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Abstract: Although cancer cells need more glucose than normal cells to maintain energy demand,
chronic hyperglycemia induces metabolic alteration that may dysregulate signaling pathways,
including the O-GlcNAcylation and HIF1A (Hypoxia-inducible factor 1-alpha) pathways. Metformin
was demonstrated to evoke metabolic stress and induce cancer cell death. The aim of this study
was to determine the cytotoxic efficiency of metformin on SKOV-3 cells cultured in hyperglycemia
and normoglycemia. To identify the potential mechanism, we assessed the expression of O-linked
β-N-acetlyglucosamine transferase (OGT) and glycoside hydrolase O-GlcNAcase (OGA), as well as
hypoxia-inducible factor 1-alpha (HIF1A) and glucose transporters (GLUT1, GLUT3). SKOV-3 cells
were cultured in normoglycaemia (NG, 5 mM) and hyperglycemia (HG, 25 mM) with and without
10 mM metformin for 24, 48, and 72 h. The proliferation rate, apoptotic and necrotic SKOV-3 cell
death were evaluated. Real-Time qPCR was employed to determine mRNA expression of OGT, OGA,
GLUT1, GLUT3, and HIF1A. Metformin significantly reduced the proliferation of SKOV-3 cells under
normal glucose conditions. Whereas, the efficacy of metformin to induce SKOV-3 cell death was
reduced in hyperglycemia. Both hyperglycemia and metformin induced changes in the expression of
genes involved in the O-GlcNAcylation status and HIF1A pathway. The obtained results suggest that
dysregulation of O-GlcNAcylation, and the related HIF1A pathway, via hyperglycemia, is responsible
for the decreased cytotoxic efficiency of metformin in human ovarian cancer cells.
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1. Introduction

Ovarian cancer is one of the leading cause of death among women. Recently, it was demonstrated
that the risk of ovarian cancer is increased among diabetic patients [1]. Diabetes-related pathologies
such as insulin resistance, chronic inflammation and high free ovarian steroid hormones are thought
to be responsible for this coexistence [2]. Moreover, numerous clinical studies identified that
hypoglycemic medications modulate the risk of cancer development. Metformin, the drug of the

Int. J. Mol. Sci. 2018, 19, 2750; doi:10.3390/ijms19092750 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-4170-1693
http://www.mdpi.com/1422-0067/19/9/2750?type=check_update&version=1
http://dx.doi.org/10.3390/ijms19092750
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 2750 2 of 17

first choice in type 2 diabetes mellitus treatment, was found to protect from cancer development.
Furthermore, experimental studies have revealed that metformin exhibited antiproliferative activity
against various cancer cells. The drug was also reported to inhibit the growth of ovarian cancer
cells [2,3]. It is widely believed that AMPK (5′AMP-activated protein kinase) activation and inhibition
of mTORC (mammalian target of rapamycin complex) are mechanisms of anticancer action of
metformin. The drug was also demonstrated to reduce tumorigenesis through metabolic alteration as
a result of the mitochondrial respiratory complex I inhibition [3,4].

The typical hallmark of cancer cells is metabolic reprogramming [5]. Cancer cells, to satisfy
their energy demand as well as carbon and nitrogen indulgence for macromolecules synthesis,
consume an increased amount of glucose and glutamine. This results in the alteration of metabolic
and signaling pathways, including inhibition of LKB1 (liver kinase B1)/AMPK and activation of
mTORC pathways [6]. Activated mTORC promotes the expression of critical cell growth and metabolic
regulators, including hypoxia-inducible factor 1-alpha (HIF1A). This transcription factor favors the
expression of numerous genes that contribute to increased consumption of glucose and glutamine [7].
One of the downstream effectors of HIF1A is glucose transporters (GLUT), which are responsible for
glucose uptake. In cancer cells, both HIF1A and GLUT1 were found to be upregulated [7,8].

Approximately 3–5% of the total glucose entering a cell is converted into UDP-N-
acetylglucosamine (O-GlcNAc), in the hexosamine pathway. O-GlcNAc is used as a substrate
for posttranslational modifications of intracellular proteins and thereby regulates their activity.
O-GlcNAcylation controls protein function directly or by competing with phosphorylation sites.
In response to altered nutrients and metabolic stress, O-GlcNAcylation was found to regulate cellular
signaling and transcription regulatory pathways, including the HIF1A pathway [9,10]. Two enzymes
regulate the level of O-GlcNAcylation; O-linked β-N-acetlyglucosamine transferase (OGT) and
glycoside hydrolase O-GlcNAcase (OGA). An elevated level of O-GlcNAcylated proteins was found in
different cancers [11].

