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Abstract: Bladder Cancer (BC) represents a clinical and social challenge due to its high incidence 

and recurrence rates, as well as the limited advances in effective disease management. Currently, a 

combination of cytology and cystoscopy is the routinely used methodology for diagnosis, prognosis 

and disease surveillance. However, both the poor sensitivity of cytology tests as well as the high 

invasiveness and big variation in tumour stage and grade interpretation using cystoscopy, 

emphasizes the urgent need for improvements in BC clinical guidance. Liquid biopsy represents a 

new non-invasive approach that has been extensively studied over the last decade and holds great 

promise. Even though its clinical use is still compromised, multiple studies have recently focused 

on the potential application of biomarkers in liquid biopsies for BC, including circulating tumour 

cells and DNA, RNAs, proteins and peptides, metabolites and extracellular vesicles. In this review, 

we summarize the present knowledge on the different types of biomarkers, their potential use in 

liquid biopsy and clinical applications in BC. 
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1. Introduction: Bladder Cancer Issues and Liquid Biopsy 

Bladder cancer (BC) is the most common malignancy of the urinary tract, representing a highly 

prevalent disease which affects primarily elderly people. For both sexes combined, it is the 9th most 

common cancer diagnosed worldwide and a significant cause of tumour-related death, with an 

estimated 165,000 deaths per year [1]. BC represents an important health problem with an age-

standardized incidence rate (per 100,000 person-years) of 9 in men versus 2.2 in women and an age-

standardized mortality rate (per 100,000 person-years) of 3.2 and 0.9, respectively [2–4]. The incidence 

and mortality rate are stagnant due to the scarcity of newly developed effective treatments and 

options for prevention [5,6]. 

BC can be divided in two major classes based on tumour stage, I) non-muscle invasive bladder 

cancer (NMIBC), which is either confined to the urothelium (carcinoma in situ (CIS)-or stage Ta, 5-

year survival rate of 95.4%) or the lamina propia (stage T1, 5-year survival rate of approximately 88%) 

and II) muscle-invasive bladder cancer (MIBC) (stage T2, T3 and T4, representing 5-year survival 
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rates of 69.4%, 34.9% and 4.8%, respectively) [7,8]. NMIBC represents the most frequent form of BC, 

presented by approximately 70–80% of patients at diagnosis and is primarily treated by transurethral 

resection of the bladder tumour (TURBT), which is considered fundamental for the diagnosis and 

prognosis of the disease [9,10]. Dependent upon certain pathological characteristics (e.g., size and 

number of implants), TURBT is followed by intravesical instillation with chemotherapeutics, such as 

mitomycin, or the immunotherapeutic Bacillus Calmette-Guérin (BCG) [11,12]. However, despite 

TURBT and chemo/immunotherapy as first-line treatment, NMIBC displays a high recurrence 

incidence (50–70%) with tumour progression towards invasive tumours in at least 10–15% of the 

cases, due to minimal residual disease (MRD) which remained undetected [9,10]. The extraordinary 

rates of recurrence and the likelihood to progress require continuous follow-up of NMIBC patients 

by cystoscopy (every 3–6 months during the next 5 years) and urine cytology, making NMIBC one of 

the most costly malignancies for the National Health systems of developed countries [11,13]. 

Accordingly, BC represents the most expensive human cancer from diagnosis to death, with an 

estimated cost of $187,000 per patient in the United States [14]. In 2010, its total annual cost was 

estimated at $4 billion, which is expected to rise to approximately $5 billion by 2020 [14,15]. In the 

European Union, in 2012, the total BC expenditure has been determined at €4.9 billion, with health 

care accounting for €2.9 billion (59%) [16]. 

The remaining 20–30% of BC patients presents MIBC at diagnosis. Once tumour progression is 

observed the prognosis declines [17,18]. Treatment of invasive BC currently consists of radical 

cystectomy followed by platin-based chemotherapy. Nevertheless, clinical benefit of the addition of 

neoadjuvant chemotherapy (NAC) (like cisplatin, methotrexate, vinblastine and gemcitabine) has 

been evaluated by several studies [19–21]. NAC is presumed to diminish the burden of 

micrometastatic disease and can be used to predict chemosensitivity of the tumour [2]. Despite 

conflicting results shown by multiple randomized phase III trials (due to differences in for example, 

chemotherapy used, number of cycles and trial design), a significant survival benefit in favour of 

NAC has been indicated by various meta-analyses [19,20]. Unfortunately, metastatic spreading 

remains an important problem in a high fraction of the cases (50–70%), resulting in very low survival 

rates (5-year survival rate of 4.8%) [2,8,22]. 

Despite multiple trials, no new effective therapeutic options have been developed throughout 

the last decades [23], with the exception of immunotherapy based on checkpoint inhibitors. Even 

though these checkpoint inhibitors have shown promising results in patients with advanced or 

recurrent BC, only 20–35% of the BC patients benefit from this therapy and overall survival is still 

limited [24,25]. 

