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Abstract: Application of protocols without parameter standardization and appropriate controls has
led manual therapy (MT) and other physiotherapy-based approaches to controversial outcomes.
Thus, there is an urgency to carefully define standard protocols that elevate physiotherapy treatments
to rigorous scientific demands. One way in which this can be achieved is by studying gene expression
and physiological changes that associate to particular, parameter-controlled, treatments in animal
models, and translating this knowledge to properly designed, objective, quantitatively-monitored
clinical trials (CTs). Here, we propose a molecular physiotherapy approach (MPTA) requiring
multidisciplinary teams, to uncover the scientific reasons behind the numerous reports that
historically attribute health benefits to MT-treatments. The review focuses on the identification
of MT-induced physiological and molecular responses that could be used for the treatment of
fibromyalgia (FM) and chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). The systemic
effects associated to mechanical-load responses are considered of particular relevance, as they suggest
that defined, low-pain anatomic areas can be selected for MT treatment and yet yield overall benefits,
an aspect that might result in it being essential to treat FM. Additionally, MT can provide muscle
conditioning to sedentary patients without demanding strenuous physical effort, which is particularly
detrimental for CFS/ME patients, placing MT as a real option for integrative medicine programs to
improve FM and CFS/ME.

Keywords: fibromyalgia (FM); chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME);
manual therapy (MT); clinical trials (CTs); integrative medicine; physiotherapy

1. Introduction

Fibromyalgia (FM), according to the International Classification of Diseases, Tenth Revision,
Clinical Modification (ICD-10-CM) M79.7, including fibromyositis, fibrositis and myofibrositis, is
described as a chronic disease of unknown origin, leading to low pain threshold, together with
stiffness and tenderness of the muscles, often accompanied with general fatigue, sleep disturbances,
headaches, and memory loss [1–4]. Similarly, chronic fatigue syndrome/myalgic encephalomyelitis
(CFS/ME) (ICD-10-CM R53.82 or G93.3 if post-viral) is defined as an acquired complex multisystem
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disease with characteristic clinical features that include exercise-induced fatigue, post-exertional
malaise (PEM)/symptom exacerbation, cognitive dysfunction, orthostatic intolerance, on-going
flu-like symptoms, and unrefreshing sleep, in conjunction with others [5,6]. Often FM, and CFS/ME
show overlapping symptoms as FM patients experience chronic fatigue, and CFS/ME suffers from
muscle tenderness and pain; thus, some authors have posited they are part of the same somatic
syndrome [7,8]. In support of this hypothesis a recent analysis by Natelson et al., reports increased
ventricular cerebrospinal fluid lactate levels in patients of CFS/ME, FM or both, with respect to healthy
participants [9]. However, differences across a number of clinical and biological parameters, such
as PEM and autonomic function [10–12], hormone system unbalance [13,14], gene expression and
cytokine profiles [15], and blood microRNA (miRNA) levels [16–19], suggest that the underlying
pathophysiology in FM may differ from that of CFS/ME.

Current pharmacological treatments for patients suffering from FM and/or CFS/ME are mainly
directed to palliate some symptoms [20–22], as clinical trials (CTs) have failed to conclusively
provide overall benefits, together with no associated harms. Some treatments, however, seem to
support significant improvement for certain patient subgroups. This seems to be the case for the
N-methyl-D-Aspartate (NMDA) antagonist memantine [23] or the dopamine 3 receptor agonist
pramipexole [24] for the treatment of FM and the anti-CD20 antibody Rituximab directed to B-cell
depletion [25] for treatment of CFS/ME. In this last case, caution is recommended as in vitro treatment
of natural killer (NK) cells with the agent leads to significant decreases in NK lysing activity and a
significant increase in cell degranulation, suggesting that Rituximab may be toxic for NK cells [26].
A more promising option for the treatment of CFS/ME is provided by the CTs using the Toll-like
Receptor TLR-3 agonist rintatolimod (Poly I:C(12)U), which activates interferon-induced proteins,
showing medically significant improvement in some cohorts of participating patients [22,27].

Alternative, non-pharmacological therapeutics, have also been extensively studied. Cognitive
behavioral therapy (CBT) seems to lead to small benefits over control interventions in reducing pain,
negative mood, and disability at the end of treatment, and at long-term follow-up in FM patients, as
reported by 23 randomized controlled trials, including 1073 patients receiving CBT and 958 patients in
control groups [28]. Although mindfulness meditation may be helpful in improving pain perception, it
does not suffice for patients to recover their previous daily activity.

Another non-pharmacological option is provided by gradual exercise therapy (GET). FM patients
are able to engage in moderate to vigorous exercise; however, they experience difficulties performing
and adhering to even moderate intensity regimes because of increased FM symptoms associated with
exercise [29]. Benefits from CBT/GET therapy have also been reported for CFS/ME patients by other
CTs (the PACE trials) including 160 participants per group, when compared to specialist medical care
(SMC) alone or adaptive pacing therapy (APT) [30]. The authors of the PACE trials claim that the
beneficial effects were maintained for one year at long-term follow-up, with a median of 2.5 years
after randomization [31]. However, serious study design concerns have been raised by the scientific
community regarding the inappropriate case definition of enrolled participants, scores that do not
support significant improvement of fatigue and physical functioning at long-term, plus data indicative
of subjective improvement by specialist medical care and APT to the same level as by CBT and GET, or
without any additional therapies [32,33].

