were conducted according to FXIIIA percentiles and different genotypes.
Survival curves according to FXIIIA quartiles are shown in Figure 3A,B (day-zero and day-four,
respectively). As expected, the risk associated with the development of any MACE in the five-year
follow-up period was inversely related to FXIIIA levels, and at day-zero a clear stepwise trend was
particularly evident (p = 0.000034) (Figure 3A). Conversely, at day-four, those patients with FXIIIA
levels above the II quartile showed comparable survival rates that were higher than that of the
I-quartile, in turn improving the significance level (p = 0.000009) (Figure 3B). This suggested we
should combine the II-III-IV FXIIIA quartiles and compare them with the I-quartile, as shown in
Figure 3C,D, respectively for day-zero and day-four. Accordingly, the overall risk (I-quartiles versus
II-IV) was HR = 2.39, 1.62–3.54, p = 0.000012; and HR = 3.7, 2.28–5.96, p < 0.000001; at day-zero
and day-four, respectively, suggesting again that FXIIIA reaches its full biomarker predictive role at
day-four. Conversely, survival analysis performed stratifying patients by FXIIIA genotypes did not
show any significant association of MACE with a particular genotype, either by considering each
specific genotype or combining together L34-carriers (Figure 4A,B). Interestingly, low FXIIIA levels
stratified according to the presence or absence of the polymorphic allele (i.e., VL + LL34 versus VV34)
predicted MACE occurrence differently among the two groups, particularly at day-four (HRVV34 = 3.89,
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2.19–6.87, p = 0.000003; HRL34-carriers = 2.78, 1.39–5.57, p = 0.0039), and to a lesser extent at day-zero
(HRVV34 = 2.32, 1.38–3.89, p = 0.0014; HRL34-carriers = 2.14, 1.2–3.8, p = 0.0098). Although this difference
was not statistically significant (p = 0.75), it confirmed that FXIIIA reaches its full biomarker predictive
role at day-four.
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Figure 3. Plots of Kaplan-Meier survival analysis estimated after AMI according to FXIIIA quartiles
assessed at baseline (day-zero) and four days after AMI (day-four). (A) Survival curve comparison
according to FXIIIA quartiles I-IV measured at day-zero. At five-year follow-up, survival rates among
the different quartiles were significantly different (p = 0.000034); (B) Survival curve comparison
according to FXIIIA quartiles I-IV measured at day-four. At five-year follow-up, survival rates among
the different quartiles were significantly different (p = 0.000009); (C) Survival curve comparison
according to FXIIIA quartile I versus quartiles II-IV computed together at day-zero. At five-year
follow-up, survival in the I quartile significantly differed from that of the II-IV quartiles (p = 0.000012);
(D) Survival curve comparison according to FXIIIA quartile I versus quartiles II-IV computed together
at day-four. At five-year follow-up, survival in the I quartile significantly differed from that of the II-IV
quartiles (p < 0.000001).
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Figure 4. Plots of Kaplan-Meier survival analysis estimated after AMI according to FXIIIA V34L
genotypes. (A) Survival curve comparison between LL34-homozygotes (LL34), VL34-heterozygotes
(VL34), and VV34-homozygotes (VV34). Survival rate was not significantly different between the different
genotypes; (B) Survival curve comparison between VL34-heterozygotes and LL34-homozygotes taken
together (L34-carriers), and VV34-homozygotes (VV34). Survival rate was not significantly different
between the two different groups of genotypes.

