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Abstract: Blood formation, or haematopoiesis, originates from haematopoietic stem cells (HSCs),
whose functions and maintenance are regulated in both cell- and cell non-autonomous ways.
The surroundings of HSCs in the bone marrow create a specific niche or microenvironment where
HSCs nest that allows them to retain their unique characteristics and respond rapidly to external
stimuli. Ageing is accompanied by reduced regenerative capacity of the organism affecting all
systems, due to the progressive decline of stem cell functions. This includes blood and HSCs,
which contributes to age-related haematological disorders, anaemia, and immunosenescence,
among others. Furthermore, chronological ageing is characterised by myeloid and platelet HSC
skewing, inflammageing, and expanded clonal haematopoiesis, which may be the result of the
accumulation of preleukaemic lesions in HSCs. Intriguingly, haematological malignancies such as
acute myeloid leukaemia have a high incidence among elderly patients, yet not all individuals with
clonal haematopoiesis develop leukaemias. Here, we discuss recent work on these aspects, the ir
potential underlying molecular mechanisms, and the first cues linking age-related changes in the HSC
niche to poor HSC maintenance. Future work is needed for a better understanding of haematopoiesis
during ageing. This field may open new avenues for HSC rejuvenation and therapeutic strategies in
the elderly.

Keywords: haematopoiesis; ageing; clonal haematopoiesis; leukaemia; bone marrow; haematopoietic stem
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1. Introduction

Haematopoiesis is the process of the generation of all differentiated blood cells in the organism,
including red blood cells, platelets, innate immune cells, and lymphocytes; all found to fade in
functionality in aged individuals. Haematopoiesis is carried out by a rare population of haematopoietic
stem cells (HSCs), which in adults, reside mainly in the bone marrow. The re, the y either remain
dormant, i.e., in a quiescent state, or undergo proliferation and differentiation, depending on their
cell-intrinsic transcriptional programs and the external cues from the surroundings. In both humans
and mice, advances in highly purified or single-cell transcriptomics and functional techniques challenge
the past concept of cellular hierarchy in the haematopoietic system, where HSCs were thought to
differentiate into a series of multilineage progenitors, culminating in unilineage progenitors that
give rise to the variety of differentiated cells. Rather, adult HSCs seem to be a heterogeneous subset
of mainly multipotent and unipotent progenitors affiliated to specific lineages, and the ratio of
their skewing shifts when homeostasis is perturbed [1-3]. HSC maintenance relies on the support
from the microenvironment or niche, which tightly controls their function, fate, and numbers [4].
The HSC niche, a concept cued by Schofield already in 1978 [5], is necessary to preserve the
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self-renewing potential of HSCs [4], which ensures the provision of newly differentiated blood cells
whilst maintaining the HSC pool itself [6]. Extensive research on HSC niches composition shows that
they are closely related to the vasculature in the bone marrow, with mainly endothelial, perivascular,
and mesenchymal stromal cells secreting factors that support HSC maintenance [7]. In this scenario,
the effects of ageing on haematopoiesis may be the result of age-related alterations in all blood cell
subsets, including HSCs and progenitors, as well as in the HSC niche.

2. HSC Ageing and Myeloid/Platelet Skewing

In adult stem cells, ageing is accompanied by exhaustion of their self-renewing potential: their
main feature [8]. Interestingly, in mice, the number of phenotypically defined HSCs can increase up
to tenfold with ageing [9]. In contrast, the ir functionality in terms of self-renewal and repopulating
ability is remarkably reduced [9]. Use of cellular barcoding combined with multiplex deep sequencing
demonstrated that clonal HSC composition in old mice shows increased variability of clones derived
from a single stem cell with smaller size per clone, when compared to young mice [10]. Competitive
transplantation of these HSCs proved that young HSCs perform better, with three-fold higher yield of
mature granulocytes and lymphocytes [11]. Furthermore, age-related defective HSCs seem to be able
to differentiate into the myeloid lineage, but are incapable of the balanced generation of lymphocytes
following transplantation [11].