Cell metabolism is closely connected with cell death pathways through the mitochondria, which
play a crucial role in both metabolism and apoptosis. Metformin was found to affect cellular
metabolism by targeting mitochondrial respiratory complex I and exerts direct anticancer action
through the induction of cancer cell death or inhibition of cancer cell growth. It is well known that
cancer cells are hypersensitive to metabolic stress, such as glucose or glutamine deprivation, and will
undergo apoptosis if nutrients are limited [12]. However, little is known about how glucose excess
influences the pro-apoptotic action of metformin in tumor cells. To answer this question, we aimed to
determine the antiproliferative efficacy of metformin in human ovarian cancer (SKOV-3) cells cultured
in normoglycemia (NG) and hyperglycemia (HG). As metformin evokes metabolic alteration, we
assessed the expression of OGT and OGA, as well as HIF1A, GLUT1 and GLUT3.

2. Results

2.1. Antiproliferative Efficacy of Metformin in SKOV-3 Cells Depends on the Level of Glycemia

The antiproliferative efficacy of metformin in NG is presented in Figure 1A. According to the
method described by Rogalska [13], we determined the values of doubling time of SKOV-3 cells
cultured in NG (28 h) and HG (41 h). As displayed in Figure 1A, exposure to 10 mM metformin in
NG induced a considerable time-dependent growth inhibition. Figure 1B shows the proliferation of
SKOV-3 cells cultured in HG in the presence of metformin. As indicated by the value of doubling time,
SKOV-3 cells cultured in HG needed more time to increase their number two times. This indicates that
exposure to HG caused a decrease in proliferation efficacy of SKOV-3 cells. The growth rate of SKOV-3
cells cultured in HG in the presence of 10 mM metformin was also low. Furthermore, by comparing
proliferation rates (td) in NG and HG, we revealed that HG significantly reduced the antiproliferative
efficacy of metformin in SKOV-3 cells, as presented in Figure 1C.
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Figure 1. Antiproliferative action of metformin in SKOV-3 cells is reduced by hyperglycemia. SKOV-
3 cells were cultured in normoglycemia (A) and hyperglycemia (B) and simultaneously treated with 
10 mM metformin for 24, 48, 72 h. The cell number was determined using the trypan blue method and 
the proliferation rates were calculated (C). NG + M—cells cultured in normoglycemia and treated 
with metformin, HG + M—cells cultured in hyperglycemia and treated with metformin, td—
proliferation rate. Results are presented as means ± SD of four independent experiments. (*) 
Statistically significant differences in comparison to untreated cells at time point “0”, p < 0.05; (#) 
statistically significant differences between the cells exposed to metformin in comparison to 
unexposed cells at the same time point, p < 0.05. 

Figure 1. Antiproliferative action of metformin in SKOV-3 cells is reduced by hyperglycemia. SKOV-3
cells were cultured in normoglycemia (A) and hyperglycemia (B) and simultaneously treated with
10 mM metformin for 24, 48, 72 h. The cell number was determined using the trypan blue method and
the proliferation rates were calculated (C). NG + M—cells cultured in normoglycemia and treated with
metformin, HG + M—cells cultured in hyperglycemia and treated with metformin, td—proliferation
rate. Results are presented as means ± SD of four independent experiments. (*) Statistically significant
differences in comparison to untreated cells at time point “0”, p < 0.05; (#) statistically significant
differences between the cells exposed to metformin in comparison to unexposed cells at the same time
point, p < 0.05.
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2.2. Both HG and Metformin Evoked Morphological Changes of SKOV-3 Cells

The morphology of SKOV-3 cells cultured in NG and HG treated with 10 mM metformin for
24, 48, and 72 h examined under an inverted optical microscope (Olympus IX70, Tokyo, Japan) [14]
is presented in Figures 2 and 3. A small percentage of SKOV-3 cells cultured in NG for 24, 48, and
72 h exhibited morphological changes such as elongation and thinning. In turn, exposure of SKOV-3
cells cultured in NG to metformin pronouncedly increased the number of deteriorated cells in a
time-dependent manner. Elongated, single thin cells were detected after just 24 h of exposure to
metformin and their number increased after prolonged treatment with the drug (Figure 2). In the case
of SKOV-3 cells cultured in HG, morphological changes appeared after 48 h of incubation. Both culture
in HG for 48 h and 72 h caused elongation and thinning of the cells, while we also detected slightly
smaller cells after 72 h. We found distinctly small, elongated and disintegrated SKOV-3 cells cultured
in HG and metformin. Even 24 h exposure to metformin induced deterioration of cells cultured in
HG. We also noted that prolonged treatment with metformin (48, 72 h) led to cell disintegration and
detachment of the cells from the culture well surface (Figure 3).
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Figure 2. The morphology of SKOV-3 cells treated for 24–72 h with metformin (10 mM) in normal glucose 
medium examined under an inverted microscope (Olympus IX70, Japan), (scale bar = 100 μm), 
elongated, thin cells (yellow arrows). 