Overall, during the five-year follow-up period there were a total of 139 MACE in 115 patients.
The cardiovascular (CV) mortality and HF occurrence rates were 15.0% and 15.3%, respectively,
whilst recurrent non-fatal ischemic events (RI) and stroke were less frequent, globally accounting
for 11.4%. The majority of CV deaths and HFs occurred during the first year follow-up (75.2%),
while RI and stroke showed a consistent trend over the entire follow-up period. In our previous
work we suggested that presenting with non-optimal FXIIIA levels during the early phase of AMI
could increase the risk of severe complications, mainly involving the integrity of the myocardial
wall with respect to novel occurrence of nonfatal ischemic events. In order to verify this hypothesis,
we stratified patients according to the different MACE and found that CV death and HF survival
curves perfectly overlapped, as did those of stroke and RI. Subsequently, we combined CV death with
HF, and stroke with RI (Figure 5), showing significantly different survival rates (p = 0.0013). In addition,
although not reaching strong statistical significance mainly due to the low number of computable cases,
patients experiencing HF or CV death had lower residual FXIIIA levels (p = 0.05). On the contrary,
the frequency of L34-carriers was equally distributed among the two MACE subgroups (RI and stroke
43.0%, CV death and HF 42.05%). Of note, 24 patients had two or more MACE. Fourteen of them
were L34-carriers (11.11% of L34-carriers) and only 10 cases were VV34 homozygotes (4.8% of VV34
homozygotes) yielding an OR = 2.46, 1.06–5.73, p = 0.047.

Finally, in the logistic regression model (univariate), those variables significantly associated to the
endpoints were incorporated in multivariate analysis (Table 3) for both composite MACE (all MACE)
and for MACE recurrence (multiple MACE). Of note, FXIIIA levels both at day-zero and at day-four
resulted in independent predictors of MACE, and interestingly, levels within the 25th percentile
(I-quartile) were significant predictors of composite-MACE (all MACE) in the multivariate analysis.
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Figure 5. Plots of Kaplan-Meier survival analysis estimated after AMI according to different kinds
of MACE at five-year follow-up. Cardiovascular (CV) death and heart failure (HF) combined
together (red line), stroke and recurrent non-fatal ischemic events (RI) combined together (blue line).
Survival significantly differed between subgroups (p = 0.0013).

Table 3. Logistic regression for composite–MACE and MACE–recurrence.

Clinical and Demographic Characteristics

Composite–MACE
(All MACE)

MACE–Recurrence
(Multiple MACE) *

p
(Univariate)

p
(Multivariate)

p
(Univariate)

p
(Multivariate)

Age <0.0001 0.040 n.s. –
Sex (male) 0.020 n.s. – –
FXIIIAd0 0.0002 n.s. n.s. –
FXIIIAd4 0.0012 n.s. n.s. –

FXIIIAd0 < 76.8% 0.00006 0.004 n.s. –
FXIIIAd4 < 63.9% 0.000001 0.0001 n.s. –

FXIIIA V34L n.s. – 0.0195 0.0087
Total cholesterol <0.0001 n.s. n.s. –
LDL cholesterol 0.0019 n.s. n.s. –
HDL cholesterol n.s. – n.s. –

Triglycerides n.s. – n.s. –
Serum creatinine—baseline <0.0001 n.s. n.s. –

Serum creatinine—peak value <0.0001 n.s. n.s. –
Serum fibrinogen <0.0001 n.s. n.s. –

Previous AMI <0.0001 0.0057 n.s. –
Diabetes <0.0001 n.s. n.s. –
TnI day-1 0.0382 n.s. n.s. –

CK-MB day-3 0.0148 n.s. 0.0438 0.0441
CRP 0.0046 n.s. n.s. –

Family history 0.0060 n.s. n.s. –
Smoking habit 0.0404 n.s. n.s. –
Hypertension n.s. – n.s. –

CRP indicates C-reactive protein; CAD indicates coronary artery disease; TnI and CK-MB indicate troponin I and
creatine kinase-MB, respectively; FXIIIAd0 < 76.8% and FXIIIAd4 < 63.9% indicate the I quartile of FXIIIA at day-zero
and day-four, respectively; n.s. indicates not significant. * indicates two or more MACE.