Thus, HSC defects are reflected in insufficiencies in their progeny of differentiated cells and
contribute to poorer systemic performance of the haematopoietic system, i.e., immunosenescence [12],
in the elderly, particularly adaptive immunity [13,14] (Figure 1). Concomitant with HSC expansion,
ageing is accompanied by an early and progressive loss of lymphoid-primed multipotent progenitors
that show increased cycling, as well as reduced lymphoid priming and differentiation potential [15].
In contrast, myelopoiesis was reported to be relatively unaffected by ageing, as numbers of
common myeloid progenitors and their progeny remain unchanged or increased in old mice [16,17].
However, more recent data suggest that defects also extend to aged myeloid progenitors [18],
and include increased cycling and reduced survival and repopulating potential, similarly to
HSCs [18,19]. The n, defects in progenitors may also result in altered functionality in their progeny of
differentiated myeloid cells. This may contribute to the compromised innate immunity reported during
ageing, by means of the diminished function of neutrophils [20], macrophages [21], and dendritic
cells [22], adding up to their age-related cell-intrinsic defects [23].

Myeloid skewing results from the downregulation of lymphoid and upregulation of myeloid
differentiation genes in aged HSCs [17], with disruption in epigenetic profiles [9,24,25] (Figure 1).
Thus, myeloid skewing is performed at the expense of the lymphoid lineage. Actually, one contributing
factor to the prevalence of myeloid-dominant HSCs in old mice is that old myeloid-skewed HSCs
are generated from additional sources to young myeloid-primed HSCs [26]. It is currently unknown
why the composition of the HSC compartment shifts during ageing. Several contributing processes
have been postulated, including slower turnover and longer survival of myeloid-primed HSCs
compared to other HSC subsets, or higher self-renewal capacity leading to clonal dominance [27].
Because lymphocytes have a longer life span than myeloid cells, it is reasonable to hypothesise that
infections and exposure to microbes will primarily influence myeloid-biased HSCs, aiming at fast
myeloid cell recovery. Future studies should test the validity of this exciting idea.

Myeloid-primed HSCs may be distinguished by the expression of one selective marker, CD41:
an integrin characteristic of platelets, which increases with age [28]. This marker is also used to
discriminate stem-like megakaryocyte-committed progenitors contained within the HSC pool during
inflammation [29]. In this regard, a myeloid and platelet-primed HSC subset was additionally defined
recently by the expression of von Willebrand factor (vWF) [1]. Considering this feature plus functional
platelet bias at the single-cell level, platelet-primed HSCs were reported to increase fiftyfold during
ageing in mice [30]. Interestingly, a high proportion of aged HSCs almost exclusively produce platelets,
and taking this into consideration, no age-related reduction in the frequency of HSCs able to engraft
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after transplantation was found. Moreover, the platelet gene expression programme may contribute to
the lymphoid lineage suppression, as depletion of the first leads to an increase of the latter [30]. Future
work is required for a better understanding of the relationship between myeloid and platelet HSC
skewing during ageing.

HSC .
r DNA damage 'l’%‘c:&g@ Platelets
ROS + e .:!:.o‘ Erythrocytes
/ ® Q Myeloid
e = - ' cells

Epigenetic \

f modifications l‘ Lymphoid
Bacteria 5 cells
Inflammation

Malignancy fe

Figure 1. Model of haematopoietic stem cell (HSC) myeloid and platelet skewing with ageing
in mice. One of the typical characteristics of HSC ageing is myeloid and platelet HSC skewing,
which is accompanied by profound changes in the epigenetic landscape and gene expression profiles.
HSC activation in response to external stimuli such as infections and inflammation elicits HSC
differentiation and myeloid skewing, aimed at mediating rapid myeloid cell recovery at the expense of
their self-renewal capacity. HSCs shift from quiescence to more cycling states, with increased reactive
oxygen species (ROS) levels and DNA damage. Prolonged exposure during life may potentially cause
the accumulation and aggravation of changes, including telomere shortening, ultimately reducing HSC
survival and differentiation potential. The course of lifetime is represented by a dotted arrow.