 

 

Figure 2. The morphology of SKOV-3 cells treated for 24–72 h with metformin (10 mM) in normal
glucose medium examined under an inverted microscope (Olympus IX70, Japan), (scale bar = 100 µm),
elongated, thin cells (yellow arrows).
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elongated, thin cells (orange arrows). 
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and nuclear fragmentation, apoptotic bodies, plasma membrane and cell disintegration. 
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Figure 3. The morphology of SKOV-3 cells treated for 24–72 h with metformin (10 mM) in high
glucose medium examined under an inverted microscope (Olympus IX70, Japan), (scale bar = 100 µm),
elongated, thin cells (orange arrows).

2.3. Metformin Induced Mainly Apoptosis in NG, and Both Apoptosis and Necrosis in HG

Figure 4 depicts the typical early apoptotic, late apoptotic, and necrotic morphological changes of
SKOV-3 cells cultured in NG and HG in the presence or absence of 10 mM metformin. To discriminate
between apoptotic or necrotic SKOV-3 cell death induced by metformin in NG and HG, double staining
with Hoechst 33258 and PI with subsequent microscopic analysis was performed. These fluorescent
dyes emit several types of fluorescence and differ in their ability to penetrate cells. Blue-fluorescent
Hoechst 33258 goes through the intact membrane of live cells and allows for the observation of
apoptosis-related chromatin structure changes. It stains the condensed chromatin of apoptotic cells
brighter than the looser chromatin of normal cells. In turn, viable and early apoptotic cells with intact
cell membranes exclude the red-fluorescent PI. Thus, only late apoptotic and necrotic cells, with the
loss of membrane integrity, take up PI. The following morphological changes are detected by the
double staining with Hoechst 33258 and PI: Chromatin condensation, cell shrinkage and nuclear
fragmentation, apoptotic bodies, plasma membrane and cell disintegration.

A quantitative analysis of the fractions of early apoptotic, late apoptotic, and necrotic cells, is
exhibited in Figure 4A. We found that both SKOV-3 cells cultured in NG and HG did not differ
significantly in the percentage of early apoptotic, late apoptotic and necrotic cells. However, a visible
increase in the percentage of necrotic cells was noted for SKOV-3 cells culture in HG for 72 h. We found
that metformin induced, in a time-dependent manner, both apoptosis and necrosis in SKOV-3 cells
cultured in NG. A significant increase in the number of apoptotic and necrotic cells was observed in
HG-cultured SKOV-3 cells exposed to metformin for 48 and 72 h. In the case of culture in NG, early
and late apoptosis was the major pathway of SKOV-3 cell death caused by metformin. Whereas, a
higher percentage of early and late apoptotic, compared to necrotic cells was detected for SKOV-3 cells
cultured in HG and exposed to metformin for 48 h. In turn, after 72 h of exposure to metformin, we
found a pronouncedly high percentage of necrotic cells in HG-cultured SKOV-3 cells.

The typical early apoptotic, late apoptotic and necrotic morphological changes induced by
metformin in SKOV-3 cells cultured in NG and HG for 48 h are presented in Figure 4B. The small
percentage of dead SKOV-3 cells cultured in NG for 48 h represented apoptotic cells. It seems that there
was an increased percentage of necrotic SKOV-3 cells cultured in HG. To conclude, mainly apoptosis,
rather than necrosis, was involved in the metformin-induced death of SKOV-3 cells cultured both in
NG and HG.
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M—cells cultured in hyperglycemia and treated with metformin. (*) Statistically significant 
differences between the cells exposed to metformin in comparison to unexposed cells at the same time 
points, p < 0.05; (+) statistically significant differences between metformin treated cells in different 
time points, p < 0.05. (B) The morphological changes of SKOV-3 cells, which were cultured in NG and 
HG with and without exposure to 10 mM metformin for 48 h and stained with Hoechst 33258 and PI, 
visualized by fluorescence microscopy (Olympus IX70, Japan; bar 200 μm). 