Even if exercise, which has shown promise in treating symptoms of centralized pain [34], could
benefit FM and CFS/ME symptoms, the fact that exercise induces muscle pain and triggers exacerbated
malaise in CFS/ME, makes this option unfit for these patients. Physiotherapy-based treatments, such
as manual therapy (MT), on another end, might help providing exercise-like effects on treated tissues,
as for example, increasing blood flow and/or increased muscle tone, without any physical activity
demand from the patient, and thus, contrary to GET, should not compromise patient´s health. At the
same time, and similarly to CBT, MT might engage patient´s mind into relaxation, boosting happiness.

To date, MT protocols, as most physiotherapeutic treatments, are poorly defined and yet, some
CTs report benefits for massage therapy. For example, a systematic review and meta-analysis of
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randomized clinical trials (RCTs) by Li, Yuan et al., show that MT with duration ≥5 weeks leads to
improvement in pain, anxiety, and depression in FM patients [35,36]. MT also seems to trigger positive
effects on physical symptoms in CFS/ME, including depression, fatigue, pain, and insomnia [37–39],
suggesting that MT could be used for therapeutic purposes by itself, or in combination with current
symptomatic pharmacology as part of integrative medicine programs.

The purpose of this review is to allocate a potential mechanism rationale for the effective treatment
of FM and CFS/ME by MT. Future MT treatment protocols are expected to be capable of managing the
symptoms that compromise daily activities in these patients and improve FM and CFS/ME health
status in general. Towards this end, we have reviewed available preclinical mechanistic evidence from
physical treatments of animal models, and identified molecular changes associated to MT parameters
that could improve immune, cognitive and muscular dysfunctions on one side and alleviate pain on
another (see Table 1), in an effort to build the initial basis for standardized therapeutic MT protocols to
treat patients affected of FM and/or CFS/ME.

Table 1. Summary of studies showing relevant preclinical data for initial MPTA (molecular
physiotherapy approach) MT-based therapeutics.

Organism Treatment Parameter Markers Tissues/Cells
Affected Contral. Cites

Rattus norvegicus CCL mimetic device Pressure CCR2, ILT3, CD74,
LYZ2/CD68 & CD163

Immune/skeletal
muscle Yes [40]

Mus musculus Massage-like
stroking Massage

T cell
numbers/noradrenaline

levels
Immune/endocrine Unknown [41]

Rattus norvegicus Electro-mechanical
loading system

Knee
loading Tph2, Sim1, Pet1 Brain stem Unknown [42,

43]

Mus musculus Ferrogels driven by
external magnets Pressure Intramuscular [O2] Immune/skeletal

muscle No [44]

Rattus norvegicus CCL mimetic device Pressure Anabolism/Pax7 Skeletal muscle Yes [45]
Mus musculus

(mdm)
Ex vivo mechanical

stretch Stretching MechanomiRs/microRNA
machinery Skeletal muscle Unknown [46]

(“CCL” stands for cyclic compressive loading “Contral.” refers to contralateral effects of treatments).

It would be appropriate that future MT studies for the treatment of FM and CFS/ME are designed
on the basis of quantitative objective traits associated to rigorously defined protocols. Validation
of efficacy and optimization through CTs must demand close control of selected molecular or other
disease-associated quantitative markers to objectively track individual responses of FM and CFS/ME
patients to the received MT treatments.

2. Molecular Determinants of MT: Lessons from Animal Models and Mimetic Devices

MT comprises a set of therapies based on the manual manipulation of joints and soft tissues, with
the purpose of relieving pain, reducing inflammation, eliminating muscular contractures, increasing
the range of motion (ROM), facilitating movement, etc. and ultimately, restoring health. It covers a very
diverse range of techniques such as massage, muscular stretching, manipulations, and mobilizations
among others.

Stretching protocols are amply used on body muscle tendon-units to gain flexibility and ROM
of joints to improve or maintain health [47]. Due to our final purpose: treatment of main symptoms
in FM and CFS/ME with standardized effective protocols, we will concentrate our attention on the
available evidence for passive muscle stretching, defining it as a MT procedure that is effected by a
professional physiotherapist on the patient.

The other variant of MT that will be covered in this review is massage. Massage has been defined
by Cafarelli and Flint, as a mechanical manipulation of body tissues with rhythmical pressure and
stroking for the purpose of promoting health and well-being [48]. It is applied on soft tissues: skin,
muscle, and conjunctive or connective tissue, sometimes with the help of mechanical or electrical
devices to pursue various purposes, therapeutic included. There are different massage maneuvers
(rubbing, friction, kneading, pressures, percussions, and vibrations) in relation to variables such as
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duration, frequency, repetitions, or pressure. Different benefits have been attributed to various massage
maneuvers, for example, massage with moderate pressure seems to increase vagal tone and also be
essential for stimulating subcutaneous mechanoreceptors that send pain relief signals to the brain and
release de-stressing neurochemicals, such as serotonin and dopamine [49,50].

MT treatments are associated with mechano-transduction, a general biophysical process, by which
cells are capable of sensing their physical environment and translating those cues into biochemical
signals, such as shifts in intracellular calcium concentration, alteration of gene expression profiles,
and the induction or repression of signaling pathways that finally lead to morphological and/or
physiological changes [51,52], which may lead to therapeutic effects.

Knowledge of the parameter-dependence that MT programs induce on treated tissues, at the
molecular level, should, therefore, allow for the development of rigorous and standardized effective
protocols (i.e. MPTA), providing health benefits to FM, CFS/ME and other patients. An initial step to
acquire this knowledge on the MT-treated tissues involves evaluating profiles of gene expression of
healthy tissues before and after particular carefully defined procedures.