At the molecular level, DNA damage and telomere shortening seem to be major mechanisms
underlying the age-related decrease in the functionality and durability of HSCs [31] (Figure 1).
Interestingly, HSCs and progenitors are protected from DNA damage, as they do not experience
an increase in mutation rate upon irradiation-induced DNA damage repair and they preferentially
undergo apoptosis rather than defective repair upon chronic DNA double-strand breaks [32].
DNA damage triggers activation of cell-intrinsic checkpoints such as p53 and retinoblastoma,
downstream targets including p21 and sestrins, and upstream regulators such as p16INK4a and
P19AREF. Induction of cell-intrinsic checkpoints is aimed at clearing the damaged cells, preventing
leukaemic transformation, but it may also impair HSC pool maintenance and fitness of the
haematopoietic system through prolonged action [33]. Interestingly, transgenic mice with increased
p53 function display several premature ageing phenotypes, including defects in HSC proliferative
capacity and regeneration activity [34]. However, the se HSCs appear younger at the molecular level
with younger expression patterns in a variety of gene ontology categories, including response to DNA
damage, protein folding, RNA processing, or chromatin modification, but not the inflammatory
response, when compared to their wild-type and p53+/— counterparts [9]. This suggests that
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disruption of the cell cycle in HSCs results in the partial uncoupling of tissue and HSC ageing [9].
It also highlights the key role of the inflammatory response in age-related HSC functional impairment.

Besides, telomeres are fragile sites in the genome and thus sensitive to DNA damage [33].
HSCs lose telomeric DNA with each division [35] and this hinders their proliferative potential over
time [36]. Protective mechanisms, such as the protection of telomeres-1 (Potla) protein expression,
diminish with ageing in mice [37]. Furthermore, telomerase confers extended replicative capacity
to HSCs and its deficiency impairs HSC function, particularly under stress [31,38], leading to
the exhaustion of functional HSCs in secondary recipients in serial transplantation [31]. Recently,
telomerase activity was found crucial for erythropoiesis, and importantly, the deleterious effects of
deficient telomerase activity on HSC and progenitor cell proliferation, DNA damage response, red cell
production, and haemoglobin levels were reported as reversible through Cre-induced expression of
the gene [39]. This suggests that novel strategies aiming at restoring telomerase function with ageing
may have an important implication in the clinical setting to rejuvenate HSC function.

DNA damage accumulation is intimately related to increased reactive oxygen species (ROS)
levels [40]. In fact, HSCs reside in hypoxic bone marrow niches, which maintain their long-term
self-renewal by mechanisms such as limiting their ROS production [41]. This is performed through
adaptation of their metabolism to maintain a high glycolysis rate, whereas during activation of
proliferation and differentiation, HSCs depend more on oxidative phosphorylation to meet their
energy requirements [41]. Stressors, such as infections or chronic blood loss, shift HSCs from the
quiescent to cycling state, which consequently leads to increased ROS levels and DNA damage
(Figure 1). This may be the reason for the premature bone marrow failure present in Fanconi anaemia
and may as well contribute to normal HSC ageing [42]. Interestingly, increased ROS induces p38
mitogen-activated protein kinase (MAPK) signalling, and several strategies targeting this pathway
have successfully protected HSCs against loss of self-renewal, including prolonged treatment with
antioxidant or inhibitors of p38 MAPK [43,44].

3. Inflammageing and Its Relation to HSC Ageing

Inflammageing is the characteristic process of chronic inflammation that has been described in
aged individuals [45], with an increase of inflammatory cytokine levels that correlate with morbidity
and age-related diseases [46]. Inflammation is a natural response of the organism towards pathogens,
tissue damage, and other endogenous stimuli such as tumour cells. The HSC compartment is tightly
connected to inflammatory processes, as a producer of innate immune cells. Furthermore, HSCs express
pattern recognition receptors required for the identification of dangers, and a variety of cytokines
and their receptors [47,48]. Activation of these signalling pathways elicits HSC differentiation and
myeloid skewing [48,49], aimed at mediating rapid myeloid cell recovery. However, when not finely
regulated, the y may cause HSC exhaustion [49] (Figure 1). Whether inflammageing contributes to
the age-related defects observed in HSCs and/or HSCs actively participate in the process is currently
unclear and should be a subject of future research.