Figure 4. Metformin induced mainly apoptosis in NG and both apoptosis and necrosis in HG. (A) The
percentage of early apoptotic, late apoptotic and necrotic cells detected at 24, 48, and 72 h of the
culture of SKOV-3 cells in NG and HG in the presence and absence of 10 mM metformin. Results are
presented as means ± S.D. of four experiments. NG—cells cultured in normoglycemia, NG + M—cells
cultured in normoglycemia and treated with metformin, HG—cells cultured in hyperglycemia, HG +
M—cells cultured in hyperglycemia and treated with metformin. (*) Statistically significant differences
between the cells exposed to metformin in comparison to unexposed cells at the same time points,
p < 0.05; (+) statistically significant differences between metformin treated cells in different time points,
p < 0.05. (B) The morphological changes of SKOV-3 cells, which were cultured in NG and HG with and
without exposure to 10 mM metformin for 48 h and stained with Hoechst 33258 and PI, visualized by
fluorescence microscopy (Olympus IX70, Japan; bar 200 µm).
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2.4. Both Metformin and HG Affect Expression of OGT and OGA in SKOV-3 Cells

To explore the role of O-GlcNAcylation in SKOV-3 cell death induced by 10 mM metformin upon
NG and HG, we evaluated the mRNA expression levels of OGT and OGA. The relative OGT mRNA and
OGA mRNA levels are shown in Figure 5. We observed that culture in HG diminished the OGT mRNA
level at each time point studied as compared to culture in NG. In NG-cultured SKOV-3 cells, exposed
to 10 mM metformin, the level of OGT mRNA at 48 h and 72 h was markedly elevated. Whereas,
the level of OGT mRNA seemed to be unaffected by 10 mM metformin in HG-cultured SKOV-3 cells.
The obtained results suggest that HG influenced the level of OGT mRNA more than metformin.

We found that HG did not change significantly the OGA mRNA level in SKOV-3 cells in
comparison to NG. Metformin also did not affect the level of OGA mRNA in SKOV-3 cells cultured in
NG. However, a noticeable decrease in the OGA mRNA level evoked by metformin was observed in
HG at all time points studied.
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Figure 5. Relative (A) OGT (O-linked β-N-acetlyglucosamine transferase); (B) OGA (O-GlcNAcase)
mRNA expression detected after 24, 48, and 72 h in metformin-treated and untreated ovarian cancer cell
line SKOV-3 cultured in NG and in HG. NG—cells cultured in normoglycemia, NG + M—cells cultured
in normoglycemia and treated with metformin, HG—cells cultured in hyperglycemia, HG + M—cells
cultured in hyperglycemia and treated with metformin, (*) Statistically significant differences between
the cells exposed to metformin in comparison to unexposed cells at the same time points, p < 0.05; (#)
statistically significant differences between cells cultured in HG in comparison to those cultured in NG
at the same time-points p < 0.05; (+) statistically significant differences between metformin-treated cells
in HG in comparison to metformin-treated cells cultured in NG at the same time points, p < 0.05.
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2.5. Expression Changes of GLUT1, GLUT3 and HIF1A Evoked by HG and Metformin

The relative GLUT1, GLUT3 and HIF1A mRNA levels are shown in Figure 6A–C. As presented in
Figure 6A,B, it seems that the expression of GLUT1 is significantly higher than the expression of GLUT3
in SKOV-3 cells. This observation may suggest that GLUT1 plays a dominant role in glucose transport
in SKOV-3 cells. The relative expression of GLUT1 did not change significantly in HG compared
to NG. However, exposure to metformin for 48 and 72 h caused a distinct decreased expression of
GLUT1 in SKOV-3 cell cultured in NG. SKOV-3 cells cultured in HG treated with metformin presented
a decreased expression of GLUT1 after 24 h and unchanged expression at the rest of the time points.
The relative GLUT3 expression was diminished in SKOV-3 cells cultured in HG compared to NG
(Figure 6B). Metformin evoked a significant decrease in the level of GLUT3 mRNA in SKOV-3 cells
cultured in NG for 48 and 72 h. It seems that the drug did not influence the expression of GLUT3 in
HG-cultured cells.
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significant differences between cells cultured in HG in comparison to those cultured in NG at the same
time points p < 0.05; (+) statistically significant differences between metformin-treated cells in HG in
comparison to metformin-treated cells cultured in NG at the same time points, p < 0.05.