The typical and most important clinical indication for BC is haematuria. Nowadays, a 

combination of urine cytology and cystoscopy is still the routinely used methodology by excellence 

for detection, diagnosis and surveillance of this disease. Cytology remains the gold standard for 

detection of urothelial carcinoma. BC urinary cytology shows a specificity of approximately 98% and 

a sensitivity of 38% [26] (Table 1). However, the sensitivity of this test significantly increases with 

malignancy grade, reaching a reasonable sensitivity of >60% for CIS and high-grade lesions [26,27]. 

In 1997, in order to improve cytology predictive values, Fradet and Lockhard developed an 

immunofluorescence test (uCyt+) which was based on detection of three BC antigens (M344, LDQ10 

and 19A11) in exfoliated cells [28], improving the sensitivity of cytology to approximately 73% but 

decreasing the specificity to 66% due to the requirement of a large number of exfoliated cells [29] 

(Table 1). Cystoscopy is currently the gold standard technique in clinical practice for detection and 

follow-up of BC, achieving a sensitivity of approximately 85–90% and 65–70% to detect exophytic 

tumours and CIS, respectively[27,30–33]. Nevertheless, this procedure is highly invasive, showing a 

big inter-observer and intra-observer variation in the tumour stage and grade interpretation [27,30–

33]. 

Therefore, it is clear that there is an urgent need for improvements in diagnosis, prognosis and 

follow-up of BC patients. Over the last decades, tumour biopsies have revealed details with regard 

to the genetic profile of tumours, allowing the prediction of prognosis, tumour progression as well 

as therapy response and resistance [34]. Recently, the potential use of liquid biopsy as a new non-
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invasive way to determine the genomic landscape of cancer patients, screen treatment response, 

quantify MRD and assess therapy resistance is gaining significant attention [34–40]. The term “liquid 

biopsy” means the sampling and analysis of biological fluids, including blood, plasma, urine, pleural 

liquid, cerebrospinal fluid and saliva (Figure 1) [36,39]. The analysis is based on different cells and 

molecules which can be obtained from liquid biopsies: circulating tumour cells (CTCs), circulating 

cell-free tumour DNA (ctDNA), messenger RNAs (mRNAs), micro-RNAs (miRNAs), long non-

coding RNAs (lncRNAs), proteins and peptides, metabolites and vesicles (exosomes and endosomes) 

(Figure 1). Even though the presence of circulating free DNA and RNA in human blood was first 

demonstrated in 1948 [41], only a few liquid biopsies are currently approved for clinical use. In recent 

years, cancer research has been mainly focused on the introduction of suitable biomarkers, indicating 

the presence, recurrence and progression of a disease, as well as the appropriated treatment for a 

specific type of cancer. Taken together, biomarkers present in liquid biopsies hold great promise, as 

they are able to record and monitor the disease stage at real time and predict prognosis, recurrence, 

therapy response and resistance, without invasive intervention.  
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Table 1. Commercial kits to detect and follow-up bladder cancer (BC) using liquid biopsy biomarkers. 

(1) Although these tests have been proposed for diagnosis and follow-up of BC, predictive values correspond to the detection of primary tumour. (2) DiagnoCure company 

was dissolved in 2016 and the uCyt+ test is not available at present. (3) The performance of the UroMark test is currently evaluated in Phase III studies. (4) UROBEST is not yet 

commercially available. (5) Biofina Diagnostics provides these predictive values for diagnostic and surveillance purposes together. NPV = Negative predictive value. 

 

Commercial Kits Biomarker Assay Type Sample Type FDA Approved Purpose Predictive Capacity Source Refs. 

Cytology Sediment cells Giemsa and HE staining Urine Yes 
Diagnostic and 

surveillance (1) 

Sensitivity = 38%  

Specificity = 98% 
-  [26] 

uCyt+ Sediment cells Immunofluorescence Urine Yes 
Surveillance in adjunct to 

cystoscopy 

Sensitivity = 73%  

Specificity = 66% 
DiagnoCure (2) [29] 

UroVysion Sediment cells Multi-target FISH Urine Yes Diagnostic  
Sensitivity = 72%  

Specificity = 83% 
Abbott [42] 

UroMark(3) Sediment cells 
Bisulfite-based methylation 

assay 
Urine No Diagnostic 

Sensitivity = 98%  

Specificity = 97% 
Kelly:Feber  [43] 

CellSearch CTCs Immunomagnetic enrichment Plasma/serum Yes Surveillance 
Sensitivity = 48%  

Specificity = 98% 

Menarini-Silicon 

Biosystems 
[44] 

CxBladder  mRNA RT-qPCR Urine No Diagnostic 
Sensitivity = 82%  

Specificity = 85% 
Pacific Edge [32] 