Methodological limitations apply to these studies with human subjects that are related not only
to ethical concerns for sampling, but also to the application of the technique, such as the amount of
load applied, and the frequency and duration of sessions. To overcome these limitations, preclinical
animal trials with mimetic devices are being performed to identify molecules or biological patterns
of interest in the target tissue to, optimally, translate the identified markers to a liquid biopsy test for
human CT monitorization. With this final goal in mind, and a focus in particular disease problems, we
proceed to summarize the molecular information of MT treatments in animal models that might be of
relevance for the treatment of FM and CFS/ME (please use Table 1 as a guideline for this section).

2.1. The Neuroimmune Impact of MT

A group of researchers led by Dr. Dupont-Versteegden has objectively shown the effects of
massage on healthy, unperturbed skeletal muscle on the modulation of key immune cells involved in
the inflammatory response. For that purpose, the authors used Wistar rats (N = 24) and performed
histological and microarray analysis on the tibialis anterior muscle after cyclic compressive loading
(CCL). They used a custom-fabricated massage mimetic device to standardize and control the amount
of load applied, the frequency and duration of sessions.

The instrument consists of a spring-load mechanism allowing a cylinder (the load) to press and
roll over a mass of tissue with an oscillating movement. Treatment for 30 min, once a day, for four
consecutive days, using different loading conditions (1.4 to 11N), showed load-dependent molecular
and cellular abundance changes of CD68 and CD163 positive subpopulations, with respect to sham
loading controls. Moreover, load-independent changes were also evidenced on the non-CCL treated
contralateral limb, indicating a systemic response of the massage-mimetic treatment [40]. From
the 47% of the functional gene ontology clusters associating with immune response after CCL, the
authors validated the chemokine (C-C motif) receptor CCR2, a critical regulator of skeletal muscle
regeneration [53,54]; the leukocyte immunoglobulin like receptor B4 (Lilrb4a), alias ILT3, thought
to control inflammatory responses and limit auto-reactivity through Treg enhancement [55]; the
major histocompatibility complex (class II) molecule Cd74, an important regulator of immunity
and inflammation with an impact on the cell endosomal compartment [56]; and the lysozyme
2 (Lyz2) gene involved in activities such as reducing the presence of proinflammatory cytokines
(TNF-α, IL-6, INF-γ, IL-8 and IL-17) while increasing levels of anti-inflammatory cytokines (IL-4 and
TGF-β) [57]; by the cost-effective alternative approach RT-qPCR (real time polymerase chain reaction
after retro-transcription).

This entitles a rather easy implementation of molecular marker monitorization in follow-up
studies, allowing the translation of these results to the clinic. Moreover, all these molecular changes
appeared unaffected in low load treatments (1.4 N) and upregulated by medium load treatments
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(4.5 N), indicating that a minimum pressure is required to register the effect. High-load treatments (11
N) showed extracellular edema and different patterns that fit with induced muscle damage.

In rats, CD68+ and CD163+ macrophage subpopulations correspond to pro-inflammatory
(M1) and anti-inflammatory (M2) subtypes, formerly known as ED1+ and ED2+, respectively.
Macrophages expressing pro-inflammatory M1 markers preferentially associate with proliferating
muscle-precursor satellite cells, whereas macrophages mainly express anti-inflammatory M2
phenotype on myogenic differentiation stages [58]. This, together with the fact that CCR2 null
mice display retarded inflammatory process and deficient muscle regeneration characterized by poor
macrophage recruitment and adipocyte infiltration [53,54,59], suggests that, in fact, the CCL treatment
studied by Dr. Dupont-Versteegden´s group [40] induces muscle regeneration.

Another study in C57/BL6 mice reports that massage-like stroking boosts thymic and splenic
T cell numbers with statistical significant changes in double positive CD4+ CD8+ T-cells, as well as
in single positive CD4+ or CD8+ cells. This increase in cell counts was correlated with decreased
noradrenaline levels and reduced noradrenergic nerve fibers of the thymus and spleen, possibly
mediated by chatecholamines, even partially reverting the immunosuppressive effect of hydrocortisone
on CD4+ CD8+ T cells [41], indicating that massage may support recovery of immune function in
individuals affected with immunodepression.

The group led by Yokota, on another side, used a commercial knee electro-mechanical loading
system (ElectroForce 3100, Bose Corporation, Eden Praire, MN, USA) which applies lateral loads to the
knee to induce anabolic responses in the skeleton [60,61] to study the effects of this treatment in rat
brains [42]. The rationale behind their hypothesis derived from the observation that physical activities,
regularly involving application of a mechanical load on the skeleton, seem to have a stimulatory
role in pain control, neural regeneration and synthesis of neurotransmitters [43,62,63]. The authors
show that by using RT-qPCR, western-blot and immunohistochemistry analysis, that knee loading of
1 N at 5Hz for 1500 cycles and a 5 min treadmill running (positive control) upregulated messenger
RNA (mRNA) levels of tryptophan hydroxylase 2 (Tph2) in the raphe nuclei of brain stem, the site
of serotonin synthesis in the brain, in reference to sham load and 90 min tail suspension (stressed
negative control) [42]. In addition, these authors showed that the mRNAs encoding two transcription
factors of the Tph2 gene (Sim1 and Pet1) were significantly upregulated by this knee-loading treatment
as well [43]. Reduced serotonin or Tph2 expression have been linked to depression, schizophrenia, and
Alzheimer’s dementia-associated neurodegeneration [64–66], suggesting that restoration of serotonin
levels through mild knee-loading may have therapeutic effects for these disorders.