We observed that the culture of SKOV-3 cells in HG affected the expression of HIF1A in
comparison to the culture in NG. We found that the level of HIF1A mRNA diminished in SKOV-3 cells
in NG, especially at 72 h. On the contrary, in SKOV-3 cells cultured in HG for 72 h, the HIF1A level was
elevated (Figure 6C). Interestingly, both in the case of SKOV-3 cells cultured in NG and HG, metformin
reduced the expression of HIF1A, in the normoglycemic condition after 24 and 48 h of exposure to
metformin and in the hyperglycemic condition after 48 and 72 h of treatment with metformin.

3. Discussion

According to the American Cancer Society, ovarian cancer ranks fifth in cancer deaths among
women, accounting for more deaths than any other cancer of the female reproductive system.
This cancer mainly develops among older women, especially after menopause. The incidence of
type 2 diabetes grows with age, therefore, the coexistence of ovarian cancer and diabetes also increases
with age. The major symptom of diabetes—chronic hyperglycemia—may significantly influence the
effectiveness of ovarian cancer chemo- and radiotherapy. Metformin, the first line hypoglycemic agent
in the therapy of Type 2 diabetes mellitus (T2DM), was demonstrated to inhibit the growth of various
cancers. Therefore, we aimed to evaluate the anticancer efficacy of metformin toward human ovarian
cancer cells cultured in normoglycemia and hyperglycemia. Since glucose exposure causes metabolic
alteration that affects O-GlcNAcylation and HIF1A pathway, we examined the expression of OGT,
OGA, HIF1A, GLUT1, and GLUT3.

Interestingly, we found that the proliferation of SKOV-3 cells cultured in hyperglycemia was
significantly lower in comparison to normoglycemia. This is unusual for cancer cells because it is
widely accepted that high glucose stimulates proliferation by satisfying energy and carbon needs [15].
Since O-GlcNAcylation is sensitive to metabolic state and is involved in tumor growth in vitro [16],
we determined the expression of OGT and OGA mRNA. We found that HG caused a significant
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decrease in the expression of OGT and a slight increase in OGA in SKOV-3 cells. Thus, our results
suggest that lower proliferation of SKOV-3 cells exposed to HG may be associated with a decrease in
O-GlcNAcylation. It is contrary to the general view that by reducing O-GlcNAcylation (via a decrease
in OGT) tumor growth is inhibited [10].

We demonstrated that cytotoxic action of metformin on SKOV-3 cells was significantly reduced
in HG in comparison to NG. This result is in agreement with findings reported by others, who
found a decreased anticancer efficacy of metformin in breast cancer cells cultured in HG (MCF7,
MDAMB231 and SKBR3) [17]. In addition, the reduced efficacy of other chemotherapeutics was
also reported for liver cancer cells (HepG2, Bel-7402) cultured in HG [16]. Ikemura noted that in
diabetic mice, the growth of adenocarcinoma in the colon was slower and that chemotherapy with
oxaliplatin and fluorouracil was less effective [18]. According to Zhuang, high glucose provides fuel
for glycolytic metabolism that maintains ATP levels in the cell despite inhibition of mitochondrial
oxidative metabolism by metformin. As glucose is consumed and AMPK is not effectively activated by
metformin, cancer cells do not have enough fuel to maintain glycolytic metabolism. As a result, ATP
drops in the cell, leading to energy collapse and cell death [19]. In turn, Karnevi provided molecular
evidence that the decreased anticancer action of metformin in pancreatic cancer cells exposed to HG
involved the insulin/insulin-like growth factor-1 (IGF1) pathway. Exposure to high glucose levels
promoted IGF-1-mediated PKB (protein kinase B, Akt) activation, which correlated with stimulated
AMPKSer485 phosphorylation and impaired AMPKThr172 phosphorylation, resulting in reduced
anti-proliferative and apoptotic effects by metformin [20].