CxBladder Monitor mRNA RT-qPCR Urine No Surveillance 
Sensitivity = 91%  

NPV = 96% 
Pacific Edge [45] 

Xpert BC Detection mRNA RT-qPCR Urine No Diagnostic 
Sensitivity = 76%  

Specificity = 85% 
Cepheid [46] 

Xpert BC Monitor mRNA RT-qPCR Urine No Surveillance 
Sensitivity = 84%  

Specificity = 91% 
Cepheid [47] 

PanC-Dx mRNA RT-qPCR Urine No Diagnostic 
Sensitivity = 90%  

Specificity = 83% 
Oncocyte [48] 

UROBEST (4) mRNA RT-qPCR Urine No 
Diagnostic and 

surveillance (5) 

Sensitivity = 80%  

Specificity = 94% 
Biofina Diagnostics - 

NMP22 Protein Sandwich ELISA Urine Yes Surveillance 
Sensitivity = 40%  

Specificity = 99% 
Abbott [49] 

NMP22 BladderChek Protein Dipstick immunoassay Urine Yes 
Diagnostic and 

surveillance (1) 

Sensitivity = 68%  

Specificity = 79% 
Abbott [50] 

BTA TRAK Protein Sandwich ELISA Urine Yes 
Diagnostic and 

surveillance (1) 

Sensitivity = 66%  

Specificity = 65% 
Polymedco [51] 

BTA stat Protein Dipstick immunoassay Urine Yes 
Diagnostic and 

surveillance (1) 

Sensitivity = 70%  

Specificity = 75% 
Polymedco [51] 

CYFRA 21.1 Protein 
Immunoradiometric assay or 

ELISA 
Urine No Diagnostic 

Sensitivity = 82%  

Specificity = 80% 
CIS Bio International [52] 

UBC test Protein 
Sandwich ELISA or dipstick 

immunoassay 
Urine No Diagnostic 

Sensitivity = 64%  

Specificity = 80% 
IDL Biotech [53] 
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Thus, the potential use of liquid biopsy as a new non-invasive approach to improve BC 

management is far reaching. Even though their extensive applications are only starting to emerge in 

clinical practice, multiple studies have indicated the potential use of different biomarkers in liquid 

biopsies for BC. In this review, we provide an overview of the more important studies regarding the 

different types of biomarkers in liquid biopsy and their clinical applications in BC. 

 

Figure 1. Liquid biopsy samples and biomarkers. Liquid biopsy samples include urine, serum, 

plasma, saliva, cerebrospinal and pleural fluid, among others. In BC, the liquid biopsies more widely 

used as detection and surveillance systems are urine (by its intimate contact with the tumour), as well 

as serum and plasma, which allow the follow-up of advanced disease. These liquid biopsies present 

several biomarkers, such as circulating tumour cells (CTCs), circulating cell-free tumour DNA 

(ctDNA), RNAs, proteins, metabolites and extracellular vesicles (EVs). Additionally, exfoliated cells 

derived from a tumour can be found in urine. 

2. Liquid Biopsy Biomarkers and Their Clinical Applications 

2.1. Circulating Tumour Cells (CTCs) 

CTCs were first discovered in breast cancer patients in 1869 by Ashworth and colleagues [54]. 

They are tumour cells of approximately 4 to 50 μm, which are being released from the tumour site 

into the bloodstream, thereby representing the main mechanism for metastasis [54,55]. CTC detection 

systems emerged from the need to find new methods to detect early metastatic disease in a less 

invasive way compared to conventional methods currently available, such as radiological evaluation. 

In recent years, a wide variety of approaches has been developed for the detection of CTCs, some of 

which have been implemented in clinical practice. These techniques include immunocytochemistry, 

reverse-transcriptase polymerase chain reaction, flow cytometry and the CellSearch system, which is 

the only approach approved by the USA Food and Drug Administration (FDA) [56]. 

In certain types of solid tumours, such as breast, colorectal cancer and gastric tumours, it has 

been reported that the presence of CTCs is an indicator of poor prognosis [57–60]. In BC, the presence 
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of CTCs has also been proposed to be associated with a bad prognosis and the amount of CTCs found 

in blood has been indicated to correlate with short disease-free survival in metastatic BC [61]. 

However, the relevance for NMIBC is still controversial. 

2.1.1. CTC Detection Methods 

Since CTCs are very rare and the amount of cells available is around 1 to 10 in 106–108 white 

blood cells, their detection, enumeration and molecular characterization is a challenge [62]. 

Accordingly, an efficient and reliable method for both isolation and characterization of these cells is 

needed [62,63]. Nowadays, different isolation techniques have been developed, all of which have a 

first enrichment step before the cells can finally be analysed. Enrichment can be carried out by 

different methods, including techniques based on physical properties such as size (by microfilters 

that isolate CTCs regarding to their greater size), density or deformability, as well as on biological 

properties of CTCs (for example, using immunomagnetic assays) (Figure 2) (reviewed in [64]). 