3. Discussion

Heart damage caused by AMI was considered an irreversible condition followed by scarring,
affecting heart performance and survival. Timely reperfusion reduces acute mortality, but does not
counteract left ventricular remodeling (LVR) or HF, and the long-term mortality or hospitalization
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rate remains high among AMI survivors [44–46]. We need to develop new treatments to limit LVR
and HF, and discover novel candidate targets and early predictive biomarkers. Recently, the role of
circulating transglutaminases FXIIIA in maintaining myocardium structural integrity created wide
expectations. FXIIIA increases Vascular Endothelial Growth Factor (VEGF) expression, promoting in turn
local angiogenesis and collagen synthesis, and also mechanically limiting infarct expansion [2,3,13,47,48].
In addition to VEGF, Insulin-like growth factor (IGF), and many other growth factors, platelets (PLT)
contain high amounts of FXIIIA easily shuttled to the injury area, where fibrin entraps PLT
and leukocytes at the heart lesion. PLT-rich plasma has been indeed suggested as an adjuvant
treatment to save the myocardium wall [18–20]. This process promotes local secretome homeostasis,
protects against Reactive Oxygen Species (ROS) generation, and stabilizes mitochondria during the
ischemia-reperfusion injury, providing a favorable timely tuned niche only when optimal FXIIIA levels
are maintained at the injured site. The key role of FXIIIA in maintaining heart integrity has been
definitively demonstrated in F13A1 gene knock-out mice that died due to heart rupture within five days
of induced experimental AMI [12]. Contextually, we reported low residual circulating FXIIIA levels
during AMI [3] in those patients who died earlier or developed severe HF [2]. Accordingly, the FXIIIA
molecule must have a remarkable role also in LVR establishment after AMI. FXIIIA cross-links fibrin
polymers in an elastic 3D-scaffold useful for recruitment, attachment, and differentiation of resident
and circulating stem cells, neovascularization, cardiomyocyte survival, and decreased fibrosis [1].

The major finding of our research is that FXIIIA circulating levels are also independent predictors
of MACE in the long-term after AMI, demonstrating that low FXIIIA levels are also predictors of
poor outcomes after five-year follow-up. Interestingly, early assessment of FXIIIA also results in
an independent predictor of MACE in the composite end-point of the multivariate analysis when
considering values within the lowest percentile. Measurements at day-four very often increased the
predictive power of FXIIIA, and this is strongly in line with the fact that some patients might keep
normal or borderline levels of FXIIIA at day-zero in spite of successive MACE development. Of note,
patients that do not show FXIIIA consumption in the earliest AMI phase have either a good chance
of a good prognosis, or we speculated they could experience different kinds of MACE. Of particular
interest are the data obtained by comparing CV death and HF combined together versus stroke and
recurrent non-fatal ischemic events. They had significantly different trend rates, with the first two
mainly occurring during the first months of follow-up, and the latter characterized by a more regular
incidence during the entire follow-up period. In addition, the lower FXIIIA levels found among
patients experiencing HF or CV death strongly matches with previous hypotheses that patients with
excessive FXIIIA consumption during ongoing AMI died earlier or developed HF [1–3,12,13,47,48].
Accordingly, in our study we observed that presenting with non-optimal FXIIIA levels during the early
phase of AMI considerably increased the risk of severe complications, mainly involving the integrity
of the heart wall, and in particular LVR (unpublished data).

To analyze the combined effects of FXIIIA levels and genotype, in the present study we found
interesting and mutually correlated findings. The inverse relation between L34-allele and FXIIIA
levels among the different FXIIIA quartiles, together with the inverse relation between MACE
occurrence and FXIIIA levels among the different FXIIIA quartiles, might suggest the presence of joint
effects in terms of decreased FXIIIA levels as a consequence of L34-allele presence. The observation
that after genotype stratification MACE occurrence is similarly related to FXIIIA levels in both
genotypes, and that the association increased at day-four regardless of the genotype, suggests that
additional factors are involved in the predisposition to MACE development via FXIIIA lowering.
Accordingly, no significant associations were found stratifying MACE development by the V34L
genotype, even though there is a slight trend of lower survival ascribed to L34-carriers (more evident
among LL34-homozigotes). Moreover, although FXIIIA levels were lower among L34-carriers than in
VV34 homozygotes, within the MACE+ subgroup this difference did not reach statistical significance,
probably because MACE+ patients presented with low FXIIIA levels regardless of FXIIIA genotypes.
This was particularly evident at day-four, where MACE+ VV34 homozygotes showed lower FXIIIA
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levels than MACE− L34-carriers, suggesting again that additional factors (together with L34-allele)
might cause MACE occurrence via FXIIIA lowering.