2.2. Effects of MT in Muscle Regeneration

In 2016, the group led by David J. Moone evaluated the regeneration of severely injured muscle
by cyclic mechanical compressions driven by the combined use of external magnets and biphasic
ferrogels, as an alternative mode to delivering a variety of growth factors, such as insulin-like growth
factor or IGF, fibroblast growth factor-2 or FGF-2, among others [44,67]. The study was based on the
observation that skeletal muscle and satellite cells are sensitive to biophysical micro-environmental
cues, such as mechanical loading and stretch-associated progenitor activation [45,68]. The treatment
consisted of stimulations at 1 Hz for 5 min every 12 hr by approaching and retracting a magnet to the
tibialis anterior muscle subcutaneously implanted ferrogel on a murine model of myotoxin-induced
or hind limb ischemia. Damaged muscle in these models lead to substantial muscle necrosis, fibrosis
and contractile function loss if left untreated. The results showed that 2 weeks after treatments, mice
presented greater mean muscle fiber size than the untreated, and an approximate 3-fold increase
in maximum contractile force, indicative of effective muscle regeneration. Interestingly, the effect
involved only the treated extremity and led to a reduction of M1 macrophages in the tissue, suggestive
of a potent immune modulatory role for cyclic mechanical compressions. This treatment induced a
temporary increase in intramuscular oxygen concentration which remained elevated until stimulation
ceased. However, angiogenesis remained unaffected by the treatment according to unaltered average
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capillary density in muscle sections and no differences were observed for the endothelial marker
CD31 [44].

Also recently the group of Dupont-Vergesteegden used their CCL device (4.5 N load at 0.5 Hz
frequency for 30 min every other day for four bouts during a regrowth period of eight days) on
hindlimb unloaded Fischer-Brown Norway rats, finding that the CCL treatment applied induced an
anabolic response in muscles helping them regrow after an atrophy-inducing event. These authors
conclude that massage can be used as an intervention to aid in the regrowth of muscle lost during
immobilization, thus, MT-based programs that include medium load pressure may help recover muscle
mass in sedentary deconditioned individuals such as patients severely affected of FM and/or CFS/ME.
Interestingly, they also found that the contralateral non-massaged limbs exhibited a comparable 17%
higher muscle fiber size compared to reloading alone suggestive, as formerly observed for other
markers, of a systemic effect of CCL. The authors indicate that the mechanism could, at least in part,
be mediated by the presence of Pax7+ cells induced by the CCL treatment [45].

PAX7 expression, a satellite cell marker and transcription factor associated to muscle
differentiation, is regulated by microRNA-431 in that tissue. Interestingly enough, miR-431 attenuates
the muscular dystrophic phenotype in mdx mice (a model of Duchenne muscular dystrophy) and has
been proposed as a potential therapeutic target in muscular diseases [69]. In addition, miR-431 is a key
post-transcriptional regulator for axon regeneration, during neural development, for brain function,
and in neurological diseases [70], although this aspect has not yet been explored in relation to MT.
Also, PAX7’s function is conditioned by post-translational modifications such as SUMOylation [71].
Further work is required to more clearly understand the link between MT therapeutic effects and this
molecular marker.

MicroRNAs currently comprise a collection of 4690 unique small RNA sequences (miRbase v22)
of 20–24 nucleotides that work as epigenetic regulators of gene expression, mainly by inducing the
degradation of their target mRNAs [72,73]. Their stability and their potential to control different
targets has attracted their study as potential sensors of biological processes and, thus, as biomarkers of
disease. The fact that molecular alterations precede physiological and morphological changes in the
cell and that miRNAs can be accurately quantitated by relatively easy cost-effective methods should
make them attractive candidates to objectively evidence the impact of MT on the treatment of FM and
CFS/ME.

Along the trend of the knowledge that cells sense their physical environment and that the physical
application of forces translate into changes of patterns in gene expression [51,52], those miRNAs that
are mechanosensitive, meaning that their levels appear regulated by mechanical cues, have been
coined as mechanomiRs [46]. Although the role of cytoskeletal proteins in force transmission and
mechanotransduction is quite well established [46,74], there is a paucity of knowledge regarding
mechanosensitive gene regulatory networks.

The group of Aladin M. Boriek used the mouse mdm (muscular dystrophy or MD with myositis)
model to identify gene regulatory networks in normal and defective organisms using an ex-vivo model
of mechanical stretch (passive stretching of approximately 0.4 N/cm in the longitudinal or transverse
direction to the muscle fibers), as that information could lead to novel therapeutic approaches for
MD. Their genome-wide microarray results show a list of anisotropic regulated mecanomiRs which
are interestingly grouped into clusters of bicistronic or polycistronic transcriptional units from close
genomic loci (<10 kb) suggesting that these mechanomiRs may present similar or coordinated biological
functions [46]. In addition, the authors also found that the stretch applied significantly altered the
microRNA synthesis and processing machinery. In particular, they found that stretching upregulated
the nuclear protein Drosha, the cytoplasmic factor Dicer, the microRNA export protein Exportin-5, and
Argonaut proteins (1–3 and 5) both in wild type (wt) and mdm mice, while not affecting the levels of
the DiGeorge syndrome chromosomal region 8 (DGCR8). Moreover, the overall levels of expression of
these components of the miRNA machinery were significantly higher in mdm than in wt individuals [46],
suggesting a higher sensitivity of this machinery to mechanical stress in neuromuscular disorders.
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Other authors have identified individual mechanomiRs and demonstrated their role in human
disease, as it is the case of miR-146a, which regulates mechanotransduction and pressure-induced
inflammation in cultured human small airway epithelium [75], miR-126, which has been linked
to angiogenesis [76], the let-7 family of miRNAs associated with aging and cancer [77], whose
down-regulation, together with miR-98-5p may compromise satellite cell proliferation and muscle
regeneration capacity [46]. Interestingly some of these mechanomiRs are expressed in non-skeletal
muscles, opening the possibility for liquid biopsy testing of patients subjected to MT. Caution in the
interpretation of miRNAs levels is advised, as their regulatory function will depend on the cell target
and their role is not limited to down-regulating the mRNA of target genes.