Immunomagnetic enrichment can be either negative or positive, both of which are available for in 

vivo assays, enabling a better sample analysis. Whereas negative enrichment does not rely on the 

biomarker expression of CTCs but on markers of hematopoietic cells (like CD45, a leukocytic antigen) 

and allows collection of cells in their intact form (depleting most of the leukocytes and erythrocytes), 

positive enrichment (using specific CTC biomarkers) has its own advantages including a low false-

positive CTC detection rate (Figure 2) (reviewed in [64]). 

 

Figure 2. CTC and ctDNA processing methods. Scheme showing some enrichment techniques to 

isolate CTCs from peripheral blood cells (erythrocytes and leukocytes) and different detection 

systems based on immunomagnetic assays, using specific antibodies to recognize antigens present in 

tumour cells (like EpCAM or cytokeratins) as well as to exclude leukocytes (using antibodies against 

CD45) (left panel). Right panel displays the different DNA alterations (including mutations, copy 

number variations (CNVs), gene rearrangements or methylation variations) which can be analysed 

from ctDNA, as well as different detection methods and their correspondent limit of detection. 
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The CellSearch system (Veridex, LLC, Warren, NJ, USA) is one of those technologies developed 

and, in this case, approved by the FDA for the isolation of CTCs (Table 1). CellSearch CTC Test is 

based on immunomagnetic enrichment and, initially, permitted enumeration of CTCs of epithelial 

origin by targeting only EpCAM for capturing CTCs. However, some studies have pointed out the 

difficulty in obtaining sufficient EpCAM-expressing CTCs from patients with advanced disease to 

reach statistically significant conclusions from a study or clinical trial [65]. Therefore, the recent 

versions of this test also select CTCs by other surface proteins, selecting those cells that are CD45−, 

EpCAM+ and cytokeratin 8/18+ and/or 19+. Though CellSearch is the most frequently used and still 

the gold standard today, new ways to detect CTCs have come up recently. CytoTrack is a similar 

method which allows detection and quantification of CTCs using a scanning fluorescence microscope 

[66]. For this test, a cocktail of a range of cytokeratins (pan-cytokeratin antibody) and CD45 (to 

deplete blood cells) is used [66]. Given that CytoTrack relies on a cytokeratin signal to detect cells 

and CellSearch depends on both EpCAM and cytokeratin expression, these two different approaches 

could give rise to significantly different results with regard to CTC detection. The advantage of 

Cytotrack is the possibility of staining with different antibodies which allows identification of new 

CTC biomarkers [67]. For example, HER2, which is considered a breast cancer biomarker, has also 

been used as target antigen for this technique [68,69]. By performing a comparative analysis between 

both systems, CellSearch and Cytotrack, Hillig et al. found that the two CTC technologies have 

similar recovery of cells spiked into blood (69% vs 71%, p = 0.58, respectively) [67]. However, 

CellSearch shows a lower variability in the analysis [67]. Another promising method is the Epic CTC 

Platform, whose detection system is based on the use of cytokeratins as CTC biomarkers and CD45 

as hematopoietic marker. Even though this approach is similar to CytoTrack, the Epic CTC platform 

also integrates downstream capabilities for the evaluation of cell morphology characteristics, protein 

biomarker expression and genomic analyses (Fluorescence In Situ Hybridization (FISH) and Next-

Generation Sequencing (NGS)) [70]. In an analytical validation of the Epic CTC Platform capabilities, 

Werner et al. assayed the performance, including accuracy, linearity, specificity and intra/inter-assay 

precision, of CTC enumeration in healthy donor blood samples spiked with varying concentrations 

of cancer cell line controls [71]. They found a high percentage of nucleated cell recovery for all cancer 

cell concentrations tested and showed excellent assay linearity (R2 = 0.999). Besides, using a small 

cohort of metastatic castration-resistant prostate cancer patient samples tested with the Epic CTC 

Platform, detection of ≥1 traditional CTC/mL in 89% of patient samples was shown, whereas 100% of 

the cancer patient samples had ≥1 CTC/mL when additionally considering the cytokeratin negative 

and apoptotic CTC subpopulations, compared to healthy donor samples (in which zero CTCs were 

enumerated in all 18 samples) (Figure 2) [70]. 

An improved CellSearch method is HD-CTC (from High Definition CTC; Epic Sciences, Inc., San 

Diego, CA, USA), which is not only based on EpCAM, cytokeratins and CD45 immunofluorescence 

staining but also on morphological characterization, size and high throughput counting, allowing the 

identification of apoptotic cells by DAPI staining and imaging using a high definition scanner (Figure 

2). This detection method has been demonstrated to be more sensitive than the original CellSearch 

[71]. Additional to previously described detection methods, many other approaches have been 

developed over the last years by multiple commercial laboratories, evidencing the great potential of 

CTC detection at present and in future clinical procedures (reviewed in [64]). 