Interestingly, in our population MACE+ patients presented with significantly lower total
cholesterol and LDL levels than the MACE− counterpart. This data was also confirmed in the two
different FXIIIA genotypes, though among L34-carriers the difference was not statistically significant.
This implies that patients with high cholesterol and LDL levels experienced less MACE at the follow-up.
This paradoxical result might be explained by considering the recent large metanalysis by Navarese
and colleagues, who analyzed 34 randomized clinical trials that included 270,288 participants [49].
The authors reported a greater reduction in the risk of all cause cardiovascular mortality after
cholesterol-lowering treatment in AMI patients with higher baseline LDL levels, and that a larger
reduction in MACE was observed among those with higher baseline LDL levels and higher magnitude
of LDL lowering [49].

Nowadays, the number of AMI survivors has dramatically increased thanks to prompt coronary
reperfusion. On the other hand, such patients are considered orphans of dedicated therapies in the
long term, and often develop HF and LVR. Accordingly, to translate into the clinical setting novel
cardioprotective strategies, and also to discover novel therapeutic targets and pathways, we below
summarize the key findings obtained in this extended five-year follow-up. Firstly, stratifying MACE
events by FXIIIA quartiles, we found that survival within the lowest quartile was significantly
lower than survival in the remaining quartiles, and a step-wise trend characterized the first year.
Secondly, the presence of the several MACE events at day-zero among patients within the highest
FXIIIA quartiles, and their contextual reduction at day-four, support the idea that only those patients
who maintain high FXIIIA levels may benefit from its protective role that takes action mainly when
high levels are sustained for longer.

This study corroborates the existence of an early specific time-window in which to operate to
maintain optimal FXIIIA levels and sustain heart-repairing. At the same time, our approach will avoid
the potential risk of indiscriminate FXIIIA treatment by means of monitoring FXIIIA dynamics early in
the acute phase. This strategy together with a pharmacogenetics approach could be useful to recognize
those patients really needing such adjuvant treatment [1–3,12,13,17,47,48].

4. Materials and Methods

4.1. Patients

The study included 333 patients admitted to the Coronary Care Unit of the University-Hospital of
Ferrara with a diagnosis of AMI already involved in a previous study, aimed at assessing the dynamics
of FXIIIA levels during the acute infarction phase [2]. In detail, the present study further genotyped
333 (95.1%) of the original 350 patients for FXIIIA V34L polymorphism and included an extended
follow-up of five years and additional MACE evaluations.

AMI was defined according to the Joint ESC/ACCF/AHA/WHF Task Force for the Universal
Definition of Myocardial Infarction [50], as a rise or fall (or both) of cardiac biomarkers (cardiac troponin
I or T, CK-MB fraction of creatine kinase and CK-MB, measured by mass assay) with at least one of
the following: symptoms of ischemia, new or presumed-new significant ST-segment-T wave changes
or new left bundle branch block, development of pathological Q-waves in the electrocardiogram
(ECG), imaging evidence of new loss of viable myocardium or new regional wall motion abnormality,
or identification of an intracoronary thrombus by angiography. Patients with ST-elevation myocardial
infarction (STEMI) received primary percutaneous coronary intervention (PCI) within 120 min of first
medical contact, in both the case of symptoms ≤12 h in duration, and symptoms lasting 12 to 24 h if
pain was present at the time of admission. Patients with non-STEMI (NSTEMI) underwent coronary
angiography within 2 to 72 h of hospital admission, according to the European Society of Cardiology
(ESC) recommendations for invasive evaluation and revascularization of NSTEMI coronary-syndromes.
All patients received standard medical therapy according to the ESC guidelines for the treatment of
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AMI unless contraindicated, including aspirin, clopidogrel, glycoprotein IIb/IIIa inhibitors (tirofiban or
abiciximab), unfractioned or low-molecular-weight heparin, betablockers, statins, and ACE inhibitors
or angiotensin receptor blockers (or both) [44]. The baseline demographic, clinical, echocardiographic,
and angiographic test results were collected from all patients. The study was carried out according
to the Code of Ethics of the World Medical Association (Declaration of Helsinki) and was approved
by the local ethics committee of the University Hospital of Ferrara (project identification code 070592,
approved 28 June 2007 and 27 November 2008); all patients gave written informed consent to enter
the study.