2.3. MT Impact on Pain Relief

Since the first animal model of nociception was described in the 19th century [78], many
interventions and strategies have been used to simulate the mechanism of injury, comprising
mechanical, thermal, neuropathic, inflammatory, or other on the affected tissue. For example,
neuropathic models are generated by spinal nerve ligation surgery, chronic constriction, or sciatic
nerve injury, while inflammatory pain is usually reproduced by injection of different substances such
as capsaicin or Freund’s complete adjuvant (CFA), or the irritant carrageenan. For a comprehensive
compilation on animal models of pain, we refer the readers to the review by Gregory et al., [79].
More recently, rodent models that mimic the signs and symptoms of FM, including long lasting
hyperalgesia without overt peripheral tissue damage [80] and also CFS, including mechanical allodynia
and hyperalgesia without signs of inflammation and injury but activated microglia [81], have been
developed. While a variety of methods such as repeated muscle insults with acid injections, depletion
of biogenic amines, and stress were used for the first model, a multiple continuous stress of housed
in a cage with a low level of water (1.5 cm in depth) was used for the second [80,81]. Although these
models reproduce some of the FM and CFS patients´ symptoms, most likely, they do not replicate
these complex diseases; thus, caution is recommended when translating findings to the clinic.

The relationship between miRNA expression profiles and chronic pain has been studied in animal
models at different levels: at the peripheral sensory neuron level, with soma in the dorsal root ganglion
(DRG) and their axons in the skin and other organs; at the spinal cord dorsal horn (SDH) level, where
secondary neurons receiving nociceptive stimuli from the periphery send them to the brain; and at the
level of different parts in the brain.

Following this order, from peripheral perception to the brain, we should mention the study by
Aldrich et al., in 2009, that used a modified version of the spinal nerve ligation (SNL) model in rats,
in which only the L5 spinal nerve was ligated, finding a sensory organ-specific cluster of miRNAs
including miR-96, miR-182, and miR-183 that were highly enriched in the DRG. The levels of all
three miRNAs in this cluster appeared significantly reduced in injured DRG neurons. Moreover, their
uniform distribution within the DRG soma of non-allodynic animals was changed in allodynics, where
they preferentially localized to the periphery of neurons [82]. The redistribution of these miRNAs
followed the pattern of distribution of the stress granule protein T-cell Intracellular Antigen 1 (TIA-1)
and could be associated with nerve damage. Sometime later, Lin et al., confirmed that SNL-induced
mechanical allodynia significantly correlates with miR-183 inhibition in DRG cells. They also showed
that increased intrathecal expression a of miR-183 decreased SNL-induced upregulation of Nav1.3 and
BDNF (brain-derived neurotrophic factor), interestingly associating with significant attenuation of
allodynia [83].

In another study, Tam et al. showed that miR-143 expression levels were significantly reduced in
DRGs ipsilateral to CFA injection or after nerve damage [84], coinciding with our findings that miR-143
is downregulated in the PBMCs (peripheral blood mononuclear cells) of patients of FM suffering
of chronic fatigue [16]. This miRNA, however, has been reported to be upregulated in the plasma
of CFS/ME patients [19]. It should be pointed out that the differences found across different pain
models suggest the existence of disorder-specific miRNAs rather than common miRNA regulators
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of nociceptive modulation. For example, members of the miR-34 family are strongly underexpressed
following neuropathic pain induction, while it appears to be highly overexpressed following bone
metastatic pain induction in DRG [85,86]. Also, it has been described that the interactions between
sensory neurons and non-neuronal cells such as immune cells and microglia modulate nociceptive
sensitivity [87], and therefore changes in other cells of the body, such as blood cells, might be indicators
of individual changes in nociceptive thresholds. In fact, even if the alteration patterns of deregulated
microRNAs do not match those of the tissues affected, blood miRNA patterns might still serve as
reporters of health status. This is particularly relevant, as it opens the possibility of a liquid biopsy to
detect and monitor nociceptive sensitivity.

Interestingly enough, the mechano-miR 146a that has been reported among the list of miRs
that are deregulated in CFS/ME [88], appears upregulated in the synovial tissue of rheumatoid
arthritis patients, in the cartilage of osteoarthritis patients, and in human monocytic cell lines after
lipopolysaccharide (LPS) proinflammatory stimuli [89–91], while it appears to be downregulated, both
in the ipsilateral DRG and at the SDH level [92].