However, these detection systems usually use small volumes of peripheral blood (<10 mL), 

showing a yield of 0.1–0.2% with respect to all tumour cells present in whole blood [72]. To overcome 

this problem in CTC detection and to evaluate large blood volumes, some groups have been 

exploring the potential of apheresis as CTC isolation method previous to the use of detection systems. 

In breast and pancreatic cancer patients, apheresis has demonstrated to improve the recovery of 

CTCs, showing better yield than the CellSearch system [73,74]. Besides, since CTCs probably have 

representative features of primary tumours, obtaining a sufficient number of CTCs could depict a 

global view of the tumour alterations and would allow carrying out different genomic analyses in 

order to define tumour and metastasis features. At present, there is a European Consortium “CTC 

Therapeutic Apheresis: CTCTrap project” (http://www.utwente.nl/en/tnw/ctctrap/) focused on 
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improving this method in order to characterize all tumour cells circulating in blood and apply it into 

the clinic in a real-rime liquid biopsy system. 

2.1.2. CTCs in Bladder Cancer 

CTC detection in BC was first reported in 2000 by Lu et al., when they published a method for 

CTC detection in peripheral blood of patients with urothelial carcinoma using nested reverse 

transcription-PCR assay for UPK2 (Uroplakin II) [75]. Their results were modest, being able to detect 

3 out of 29 patients (10.3%) with superficial cancers (pTa-1N0M0), 4 out of 14 patients (28.6%) with 

MIBC (pT2-4N0M0), 2 out of 5 loco-regional node-positive patients (40.0%) (pN1-2M0) and 6 out of 

8 patients (75.0%) with distant metastases [75]. 

More recently, several studies have evaluated CTCs in BC, mainly using CellSearch Technology, 

showing an average close to 50% of positive detection for metastatic BC and a low (around 15%) 

detection level for clinically localized BC [76]. Besides, even though CTC quantification has also been 

employed for prognosis and patient stratification, the detection of recurrent tumours is 

approximately 20–44% in patients showing progression upon recurrence. Additionally, Busetto and 

colleagues found a strong correlation between CTC presence and the time to first recurrence (75%) 

and they suggested that the time of progression is strongly correlated with CTCs [77]. 

In 2017, Zhang et al. published a meta-analysis of the impact of CTCs in BC. This study showed 

that the number of CTCs in peripheral blood is correlated with tumour stage, histological grade, 

metastasis and regional lymph node metastasis [45]. They also reported that the overall sensitivity 

and specificity of CTC detection assays are, respectively, 35% (95% CI: 28–43) and 97% (95% CI: 92–

99), concluding that the presence of CTCs in peripheral blood is an independent predictive indicator 

of poor outcomes for urothelial cancer patients [44]. 

Even though CTC quantitation has to be studied more profoundly, this procedure could be 

incorporated into risk stratification algorithms and, therefore, aid patient management. In addition, 

CTC detection may not be accurate to be used as initial screening test but as a method for confirming 

BC diagnosis, due to the limited diagnostic sensitivity and high overall specificity. With 

improvements in clinical and laboratory techniques, the detection of CTCs at different time points in 

the future may allow real-time surveillance of dynamic changes of disease and crucially enhance our 

understanding of the metastatic cascade, thus facilitating novel targeted therapy approaches. 

Regarding BC, the employability of CTCs in diagnosis and prognosis will be determined by the 

optimal combination of sensitivity, specificity, simplicity and cost of its implementation in the 

hospital routine. CTC enrichment techniques accompanied by a good cytological characterization 

may improve the fundamental weakness of cytology in the diagnosis/prognosis of low-grade disease. 

However, more well-designed, high-quality and large-scale prospective studies, especially including 

the CTCs and survival, are required to further strengthen current observations and shed more light 

on the potential of CTCs as a promising biomarker. 

2.2. Circulating Cell-Free Tumour DNA (ctDNA) 

2.2.1. Detection and Genomic Analysis of ctDNA: First Clinical Approaches 

As previously mentioned, the presence of cell-free DNA fragments in human blood was first 

discovered in 1948 [41]. In 1977, increased total cell-free DNA levels were observed in serum of cancer 

patients compared to healthy individuals, showing potential for therapeutic evaluation [78]. In blood, 

fragments of cell-free DNA have a typical size of 160–180 bp and are released from apoptotic as well 

as necrotic cells and possibly by active secretion, phagocytosis and exocytosis [40,79]. Methylation 

analysis has been used to trace the tissue of origin of cell-free DNA and showed that the biggest part 

in plasma is released by blood cells in healthy individuals [80]. At the end of the 1980s, Stroun et al. 

described that at least part of circulating free DNA in the plasma of cancer patients derived from 

cancer cells [81]. In 1991, DNA bearing TP53 mutations were found in urinary sediments from MIBC 

patients, paving the way for the use of genomics in liquid biopsy [82]. Posteriorly, studies based on 

mutated KRAS sequences in plasma confirmed the tumour origin of mutant cell-free DNA [83]. 
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Mutated genes in plasma were subsequently proposed to represent tumour markers and the term 

“circulating tumour DNA” was coined. On the other hand, ctDNA levels are very variable between 

individuals and the presence of metastasis as well as disease burden increase the heterogeneity of 

ctDNA levels [84]. In fact, the ctDNA fraction in plasma could represent up to 50% of all cell-free 

DNA in metastatic patients [85], whereas ctDNA may be undetectable in patients with MRD [86]. 