The next step of our research was to identify the potential mechanism responsible for different
types of metformin’s cytotoxicity toward SKOV-3 cells in NG and HG. As O-GlcNAcylation is sensitive
to metabolic alteration, we examined the expression of O-GlcNAcylation regulators. We found a
significant increase in the level of OGT mRNA in SKOV-3 cells cultured in NG and exposed to
metformin. This observation may be a result of AMPK activation by metformin. Evidence indicated
that AMPK directly phosphorylates OGT and increases its level [21,22]. Interestingly, our results
revealed that the expression of OGT in cells exposed to both HG and metformin or only exposed to HG
was pronouncedly diminished. These observations may suggest that HG changes O-GlcNAcylation
status in SKOV-3 cells more than metformin. The O-GlcNAcylation status strictly depends on the
balance between the level of OGT and OGA. The effect of metformin alone and HG alone on the
expression of OGA was small. However, Pagesy detected a significantly elevated OGA level in diabetic
patients [23]. In turn, simultaneous exposure to HG and metformin of SKOV-3 cells was associated with
a marked decreased expression of OGA in comparison to SKOV-3 cultured only in NG or cultured in
NG and metformin. These results may imply that metabolic stress caused by HG and metformin affects
OGA level and thereby may play a significant role in the O-GlcNAcylation status in SKOV-3 cells.

A cancer cell presents metabolic reprogramming, which is manifested by alterations in numerous
signaling pathways. One of them is the HIF1A pathway that is launched by the hyperactive mTOR
pathway in different cancer cells, including ovarian cancer [6,7,24]. The HIF1A pathway was also
found to be elevated as a result of increased O-GlcNAcylation (via increased OGT) in response to
metabolic alteration [9,10]. HIF1A mediates the adaptation of cells to low oxygen, mainly through
upregulation of its effectors participating in glycolytic metabolism with the glucose transporter family
(GLUT) at the head. The influence of glucose concentration on HIF1A expression was reported to
be dependent on the cell type [25]. In our study, we demonstrated that SKOV-3 cells cultured in
HG displayed lower expression of HIF1A and GLUT3 and an unchanged expression of GLUT1 in
comparison to cells cultured in NG. The obtained results indicate that the effect of metformin on the
HIF1A pathway was dependent on glycemic condition. In SKOV-3 cells cultured in NG we observed
that metformin decreased the expression of HIF1A, GLUT1 and GLUT3. This is consistent with the
result found by Alves in Sertoli cells, which revealed metformin enhanced glycolytic flux [26]. Wang
found that by reducing HIF1A, the level of GLUT1 also decreased in human glioblastoma cells [27].
In turn, it was demonstrated, that metformin inhibited HIF1A and suppressed the expression of
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glucose transporters (GLUT1, GLUT3) and regulatory enzymes of the glycolytic pathway in cervical
tumor cells [28]. Oppositely, in SKOV-3 cells cultured in HG, metformin slightly diminished HIF1A
expression and did not influence GLUT1 and GLUT3 expression. Consistently, Qi demonstrated that
in oral squamous cell carcinoma cells metformin significantly reduced the expression of HIF1A [29].
In agreement with our data, Ece reported a significantly decreased level of HIF1A in patients with
type 2 diabetes and breast cancer receiving metformin [30]. It is believed that metformin specifically
reduces HIF1A expression as a result of the inhibition of ATP synthesis and this action is independent
of AMPK activation [31]. Interestingly, Xiao indicated that HG, via the generation of reactive oxygen
species, is responsible for the reduced expression and activation of HIF1A [25]. It is clearly seen that
the influence of metformin on the expression of GLUT1 and GLUT3 in SKOV-3 cells cultured in HG
is negligible. Taken together, these observations suggest that, despite decreasing HIF1A expression,
metformin may not run glycolytic flux in SKOV-3 cells cultured in HG.

Multiple clinical trials indicate that metformin reduces the risk of cancer development in
diabetic patients [32]. Furthermore, metformin was found to inhibit the progression of various
cancers, including ovarian cancer. Kumar showed in a case-control study that patients with ovarian
cancer treated with metformin had a significantly better 5-year survival (disease recurrences and
cancer-specific mortalities) in comparison to patients with ovarian cancer not taking metformin [33].
However, little is known about metformin action in patients suffering from ovarian cancer without
diabetes. Currently, a phase II clinical trial is ongoing to assess whether the addition of metformin
to standard chemotherapy improves survival in non-diabetic ovarian cancer patients (NCT02122185;
clinicaltrials.gov). The results of our current in vitro study revealed that metformin inhibited
proliferation and promoted apoptosis of SKOV-3 cells more efficiently in normoglycemia than in
hyperglycemia. Our findings are in line with previously reported evidence showing that low glucose
intensifies metformin cytotoxicity toward breast and thyroid cancer cells [34,35]. The mechanism by
which the glucose level influences metformin action is being investigated. Zhuang suggested that
low glucose in the medium triggered metformin mediated ATP depletion and cell death by reducing
metformin-stimulated glycolysis [19]. Furthermore, recently, Tang demonstrated that metformin
induced apoptosis and inhibition of ovarian cancer cell growth was associated with a stronger
AMPK activation by metformin in a low glucose medium, in comparison to a high glucose medium.
They showed that metformin action involved epigenetic alteration since the treatment with the drug
significantly reduced histone H3 lysine 27 trimethylation and polycomb repressor complex 2 (PRC2)
levels [36]. All together, these findings support the need for the evaluation of metformin efficacy for
the treatment of patients with ovarian cancer without diabetes.