Other miRNAs linked to FM and CFS/ME, in particular miR-21 and miR-223, also associate to
pain in animal models [16,88,93]. While both miRs are increased in spinal cord after spinal cord injury,
the second also increases in the prefrontal cortex of the brain in a model of carrageenan induced facial
inflammatory pain. Importantly, the overexpression of miR-223 coincides with the peak of mechanical
hyperalgesia, suggesting a role of this miR in the process [94–96]. Regarding deregulation of miR-21
and its connection to pain mechanisms we should point out that Simeoli et al., have recently shown
that primary cultured DRG neuron cell bodies release extracellular vesicles (EVs), including exosomes,
loaded with miR-21 upon capsaicin activation of TRPV1 receptors. These miR-21-loaded vesicles are
readily phagocytosed by macrophages inducing a pro-inflammatory phenotype. Moreover, intrathecal
delivery of an antagomir of miR-21 or its conditional deletion in sensory neurons lower neuropathic
hypersensitivity and inflammatory macrophage recruitment to the DRG, indicating that the induction
of miR-21 expression and its release contributes to sensory neuron-macrophage communication after
peripheral nerve damage [97].

Since some of the miRNAs associated with pain initiation and maintenance have also been
classified as mechanomiRs [46], it seems logical to think that MT might have an impact on their
expression profiles. Perhaps it is through the regulation of mechanomiR levels that MT exerts at least
some of the attributed analgesic effects [98].

3. The Rationale for Using MT to Treat FM and CFS/ME Dysfunctions

A systematic review and meta-analysis of nine RCTs, including 404 FM patients, has concluded
that MT with a duration of at least five weeks has beneficial immediate effects on improving pain,
anxiety and depression in these patients [35]. While some previous reviews of the effect of MT for the
treatment of FM symptoms coincide with this report, by concluding that MT provides benefits to FM
patients [99,100], others showed negative [101] or inconclusive [102,103] results. However many of
the studies included in these reviews were only qualitative in nature, or they constituted preliminary
pilot studies, including a small number of participants. Li et al., argue as a possible explanation of
their positive findings that their review included a larger number of RCTs, and that their analysis
contemplated subgrouping based on different durations of MT [35]. This reinforces the need for MT
parameter standardization.

In addition, a systematic review and meta-analysis including 60 high-quality and seven
low-quality RCTs indicates that MT effectively treats pain, and that it is also beneficial for treating
anxiety in the general population [104]. Another study of the same type, including a total of 140 studies,
claims that MT is the most powerful method for reducing DOMS (delayed onset muscle soreness) and
fatigue after exercise, compared to a compression garment, electrostimulation, stretching, immersion
or cryotherapy [105]. The authors observed a moderate decrease in the muscle damage marker creatine
kinase (CK) and in the inflammation markers interleukin-6 (IL-6) and C-reactive protein.
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On another side, the analysis of biopsied quadriceps (vastus lateralis) from 11 male volunteers
showed that MT reduces inflammation after exercise-induced muscle damage by activating the
mechanotransduction signaling pathways focal adhesion kinase or FAK, and extracellular signal
regulated kinase (ERK) 1/2, inducing mitochondria biogenesis signaling, and by diminishing the
levels of the inflammatory cytokines TNF-α and IL-6 and the stress factor HSP27 [106], changes that
could benefit FM and CFS/ME patients [107,108]. Combinations of MT and stretching have also been
studied, showing a significant reduction in fatigue with faster and shorter reduction of fatigue in
females [109].

Among the models that have been developed to explain the physiopathology of FM and CFS/ME,
one, at least partly, seems to set some basis for a potential impact of MT treatments in, not only
alleviating symptoms, but also in delaying the progress of the disease: the neuromuscular strain
model described by Rowe et al. [110]. These authors propose that “neuromuscular strain”, defined as
an adverse neural tension and strain in muscles, fascia, and other soft tissues, acts as a contributor
to cognitive and other symptoms in CFS [111]. If the ability of the nervous system to undergo
accommodative changes in length as a response to the habitual limb and trunk movements is
impaired by the restriction of movements, the mechanical tension within nerves increases, leading
to neurodynamic dysfunction, these authors argue. This dysfunction contributes to pain and other
symptoms that CFS patients present with, by processes of mechanical sensitization, altered nociceptive
signaling, and reduced intra-neural blood flow, adverse patterns of muscle force and contraction, plus
inflammatory neuropeptide release. Supportive of this model is the preliminary data obtained by
these same authors from a longitudinal study of two years of duration in 55 CFS patients, showing
that neuromuscular restrictions are common in CFS [110]. In addition, they show that longitudinal
strain applied to nerves and soft tissues of the lower limbs is capable of increasing symptom intensity
in individuals with CFS [111], supporting their model. If the neuromuscular strains are left untreated,
the individual will adapt to increased symptom burden, leading to increased impairment and central
sensitization. The interventions recommended by these authors to prevent symptom aggravation are
MT, exercise-based approaches, or alternative therapies such as yoga or Tai Chi. In fact, they report the
clinical improvement of patients by MT approaches [110]. This model seems to indicate that an action
to release neural tensions at early stages of the disease might be most effective.

When MT is applied to soft and connective tissues, local biochemical changes (lactic acid,
adenosine triphosphate or ATP, and creatine phosphate or CP) occur, and local muscle blood and lymph
circulation increase. As result, local nociceptive and inflammatory mediators may be reabsorbed [112].
Other types of compressive treatments, such as neuromuscular taping, which also increase lymphatic
and vascular flow, strengthening weakened muscles, led to the identification of a panel of miRNAs that
changed with treatment in a multiple sclerosis (MS) patient [113]. Interestingly enough, some of these
miRNAs have been shown to appear deregulated, both in FM [16,93,114] and in CFS/ME patients [88]
suggesting that compressive treatments might provide therapeutic benefits for them as well.