In elderly individuals, a variety of factors such as interleukin 6, interleukin 1 receptor antagonist,
interleukin 18, fibrinogen, and C reactive protein all increase significantly, with interleukin 6 soluble
receptor increase observed only in men [46]. In mice, cytokines such as interleukin 1 beta, interleukin
6, interferon gamma, and tumour necrosis factor alpha are significantly increased during ageing.
Interestingly, the ir levels are reduced in healthy long-lived individuals as compared to non-selected
old mice [50], as further indication of their potential damaging effect. Several factors may contribute to
the differences seen between humans and mice, such as sample type (serum and peritoneal suspension,
respectively) and detection methods of different sensitivity (colorimetric ELISA and multiplexed
fluorometric immunoassay, respectively) [46,50]. The case of interleukin 1 beta is of particular interest,
as this is one of the cytokines produced by HSCs [51] that induces myeloid differentiation and limits
self-renewal in mice [49]. Patients with mutations in the nucleotide-binding domain leucine-rich
repeat containing protein 3 gene, which controls the caspase 1 activity in charge of interleukin 1 beta
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activation, have high levels of interleukin 6 and C reactive protein, among others [52]. The levels of
these factors decrease rapidly upon blockade of the interleukin 1 receptor, suggesting that interleukin
1 beta contributes to the elevation of these markers in this inflammatory disease and may also contribute
to inflammageing [52]. In fact, the increase in interleukin 1 receptor antagonist seen in elderly humans
may reflect a homeostatic effect of the organism attempting to control inflammation through interleukin
1 beta targeting. Future work should test this exciting hypothesis.

In addition, among cytokines produced by HSCs and progenitors, interleukin 6 seems to be
important as a regulator of their proliferation and myeloid differentiation in a paracrine manner,
and as a driver of myelopoiesis both in vitro and in vivo in neutropenic mice after chemotherapy or
bone marrow transplant [48]. Besides, tumour necrosis factor added to cycling human HSCs both
in vitro and in vivo compromises their ability to reconstitute immunodeficient mice and long-term
cultures. This effect is mediated by the tumour necrosis factor receptor p55, which seems to
promote HSC differentiation [53]. Interestingly, induction of the interferon response in mice, through
polyinosinic/polycytidylic acid injection that mimics acute inflammation, leads to a fast decline in
platelet numbers, which are restored within a few days. This emergency megakaryopoiesis occurs in
response to increased interferons, and a stem-like megakaryocyte-committed progenitor subset that
expresses CD41 and is contained within the HSC pool is responsible for it [29]. Taken together, the se
data suggest that the high levels of inflammatory cytokines seen in the elderly may indeed contribute
importantly to the HSC skewing towards myeloid lineages and platelets during ageing.

Chronic inflammation also plays a role in age-related diseases, particularly haematological
malignancies. An epidemiological study based in Sweden revealed that history of any infectious
disease was associated with a 1.3-fold significantly increased risk of acute myeloid leukaemia (AML)
or myelodysplastic syndrome, even when infection had occurred years before onset [54]. In addition,
infection seems to be a causal factor in childhood acute lymphoblastic leukaemia [55,56]. Chronic
inflammation and autoimmune diseases have also been linked with increased risk of malignant
lymphomas in adults [57]. In patients with myeloproliferative neoplasms, chronic inflammation has
been evidenced as a potential initiating event and driver of clonal expansion that predisposes to second
cancer development [58-60]. In particular, enhanced interleukin 1 beta signalling is a common event
in patients with haematological malignancies, and evidence obtained in preclinical models shows
its pathogenic role and therapeutic potential in AML, myeloproliferative neoplasms, and juvenile
myelomonocytic leukaemia, among others [61]. Patients with myelodysplastic syndromes show
overexpression of tumour necrosis factor alpha and, in some cases, interferon gamma, which have been
suggested to contribute to the disruption of haematopoiesis in these diseases [62]. In chronic myeloid
leukaemia, mutated cells transform normal HSCs and progenitors into abnormal cells that resemble
their malignant counterparts through IL-6 secretion [63]. Thus, targeting inflammation may have
clinical implications to improve the treatment and/or prevent the onset of age-related haematological
malignancies in elderly patients.