Despite these findings, poor technological advances have limited progress in this area for 

decades. For many years, multiple studies have been carried out to improve the detection systems 

that are used to observe tumour-associated genomic alterations in ctDNA, such as tumour-specific 

mutations, amplifications, deletions, gene rearrangements or methylation variations (Figure 2). These 

studies have tried to validate the potential of ctDNA as a diagnostic and prognostic marker in cancer 

as well as their value in MRD detection and therapeutic monitoring, mainly for patients with 

advanced malignancies [87–91]. However, the detection and quantification of ctDNA with a 

sensitivity required for significant clinical practice has not been easy, due to the small number of 

ctDNA fragments compared to the number of normal circulating DNA fragments. 

Initially, allele-specific primers in conventional PCR and Pyrosequencing were used to detect 

and quantify the percentage of specific mutations in cell-free DNA present in liquid biopsy samples 

but the restriction to specific mutations as well as a low sensitivity (requiring, at least, a 10% of mutant 

DNA) has limited the success of these techniques [90,92]. This limitation in detection was improved 

by using quantitative PCR and different deep sequencing technologies such as NGS, being able to 

identify a 1–2% of mutations in different types of tumours [92–97]. Nowadays, digital droplet 

polymerase chain reaction (ddPCR) has improved accuracy and quantification of mutations, enabling 

more effective extraction and analysis of ctDNA, even in highly diluted cell-free DNA samples [98]. 

In 2005, Diehl and colleagues described for the first time the quantification of the mutant allele 

fraction of the APC gene in plasma of colorectal cancer patients by means of BEAMing technology, 

which is an approach based on digital PCR, binding to streptavidin beads, attachment of base pair-

specific fluorescent probes and flow cytometry [99,100]. Both ddPCR and BEAMing have allowed the 

reduction of the detection limit of ctDNA mutations to 0.01–0.02% (Figure 2). 

Despite the previously described technological advances, the abovementioned detection 

systems have some restrictions. Using PCR-based methods, the number of ctDNA alterations 

detected per assay is limited, only evaluating known and specific mutations. Besides, some 

techniques (like BEAMing) are laborious processes, keeping off a high productivity. Since the 

percentage of patients bearing known driver mutations is low, assays based on genome-wide 

analysis, which detection capacity has increased over the last years, have currently gained much 

importance. Newman et al. have developed a new system, called “cancer personalized profiling by 

deep sequencing (CAPP-Seq)” [101]. Here, they designed a multiple panel including somatic 

alterations from Catalogue Of Somatic Mutations In Cancer (COSMIC) and The Cancer Genome Atlas 

(TCGA) databases for non-small cell lung cancer, thereby detecting some of these alterations in 100% 

of high stage patients and in 50% of low stage patients, with a detection limit of approximately 0.02% 

[101] (Figure 2). Accordingly, these advanced techniques open a wide spectrum of possibilities to 

increase accuracy of diagnostic and predictive systems in a non-invasive form in cancer patients. 

Worthy of note, the exact origin of ctDNA is not completely clear yet. Since ctDNA can be 

released from apoptotic or necrotic tumour cells which have died, genomic features derived from 

these cells may not entirely reflect the biology of primary tumours or metastasis at diagnosis, and, 

consequently, these alterations might not contribute to subsequent tumour progression and/or 

metastasis. This should also be taken into consideration during the clinical decision-making process. 

2.2.2. ctDNA in Bladder Cancer 

Regarding ctDNA detection in BC patients, several studies have focused on the detection of 

different DNA alterations in liquid biopsy samples in order to find predictive biomarkers. In 

particular, urine has been proposed to be a bona fide liquid biopsy for diagnosis and prognosis of 

BC, given the proximity of tumours. The presence of ctDNA has been found in urine and plasma of 

BC patients and multiple studies have shown that high levels of ctDNA could be observed in urine 
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of patients with progressive disease, even if ctDNA was not detected in plasma. These results support 

the usage of both plasma and urine liquid biopsy to detect BC, as well as to monitor recurrence and 

progression of the disease (reviewed in [86]). 

As previously mentioned, TP53 mutations in urinary sediments from invasive BC patients were 

described three decades ago [82]. Ever since, specific mutation hotspots in some genes, such as 

PIK3CA, TERT, FGFR3, RAS and TP53, have been targeted to detect mutations in ctDNA from BC 

patients, which has led to the discovery of associations between the presence of ctDNA mutations in 

these genes in urine as well as plasma samples and disease recurrence and progression [102–104]. 