To conclude, our results indicate that metformin exhibits direct antitumor action on ovarian
cancer SKOV-3 cells. The anticancer efficacy of metformin is higher when ovarian cancer cells were
cultured in NG in comparison to culture in HG. To the best of our knowledge, this is the first study
presenting that the response of SKOV-3 cells to metformin depends on the level of glycemia, which
affects diversely OGT and OGA expression and O-GlcNAcylation status. Therefore, HG dysregulates
O-GlcNAcylation and the related HIF1A pathway, thus preventing metformin-stimulated inhibition of
growth and proliferation of SKOV-3 cells. The summary of our findings is presented in Figure 7.
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Cells were cultured in growth medium with 5 mM glucose for 24 h before switching to 25 mM 
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Figure 7. Metformin acts through a HIF1A/GLUT-dependent mechanism in SKOV-3 cells. The response
of ovarian cancer cells to metformin depends on the level of glycemia, which affects diversely OGT
and OGA expression and O-GlcNAcylation status. In NG, metformin increases the expression of OGT
and downregulates HIF1A and GLUT expression leading to SKOV-3 cell apoptosis. HG dysregulates
OGT and OGA expression and related HIF1A and GLUT expression preventing metformin-stimulated
inhibition of growth and proliferation of SKOV-3 cells. Black arrows (HG conditions), blue arrows
(NG conditions)—the height of arrow indicates intensification and direction of apoptotic changes,
morphological changes and expression of the examined genes.

4. Material and Methods

4.1. Reagents

Metformin, trypsin-EDTA, and Trizol® Reagent were supplied by Sigma (St. Louis, MO, USA).
Glucose free RPMI 1640 and fetal bovine serum (FBS) were supplied by Cambrex (Basel, Switzerland)
and Life Technologies (Carlsbad, NM, USA). High Capacity cDNA Reverse Transcription Kit, TaqMan®

Gene Expression Assays, and TaqMan Universal PCR MasterMix were obtained from Life Technologies
USA. All other chemicals and solvents were of high analytical grade and were supplied by Sigma or
POCH S.A. (Gliwice, Poland).

4.2. Cell Culture and Treatment

The human SKOV-3 cell line used in the experiments was obtained from the American Type
Culture Collection (ATCC) based in Rockville, MD, USA. The cells were grown in a monolayer at
37 ◦C in a 5% CO2 atmosphere in RPMI 1640 medium supplemented with 10% heat inactivated FBS,
penicillin (10 U/mL) and streptomycin (50 µg/mL). In order to obtain normal glucose conditions (NG,
5 mM) and hyperglycemic conditions (HG, 25 mM), D-glucose was added to glucose-free RPMI 1640.
Cells were cultured in growth medium with 5 mM glucose for 24 h before switching to 25 mM glucose.
Then, the SKOV-3 cells were maintained for at least 1 day in NG or for 2 days in HG to achieve a
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logarithmic growth phase. The effect of metformin on the viability of SKOV-3 cells was determined by
the MTT test (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) as described previously.
We found that the ≥5 mM concentration of metformin evoked a significant decrease in the viability of
SKOV-3 cells and the IC50 value was designated as 14 mM [13]. For further experiments, we chose a
metformin concentration of 10 mM, which corresponded to a SKOV-3 survival rate of more than 60%
of cells in relation to untreated cells. Finally, the cells were cultured under normo- and hyperglycemic
conditions with or without metformin. The medium was changed every 24 h. The cells were routinely
screened for Mycoplasma contamination.