4. Ageing of the HSC Niche

As previously mentioned, HSC survival and function relies on the support from the
microenvironment or niche in the bone marrow [4]. Stem cell niches are complex and unique structures,
yet they share many features that include cellular interactions, secreted factors, extracellular matrix,
physical factors, metabolic conditions, and importantly, processes of scarring and inflammation [64].
Furthermore, bone marrow HSC niches are mainly perivascular, with mostly endothelial cells and
mesenchymal stromal cells secreting factors that support HSCs, such as stem cell factor [7] (Figure 2).

An interesting study of the HSC rejuvenation ability of the young environment was presented
by Mayack and colleagues [65]. The y used the challenging parabiotic mouse model and surgical
connection of the circulatory systems of two mice, young and old, which were compared to old or
young parabionts as control groups. This model has certain limitations such as major surgery, poor
animal welfare, and immune system alterations, but it provides valuable information. In heterochronic
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mice, the long-term HSC compartment of old mouse origin recovered to original youthful numbers
and engraftment potential, with the restoration of youthful ratios of B lymphoid to myeloid cells,
when exposed to the young environment. Similar results were obtained when coculturing HSCs
with osteoblastic cells, defined as OPN*CD45 Ter119~, from young and old individuals, respectively.
The insulin-like growth factor-1, a soluble factor associated with ageing that regulates differentiation,
was found to participate in the ageing of the niche and age-related HSC dysfunction, and this may
be targeted pharmacologically in aged osteoblastic niche cells to promote youthful HSC regulatory
function [65].
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Figure 2. Major players in bone marrow haematopoietic stem cell (HSC) niches. HSC niches in the bone
marrow are complex and closely related to the vasculature. The majority of HSCs localise near sinusoids
associated with endothelial cells and leptin receptor (LepR)-expressing mesenchymal stromal cells,
which partially overlap with CXC-chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells and
Nestin (Nes)-GPFY™ cells. A fraction of HSCs localise adjacent to small-diameter arterioles, adjacent to
neural/glial antigen (Ng)2 pericytes that partially overlap with Nes-GFPPright cells. Other cell subsets
that regulate HSC function include sympathetic fibres, non-myelinating Schwann cells, adipocytes,
megakaryocytes, neutrophils, macrophages, T regulatory (reg) cells, and osteoclasts, either by direct or
indirect mechanisms. Direct mechanisms include cell-to-cell contact and secretion of soluble factors,
importantly stem cell factor (SCF) that regulates HSC quiescence and CXCL12 that promotes HSC
retention. Other soluble factors that control HSC function are tumor growth factor beta (TGFf3), CXCL4,
granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor
(GM-CSF), and several interleukins (IL), among others.

The changes in the bone marrow niche of aged mice include reduced numbers of perivascular cells
expressing the receptor for platelet-derived growth factor beta and neural/glial antigen 2, alpha smooth
muscle actin-covered arteries, and endomucin-expressing capillaries [66] (Figure 2). In aged mice,
enhancement of the Notch signalling pathway in endothelial cells increases CD31" capillaries and
CD31* arterioles, ephrin-B2* endothelial cells, and platelet-derived growth factor beta-positive and
neural/glial antigen 2-positive perivascular cells. Furthermore, niche-forming vessel improvements
are followed by increased HSC numbers, but no changes in their functionality. This was explained on
the basis of persistent HSC cell-autonomous alterations such as DNA damage [66]. Thus, although
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factors such as duration of the treatment and time of initiation should be considered, this suggests that
niche-based rejuvenating strategies may have only partial efficiency to recover HSCs to a youthful state.

However, other authors have found that the Nestin-GFPP*8M cell subset that partially overlaps
with neural/glial antigen 2-positive arterioles expands, whereas Nestin-GFP4™ cells that partially
overlap with leptin receptor-positive mesenchymal stromal cells seem to be unchanged [67,68]
(Figure 2). In compact bones from old mice, the frequency of Nestin-GFP* cells is significantly
reduced, as it is their colony-forming capacity ex vivo [68]. Sympathetic nerves regulate HSC
function, acting through adrenoreceptor beta 3 on Nestin-GFP* mesenchymal stromal cells [69]
(Figure 2), and surgical denervation of sciatic and femoral nerves leads to premature HSC ageing,
as evidenced by increased proliferation and specific myeloid bias [68]. Strikingly, supplementation
with adrenoreceptor beta 3 agonist to old mice significantly rejuvenated the in vivo function of
aged HSCs, evidencing this pathway as a good therapeutic target [68]. Furthermore, damage of
the bone marrow sympathetic nervous system has been linked to the progression of age-related
haematological malignancies, including myeloproliferative neoplasms [51] and AML [70]. Strategies
aimed at restoring the physiological control of the sympathetic nervous system over the malignant
cells through in vivo therapy with adrenoreceptor beta 3 agonist were capable of blocking disease
progression [51]. Thus, improvement of the adrenoreceptor beta 3 pathway may be relevant to both
rejuvenate HSCs during ageing as well as to prevent onset and /or improve the treatment of age-related
haematological malignancies.