Furthermore, using multiplex ligation-dependent probe amplification and NGS, copy number 

variations (CNVs) and mutations in tumour-related genes in plasma and urine of non-metastatic BC 

patients were identified, respectively. In this study, Patel et al. reported that the most common 

mutated genes were TP53, KRAS, PIK3CA, BRAF, CTNNB1 and FGFR3 and they found a loss of 

CDKN2A and CREBBP and gain of E2F3, SOX4, PPARG, YWHAZ and MYCL1 [102]. The presence of 

some of these ctDNA mutations in plasma or urine (with a technical threshold of 0.5%) has been 

associated with early disease recurrence, achieving a sensitivity of 83% and specificity of 100% [102]. 

In plasma from MIBC patients, who show a high mutation rate, at least one mutation in the PIK3CA, 

TP53 or ARDIA1 hotspot regions or promoter region of TERT gene has been detected in 90% of the 

cases, as well as CNVs, observing TP53 and RB1 inactivating changes, MDM2 gain or CDKN2A loss 

[85]. 

Moreover, loss of heterozygosity (LOH) has been shown by microsatellite-based PCR analysis 

in serum, plasma and urine of BC patients [69,105,106]. Microsatellite instability and LOH in liquid 

biopsy samples of BC patients are found relatively frequently using markers to detect alterations on 

chromosomes 4, 8, 9, 14 and 17 [105,106]. Chromosomal regions 17p and 9p are often affected in BC, 

disrupting the activity of tumour suppressor genes TP53 and CDKN2A. This LOH seems to be 

associated with reduced disease-free survival and high risk of disease progression [107,108]. Since 

mutations and CNVs in ctDNA from plasma and urinary biopsies are detectable in high levels before 

progression, even in NMIBC patient and especially in urine samples, these biomarkers may be useful 

for disease monitoring [103]-. Besides, some studies have revealed unknown alterations with 

differential sensitivity to therapeutic agents in metastatic patients, emphasizing the importance of 

ctDNA analysis as a useful tool for the detection of markers of therapy response and guidance of 

individualized therapies [86]. 

On the other hand, epigenetic alterations can be detected in BC patients using methylation -

specific PCR (MSP) on ctDNA [69]. The combination of methylation levels of the POU4F2 and 

PCDH17 or TWIST1 and NID2 genes in urine samples showed a high capacity to differentiate BC 

patients from healthy volunteers, with 90% sensitivity and 93–94% specificity in both cases [109,110]. 

Dulaimi et al. reported the hypermethylation of APC, RASSF1A or CDKN2A (p14ARF) in urine 

ctDNA from 39 out of 45 BC patients (87% sensitivity and 100% specificity), even detecting 16 cases 

that showed a negative result in cytology assays [111]. Accordingly, hypermethylated DNA in urine 

of BC patients seems to be more common than positive cytology [111]. Besides, Hoque and colleagues 

described the combined methylation analysis of CDKN2A, MGMT and GSTP1 using urine, enabling 

the differentiation between BC patients and control subjects, achieving 69% sensitivity and 100% 

specificity [112]. Furthermore, promoter methylation of both CDKN2A (p14ARF) and MGMT has 

been associated with tumour stage and the addition of GSTP1 and TIMP3 promoter methylation 

allowed to discriminate invasive tumours [112]. In cell-free serum DNA, hypermethylation of APC, 

GSTP1 or TIG1 has been shown to allow distinction between BC patients and control subjects with 

80% sensitivity and 93% specificity [113]. Thus, the potential importance of methylation markers has 

been proposed for BC prevention and guidance of individual patient management in unpredictable 

BCs [114–116]. 

In addition to the alterations found in ctDNA, some commercial kits are based on DNA 

modifications present in exfoliated cells of the urine sediment. The UroVysion BC Kit is a multi-target 

FISH assay using exfoliated cells in urine that identifies aneuploidy of chromosomes 3, 7 and 17, as 

well as the loss of the 9p21 locus (which harbours tumour suppressor gene CDKN2A) [117]. A meta-
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analysis from 14 studies showed that the UroVysion kit has a diagnostic accuracy of 72% sensitivity 

and 83% specificity (AUC = 0.87) [42] (Table 1). Furthermore, based on methylation patterns of urine 

exfoliated cells, the 150 loci UroMark assay allows the detection of primary BC when compared to 

non-BC urine with a sensitivity of 98% and specificity of 97% (AUC = 0.97) [43] (Table 1). 