4.3. Determination of Proliferation Rate

To determine the SKOV-3 cell proliferation rate we employed the trypan blue exclusion
method [37]. Live cells possess intact cell membranes that are impermeable to trypan blue and
exclude the dye. After mixing the cell suspension with the trypan blue solution, a viable cell will
have a clear cytoplasm whereas a nonviable cell will have a blue cytoplasm. The SKOV-3 cells were
seeded at a density of 2× 105 per sample in growth media with 5 mM glucose for 24 h. Hyperglycemia
was achieved by transferring cells from a 5 mM glucose medium to a medium containing 25 mM
glucose. The adaptation time to the glycemic condition was 24 h. Then, the cells were cultured in
NG for 24 h and HG for 48 h to reach the logarithmic growth phase. Then, metformin was added
to obtain a final concentration of 10 mM. To calculate the proliferation rate, the cells were counted
after 24, 48, and 72 h of exposure to metformin. Briefly, 4% trypan blue solution was mixed with
the cell suspension in a ratio of 1:1, transferred to the chamber of Thoma and viable/nonviable cells
were counted under an optical microscope. Based on the number of cells at the beginning and at
each studied time point, we calculated the doubling time using the following formula td = t/log2
(Nt/N0), where td is time required for duplication of cell number, t is the time interval between the
initial and final calculation of cell number, N0 and Nt are cell numbers at the beginning and the end of
the experiment, respectively [38,39].

4.4. RNA Isolation and cDNA Synthesis

Total RNA was isolated using Trizol® Reagent (Sigma-Aldrich, St. Louis, MO, USA) according
to the manufacturer’s protocol. An RNA ratio of 260/A280 ≈ 2.0 was considered as pure.
Complementary DNA (cDNA) was synthesized using the High-Capacity cDNA Reverse Transcription
Kit (Life Technologies, Grand Island, NY, USA) following the manufacturer’s instructions. cDNA
synthesis was performed in a 20 µL volume that included 10 µL of total RNA (2 µg), 2 µL 10× RT
Buffer, 0.8 µL of 25× dNTP Mix (100 mM), 2 µL 10× RT Random Primers, 1 µL of RNase Inhibitor,
1 µL of MultiScribe™ Reverse Transcriptase and 3.2 µL of nuclease-free water. The profile of time and
temperature was as follows: 10 min at 25 ◦C, 120 min at 37 ◦C and 5 min at 85 ◦C.

4.5. Quantitative Real-Time RT-PCR (RT-qPCR)

Real-time gene expression analysis of target genes: OGT, OGA, SLC2A1 (GLUT1), SLC2A3
(GLUT3), HIF1A was performed using TaqMan® Gene Expression Assays according to the
manufacturer’s instructions. The HPRT1 (hypoxanthine phosphoribosyltransferase 1) gene was
used as an internal control. The following assays were used to determine gene expression:
OGT—Hs00269228_m1; OGA—Hs00201970_m1; SLC2A1-Hs00892681_m1; SLC2A3—Hs00359840_m1;
HIF1A—Hs00153153_m1; HPRT1—Hs02800695_m1. PCR reactions were performed in a 10 µL volume
that included 5 µL of 2× TaqMan Universal PCR MasterMix, 3.5 µL of water, 1 µL cDNA template
(50 ng) and 0.5 µL of TaqMan® Gene Expression Assay. The RT-qPCR reaction was carried out using
the Mastercycler ep realplex. Relative RNA quantification was performed using the ∆Ct method. ∆Ct
(Cttargeted gene − CtHPRT1) values were recalculated into relative copy number values (number of target
gene mRNA copies per 1000 copies of HPRT1 mRNA).
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4.6. Morphological Assessment of Apoptosis and Necrosis

To determine the ratio between viable apoptotic and necrotic cell fractions, simultaneous cell
staining with Hoechst 33258 and PI (propidium iodide) was conducted. These fluorescent dyes vary
in their spectral characteristics and ability to penetrate cells. The analysis was performed with a
fluorescence microscope (Olympus IX70, Tokyo, Japan). The morphological changes were detected at
24, 48, and 72 h of exposure to normoglycaemia and hyperglycemia with or without 10 mM metformin.
At each time point studied, cells were removed from culture dishes by trypsinization, centrifuged and
suspended in PBS to obtain 1 × 105 cells/mL. To 100 µL of cell suspension, 1 µL of Hoechst 33258
(0.13 mM) and 1 µL of PI (0.23 mM) were added and the cells were incubated at room temperature for
10 min in the darkness [40]. At least 300 cells were counted on each slide and each experiment was
done in triplicate.

4.7. Statistical Analysis

Data were expressed as mean ± SD. Two-way analysis of variance was used. Statistical
calculations were performed using STATISTICA ver.11. A p-value of <0.05 or <0.01 was considered
as significant.
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