In addition, a recent study showed that vWEF-expressing HSCs are highly enriched in
megakaryocytic niches [71] (Figure 2). Interestingly, the depletion of megakaryocytes selectively
expands this subset of HSCs, whereas the depletion of neural/glial antigen 2 arteriolar cells,
previously shown to maintain HSC quiescence [72], preferentially depletes lymphoid-biased HSCs.
Megakaryocyte depletion further compromises vWF-expressing HSC function by impairing their
long-term self-renewal capacity and eliminating their lineage bias after transplantation [71]. The n,
future work should evaluate the role of the megakaryocytic niche in HSC skewing during ageing.

5. Clonal Haematopoiesis and Age-Related Haematological Malignancies

Acute myeloid leukaemia is the most frequent acute haematopoietic malignancy in adults.
Its incidence increases with age and mortality exceeds 90% when diagnosed after the age of 65 years [73].
To date, the most accepted model for AML development suggests the requirement of mutations in
at least two genes that specifically confer a survival advantage to the HSC and impede its further
differentiation [74]. This proposal is based on the fact that oncogenes that confer a survival advantage
to the HSC and are frequently mutated in human AML, such as RAS and FLT3, are only capable
of inducing myeloproliferative neoplasms in mouse models, but not the transition to AML [75-77].
This indicates that other factors must participate in leukaemogenesis, including additional genetic
mutations [78,79] and/or alterations in the bone marrow microenvironment, as these have been found
to contribute to myeloproliferative syndromes, myelodysplasia and secondary leukaemia, and juvenile
myelomonocytic leukaemia [80-82]. Leukaemogenesis results in the generation of futile, aberrant
cells or “blasts”, which accumulate and promote multidimensional damage to the bone marrow
environment, with subsequent impairment of the normal, healthy haematopoiesis [83].

Age-related clonal haematopoiesis is defined as the expansion of HSCs and progenitor clones,
harboring specific, disruptive, and recurrent genetic variants, in individuals with no diagnosis of
haematological malignancy [84] (Figure 3). Mutations in genes responsible for clonal expansion
accumulate with ageing, resulting in widely asymptomatic clonal haematopoiesis. However, the same
mutations are also associated with malignancies, such as those in the genes DNMT3A, JAK2, TET?2,
ASXL1, SF3B1, and TP53 [85-87]. Thus, age-related clonal haematopoiesis is a phenomenon that
gives myeloid malignancies an evolutionary advantage in old patients, and it may be considered a
preleukaemic condition [84,85]. Population screening shows that these mutations and the concurrent
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age-related haematopoietic clonal expansion were present in about 2% of individuals, or 5-6% of those
above 70 years of age [87].

Furthermore, whereas the above mutations may be initiating events for haematological
malignancies, the absence of detectable mutations in IDH1, RUNX1, NRAS, NPM1, and FLT3 suggests
that these may be cooperating mutations in disease progression [87]. By the use of deep sequencing,
a recent work has analysed genes that are recurrently mutated in AML to distinguish between
individuals at risk of developing disease to those with benign age-related clonal haematopoiesis [88].
Peripheral blood cells from 95 individuals were obtained ~6.3 years before AML diagnosis, together
with 414 unselected age- and gender-matched individuals. Preleukaemic cases had more mutations per
sample, greater clonal expansion, and showed enrichment of mutations in specific genes, such as TP53
and U2AF1. Mutations in other genes, for example DNMT3A and TET2, seem to confer lower risk of
malignant transformation [88]. However, preleukaemic HSCs, ancestral to the dominant leukaemic
clone, are prevalent among patients with DNMT3A mutations and possibly also IDH2 mutations [89].
Ancestral clones may escape chemotherapy and persist at remission, representing a reservoir for
relapse [89]. Thus, studies on age-related clonal haematopoiesis may hold the answers for early
diagnosis and targeted therapies in patients with haematological malignancies.