On another side, MT improves pain by the modulation of serotonin levels in patients with
CFS/ME and FM [50,115], changing neural activity at the segmental level, an area that is responsible
for mood and pain perception [116]. MT delivery could result in the reduction of the H-reflex with
pressures as low as 1.25 kPa, which would be desirable for FM patients, as spinal hyper-excitability is
associated with a variety of chronic pain syndromes [117,118]. Also, myofascial stretching transduces
into electrophysiological activity, which could reduce pain and other symptoms through myofascial
communication, and through afferent neural pathways that modulate the subcortical nuclei and limbic
system in the brain [119]. MT reduces circulating cortisol levels [50] and increases β-endorphin levels
following a 30 min massage [120], which could explain reductions in perceived fatigue following MT.
It will be desirable to correlate MT outcomes in patients with the markers that have been identified to
associate with particular parameters of pressure and/or stretching in animal models, which will pave
the way towards disease-oriented MT treatments. However, the biomarker information from animal
models is presently scarce and they are yet to be evaluated by RCTs.
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In this sense, Roberts has checked not only the magnitude of loading in MT but also the pattern
applied. In particular, he tested three different levels of pressure in two different serial orders or
patterns (increasing and decreasing) by using electromyography to measure muscle activity, finding
that the physiological response of the muscle, in fact, depends on the pattern of applied pressures
during massage, as only the decreasing pattern altered the electromyographic recordings [121]. This
finding, according to the author, is consistent with a mechanism by which light or moderate pressure
massage may reduce the gain of spinal nociceptive reflexes, which are typically elevated in chronic
pain syndromes.

With respect to musculoskeletal deconditioning or muscle atrophy associated to long periods
of inactivity which often affects CFS/ME and some FM patients, especially in severe cases, Rullman
et al., have shown, by replicating microgravity unloading through 21 days of sustained bedrest and
hypoxia, that the majority of miRNAs that become deregulated belong to miRNA families that respond
to mechanical loads (mechano-miRs) [46,122]. Interestingly enough, some of these miRs associating to
microgravity unloading appear to be deregulated in FM and CFS/ME patients [16–18], suggesting
that compressive MT may provide therapeutic effects by restoring miRNA levels in muscles.

In addition to the compressive component of MT that induces changes in mechano-sensitive
receptors, mechanomiRs and other molecules that are sensitive to this physical input, or effects in
the immune and sensorial systems, MT also inherently contains an emotional component that is
transferred to the patient through mental relaxation by the sense of touch. In fact, a positive emotional
stimulus, such as watching humor videos, has been reported to increase NK cytotoxic activity only
12 hr after exposure [123]. In another study, a program of eight weeks consisting of 20–30 min/day
meditation at home, six days/week, for mindfulness-based stress reduction (MBSR), showed increased
killing activity of NK cells only in subjects who reported an improvement [124]. As stated formerly,
animal stroking presented different responses to those elicited only by compression [41]. Also, MT
of preterm newborn infants involving low pressures induces a positive effect in weight gain and an
increase in vagal tone [125]. These observations indicate that MT protocols may have different levels
of effects on different individuals, and are context-dependent (operator and environment), leading to
heterogeneous responses, a limitation for experimental reproducibility that appears difficult to control.

On another side, it is important to note that the state of central sensitivity defined for FM, and
for the threshold of hyperalgesia or allodynia for patients in general (i.e., pain induced by touch
or massage) may impose limitations to MT therapeutics, as certain forces seem to be required to
induce molecular changes, and therefore benefits, in animal models [40,45,126]. In fact, by assaying
manual forces of 0.76 to 4.54 N/cm to obtain hypoalgesic effects McLean et al. concluded that the
level of applied force was critical for pain relief setting its value beyond 1.9 N/cm (p = 0.014) for
lateral glide mobilization. The intensity of therapeutic forces might be perceived by FM patients as
an unbearable pain, restricting its use. However, as the compressing effects have been shown to be
systemic, impacting contralateral untreated limbs, at least in animals [40,45], MT could be concentrated
to particular low-pain areas of the body and yet obtain overall pain-reducing benefits in patients.

4. Future Directions

The design of effective reproducible MT treatments, in general, relies on the standardization of
protocols by rigorously defining compressive and stretching forces, the extension of the area treated,
and frequency of applied movements. The parameters to be set in the protocol should be justified with
controlled findings. In this respect, animal experimentation seems to be fundamental in determining
the physiological and molecular changes that associate with treatments. With an interest in identifying
the potential benefits of MT for the treatment of FM and CFS/ME, a review of the impact that MT may
have on muscle regeneration, so that deconditioned or atrophied muscles recover, on pain relief and on
the immune and neural systems, is presented in Section 2 of this manuscript. The evidence obtained
from animal experimentation using mimetic devices is considered to be valuable but incomplete.
Although the response to MT maneuvers at the molecular level is clear, for example, the tolerance
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associated marker ILT3, which could benefit autoimmune diseases [55], appears to be induced by
medium load pressure treatments [40], and many miRNAs respond to certain compressive loads [46],
the current paucity of information limits the potential value of adapting MT to particular health
problems at present.