4.2. Blood Samples and FXIIIA Level Measurements

Peripheral venous blood samples were drawn at admission (d0) and every 24 h for the additional
five days (d1–d5) from the confirmed AMI event to peak the highest FXIIIA consumption level.
We found day-four (d4) as the most informative point and used it for all the statistical analyses.
FXIIIA antigen circulating levels were assessed by Latex Reagent (HemosIL Factor XIII Antigen) on
the automated Coagulation Analyzer (ACL Futura Plus) according to the manufacturer’s instructions
(Instrumentation Laboratory, Milan, Italy), as previously reported [2]. According to our internal
protocols, confirmation of FXIIIA levels was carried out by re-assaying random samples with different
immunological procedures, as previously described [51,52]. There were no discrepancies between
FXIIIA levels assessed in duplicate.

4.3. Genotype Analysis

Blood was collected at admission to avoid loss of cases (d0). Genomic DNA was obtained
from peripheral blood, and genotyping for the FXIIIA V34L (rs5985) SNP was performed by
PCR-amplification followed by the Pyrosequencing®technique (Pyromark ID System, Biotage AB
Uppsala, Sweden).

The primers used were respectively, Forward (Fw) 5′-AATGCAGCGGAAGATGACC-3′,
Reverse (Rv) 5′-Biotynilated-GCTCATACCTTGCAGGTTGAC-3′, and Sequencing (Sq) primer
5′-CACAGTGGAGCTTCAG-3′. Using the Fw and Rv primers the product amplicon length was
77 bp. PCR conditions were as follows: Initial 5 min at 94 ◦C; followed by 40 cycles of 94 ◦C for
30 s, 52 ◦C for 22 s, and 72 ◦C for 15 s; and a 5 min final extension step at 72 ◦C. All PCR cycles
were performed in a Sure Cycler 8800 (Agilent Technologies, California, CA, USA) using Taq DNA
Polymerase (La Roche Ltd., Switzerland, CH). The sequencing analysis was performed using PyroMark
ID (Qiagen, Maryland, MD, USA) according to the instrumental instructions, analyzing the following
target sequence: GGC/TGTGGTGCCCCGGGGC (in bold, nucleotide variation; C = V34, T = L34).
Confirmation of genotypes was carried out by re-genotyping random samples by DNA restriction,
according to our internal protocols as previously described [53,54]. There were no discrepancies
between genotypes determined in duplicate.

4.4. Follow-Up and Description of Endpoints

The primary endpoint was a composite of major adverse cardiovascular events (MACE) consisting
of cardiovascular (CV) death, recurrent episodes of myocardial ischemia (RI, including non-fatal
myocardial re-infarction or unstable angina), heart failure (HF), and stroke at the five-year follow-up.
The CV events were defined according to the European Society of Cardiology (ESC) guidelines and
the Standardized Definitions for Cardiovascular and Stroke End Point Events in Clinical Trials of the
Clinical Data Interchange Standards Consortium (CDISC) [44–46,55].

4.5. Statistics

Continuous variables were expressed as the mean ± standard deviation (SD), and differences
between groups were evaluated by Student’s T-test or the Mann–Whitney U-test. Categorical variables
were expressed in percent frequency, and compared using the Chi-square test or Fisher’s exact test.
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One-way analysis of variance was used to compare continuous variables and genotype groups.
Patients of the three genotype groups were computed in two categories: VV34 (non-carriers) versus
VL34 and LL34 taken together (L34-carriers). Survival curves (MACE-free survival) were constructed
by Kaplan-Meier analysis, and comparison of survival curves was performed with the log-rank test
computing the different MACE together unless otherwise specified. MACE were retrospectively
analyzed as a single variable, or combined by means of logistic regression analyses. Probability was
considered significant at a level of p ≤ 0.05. Analysis was performed using MedCalc version 11.2.1.0
statistics software.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/9/
2766/s1.
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