LT HSC

STHSC ‘z STHSC

MPP
MPP

Figure 3. Model of age-related clonal haematopoiesis. Young (left) versus old (right) haematopoiesis.
Long-term haematopoietic stem cells (LT HSC) are present in increased numbers but with reduced
self-renewal ability (twisted arrow, red) in the elderly. Somatic mutations arise with ageing in LT
HSC, and some of the clones are positively selected and expand, giving rise to age-related clonal
haematopoiesis. This status may or not evolve to malignancy by acquisition of additional mutations.
It is currently unknown how clonal haematopoiesis relates to inflammageing, why selection of clones
originates myeloid skewing, and what is the role of the HSC niche. ST HSC, short-term haematopoietic
stem cell; MPP, multipotent progenitor; L, lymphoid; M, myeloid.

Interestingly, some studies have not found mutations in candidate driver genes, responsible for
clonal expansion, in a significant fraction of individuals with clonal haematopoiesis [86]. Furthermore,
an Icelandic population study revealed that clonal haematopoiesis is very common, almost inevitable,
in the elderly, and driver mutations are not evident in most cases [90]. Although technical limitations
may underlie these puzzling results, alternative explanations include clonally inherited epigenetic
states [91], neutral genetic drifts operating on HSCs that would result in random clonal selection [92],
and selective pressure by the bone marrow niche. In humans, a single case report gives a clue
about the role of the bone marrow niche in disease development [93]. In this case, a patient of AML
developed AML again after allogenic transplantation from his sibling. The second leukaemia was
donor-derived, with mutations in IDH2 and DNMT3A detected only in the donor and not in the
primary AML. The donor was monitored and never developed blood malignancy, in contrast to the
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recipient, who rapidly accumulated additional genetic hits. Several factors may have contributed
to this outcome, such as the growth-promoting condition of the bone marrow after transplantation
and a defective immune response [93]. However, it is interesting to see that external stimuli are
decisive in clonal evolution and this points to the bone marrow niche as a key player for therapeutic
strategies. More recently, ageing of the niche was found to influence clonality in haematopoiesis [94].
By generating retrovirally transduced SF91/IRES-eGFP dominant HSCs and progenitors of increased
transplantation potential, transplantation of old recipient mice led to decreased HSC clonality and
skewed differentiation towards myeloid lineage. This suggests that the aged niche promotes the
transition to monoclonality, and thus facilitates leukaemia initiation [94]. It remains to be seen why
clonal haematopoiesis arises; how it relates to the age-related changes in the haematopoietic system,
in particular myeloid skewing and inflammageing; and what is the role of relevant HSC niche cellular
components in these processes.

6. Conclusions

HSC ageing is characterised by reduced self-renewal, myeloid and platelet HSC skewing,
and expanded clonal haematopoiesis that is considered a preleukaemic state. The underlying
molecular mechanisms seem to be related to increased oxidative stress due to ROS accumulation
and DNA damage, which are influenced by both cell- and cell non-autonomous mechanisms such as
prolonged exposure to infections, inflammageing, immunosenescence, and age-related changes in the
HSC niche. Thus, HSC ageing seems to be multifactorial and we are only beginning to connect all the
dots. In mouse models, strategies such as restoring telomerase function and prolonged treatment with
antioxidants or inhibitors of p38 MAPK have been successful at rejuvenating HSC function. Examples
of cell non-autonomous therapies include the pharmacological targeting of insulin-like growth factor-1
in aged osteoblastic niche cells and treatment with adrenoreceptor beta 3 agonist. The latter not only
significantly rejuvenates the in vivo function of aged HSCs, but also blocks disease progression in a
model of age-related haematological malignancy. Thus, future work should accurately explore the
sequence of events and players leading to HSC decay and transformation with ageing, aiming at
developing integrative and efficient combinatorial strategies to slow down these processes.
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