However, this aspect may soon change. In fact, as of 30 June 2018, the number of studies registered
in PubMed containing “mRNA” and “physiotherapy” terms was 764 versus, only 63 for “miRNA” and
“physiotherapy” key search words. For the first group, the trend shows a marked increase in the past
decade (2009–2017), with 71% of the studies found vs only 19% for the previous decade (1998–2008),
while in the second group, the oldest publication date was 2008, reflecting a growing interest in
evaluating the effects that physiotherapy induces in organisms at the molecular level. It will be
through the building of databases nurtured with molecular and physiological observations in animals
and other experimentation models that researchers will be able to design rationalized disease-focused
MT-based CTs. The results of CTs importantly should be used for the validation and refinement
of initial protocols in continuation CTs to finally unravel optimized effective physiotherapy-based
therapeutic programs for particular health problems. Below we show a flow chart for a proposed set of
future actions that require efforts from multidisciplinary teams, leading to the design of reproducible
standardized effective physiotherapy treatments to different disease states by MPTA (Figure 1).
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The potential limitation of miRNA profiles as reporters of disease or as biomarkers of response to
treatments should be noted. Future studies might identify other non-coding RNAs such as circular
RNAs, piwiRNAs, small nucleolar RNAs or long non-coding RNAs, as well as mRNA or alternative
splicing profiles that are associated with particular disease conditions, providing a more complete
picture of the tissues´ physiologic state.

A similar approach to miRDDCR (a miRNA-based method to comprehensively infer drug-disease
causal relationships) [127] could be structured to infer the MT–disease relationship, regardless of
biomarker-disease relationship. As molecular biomarkers of FM and CFS/ME become available and
validated, the selection of molecular determinants to monitor effects of MT on these patients will be
facilitated. The fact that undamaged muscle tissue responds to a determined physiotherapy program
with particular gene expression profiles does not guarantee that damaged or sick tissue will offer
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an equivalent response. For this reason, it is necessary that the evaluation of a treatment includes
animal disease models that faithfully replicate the disease. Despite the lack of validated biomarkers
for FM and CFS/ME, a few animal models have been developed [80,81], which may be used for
initial comparisons.

Some MT-based clinical treatments, as it is the case of deep tissue or cross-friction massages,
utilize high force to induce transient local inflammation, with the final goal of promoting repair and
regeneration [128]. Although a benefit from this approach cannot be completely discarded at this point,
a preferential exploration of medium load-based MT protocols is recommended for the treatment
of FM and CFS/ME, with the intention of minimizing patient discomfort while providing health
improvements. Massages with soft to moderate pressures, in addition, avoid fatigue after treatment.

An important limitation to be minimized in the design of reproducible optimized standardized
MT-protocols based on defined pressure and stretch intensities is the inherent affective or emotional
response associated with this type of treatment. Responders to these affective cues could be controlled
by applying MT protocols below threshold levels of mechanical response (sham treatments). Placebo
responders will be excluded in CTs that are MPTA-based, in an attempt to isolate response to
mechanical cues from affective responses (see Figure 1).

As a way to monitor MT success towards setting the criteria for protocol optimization in CTs
(validation and refinements steps; Figure 1), the concomitant health status of patients with treatment
should be evaluated. It would be very helpful for this purpose to count with methods that are
minimally invasive at the time that are informative and sensitive. These demands may, perhaps, be
fulfilled by a liquid biopsy approach, which only requires a small amount of blood or other body fluids
to readily assess changes in biomarker levels. In the case of FM and CFS/ME, which are complex
diseases affecting various tissues and systems, an advantageous fluid fraction could correspond to EVs.

EVs are a mixture of vesicles with different functions secreted by all cell types. Among them, a
particular set of vesicles that present with certain markers, and which generate from multivesicular
bodies in the cell: the exosomes have attracted special attention for their intercellular communication
functions [129]. By directional packaging of certain molecules, particularly miRNAs, these exosomes
have been shown to spread and maintain disease [129,130]. The fact that EVs are released from all
tissues into body fluids provides the advantage that their analysis will inform of the status of organs
and tissues, potentially replacing in the future the needs of traditional invasive solid tissue biopsies.

Other assays in body fluids not involving EV isolation are also available; for example, in a
study by Arroyo-Morales et al., saliva IgA levels were used to monitor the effects of a 40 min
myofascial induction by MT after exercising in healthy individuals (N = 60) [131]. In fact, saliva
is acquiring importance as a non-invasive method for the diagnosis, prediction, and progression of
several diseases [132], and it could provide an easy way to monitor the effectiveness of physiotherapy
protocols in the future.

5. Conclusions

In summary, we can conclude that there is an urgency to standardize, control, and optimize MT,
and physiotherapy protocols in general, as the conflictive results that have been frequently found in
the literature may arise from subjective components and the lack of precise parameter definition in
these procedures. Gene expression information in relation to defined MT parameters could serve as
guidelines for an adequate design of MT therapeutic protocols to be tested and refined through CTs.

The potential of microRNAs and particularly mechanomiR profiles as an approach to monitor
MT treatments has been evidenced here. A comparison of results from studies in animal models
and MT mimetic devices, together with FM and CFS/ME patient dysfunctions, points to plausible
benefits of MT treatments for these patients. Additionally, MT offers a safe alternative to physical
exercise, provided that hyperalgesia and allodynia permits the application of effective pressures
or stretching forces. However, a more complete view of molecular patterns associated with both
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disease and particularly MT protocols, are required to ensure the development of effective and safe
MT-based treatments.
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Abbreviations

MT Manual Therapy
FM Fibromyalgia
CFS/ME Chronic Fatigue Syndrome/Myalgic Encephalomyelitis
MPTA Molecular Physiotherapy Approach
CCL Cyclic Compressive Loading
CT Clinical Trial
miR microRNA
EV Extracellular Vesicle
ICD International Classification of Diseases
PBMC Peripheral Blood Mononuclear Cells
DRG Dorsal Root Ganglion
SDH Spinal cord Dorsal Horn
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