2.3. Circulating Cell-Free RNAs 

The presence of circulating cell-free RNA in liquid biopsy samples of cancer patients was 

described three decades ago, when alterations in the expression levels of some of them were observed 

in different types of cancer patients [118–120] and even associations with clinical outcome and disease 

prognosis were found [121–124]. Ever since, coding (mRNA) and non-coding (miRNA, lncRNA and 

piwi-interacting RNA) cell-free RNAs have gained much relevance as potential biomarkers in these 

sample types. Subsequently, principal studies related to each type of cell-free RNA in liquid biopsy 

in BC are described: 

2.3.1. Messenger RNAs 

Circulating mRNAs were the first RNA molecules described in liquid biopsy in cancer patients 

[41]. Due to their intracellular role, cell-free mRNAs could be an important source of information 

about the status of activated or repressed signalling pathways into the tumour cells. Although a high 

percentage of these mRNAs are usually degraded by RNases, showing lack of stability and high 

variability between individuals [125–127], some mRNAs have demonstrated to have potential as 

biomarkers with diagnostic and predictive capacities. 

With respect to total isoforms, the percentage of a full-length splicing variant of the CA9 gene in 

urine sediments has shown to have diagnostic value to identify BC patients (AUC = 0.896) and this 

percentage was further increased in high grade and stage tumours [128]. Expression levels of UBE2C 

and KRT20 mRNAs were significantly elevated in urine of urothelial cancer patients (sensitivity 

82.5% and 85%; specificity 76.2% and 94.3%, respectively), increasing gradually with tumour grade 

and stage [129,130]. Bacchetti and collaborators observed significant differences in urine PON2 

expression when compared Ta and T1-3 tumours, showing higher expression in tumours confined to 

the basement membrane than in those invading other histological layers [131]. 

In order to improve the sensitivity and specificity of diagnostic and prognostic systems based 

on urine samples, several research groups have investigated different mRNA panels. Urquidi et al. 

carried out the combination of three different gene signatures [32,132,133] together with 6 other 

independent genes from different biomarker studies, after which they stablished a new diagnostic 

gene signature based on detected expression of 18 mRNAs (ANXA10, BIRC5, CA9, CCL18, CDK1, 

CTSE, DSC2, IGF2, KFL9, KRT20, MDK, MMP1, MMP9, MMP10, MMP12, RAB1A, SEMA3D and 

SNAI2) in urine samples from BC patients, achieving 85% sensitivity and 88% specificity (AUC = 

0.935) [134]. Recently, the CxBladder Monitor and the Xpert Bladder Cancer Monitor (Table 1), two 

urine-based tests for BC surveillance which measure the expression levels of different sets of five 

mRNAs (CDK1, CXCR2, HOXA13, IGFBP5 and MDK; and ABL1, ANXA10, CRH, IGF2 and UPK1B, 

respectively), have been evaluated as follow-up methods for NMIBC patients after TURBT of primary 

or recurrent tumours. The CxBladder Monitor test was able to predict new recurrences after surgery 

with a sensitivity of 91% and a negative predictive value (NPV) of 96% (AUC = 0.73) [45,135], whereas 

the second test achieved a sensitivity of 84% and a specificity of 91% (AUC = 0.872) [47]. Biofina 

Diagnostics laboratory has developed a test based on ten differentially-expressed genes for the 

diagnosis and surveillance of BC from urine (UROBEST), achieving 80% sensitivity and 94% 

specificity (AUC = 0.91). Besides, the commercial laboratory Oncocyte has developed a panel of 43 

gene expression biomarkers, PanC-Dx, to distinguish BC from non-cancerous conditions, showing 

good predictive values from urine samples (AUC = 0.91; sensitivity of 90% with a specificity of 82.5%) 

(Table 1) [48]. 

Besides instability and low abundance of circulating mRNAs, another problem associated to the 

use of mRNAs as biomarkers in liquid biopsy samples is the necessity of appropriate reference genes 

to compare the expression of target genes. Some studies have evaluated the expression of several 
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potential housekeeping genes in urine samples, such as PPIA, GAPDH, UBC, PGK1 and ACTB 

[132,136,137]. However, the potential of these and other genes as normalizers in biofluid samples 

should be studied more profoundly. 

2.3.2. microRNAs 

Over the last decade, microRNAs have represented a type of biomolecules widely studied as 

biomarkers in different pathologies, including several types of cancers [138,139]. Moreover, miRNAs 

expression is very homogeneous among individuals, showing specific expression profiles in different 

types of tissue [140]. Additionally, miRNAs are protected by a protein complex and they are usually 

included in exosomes, thereby preserving their integrity and avoiding RNase-mediated degradation 

[141,142]. Due to these properties, miRNAs are very stable in liquid biopsy samples, such as serum, 

plasma and urine [137,143], which makes them potential candidates as biomarkers in non-invasive 

diagnostic and prognostic methods. On the other hand, the new systems designed to perform RT-

qPCR from miRNAs allow the study of a wide number of miRNAs from very small amounts of total 

RNA. 

In BC, multiple studies have identified individual miRNAs or panels with predictive features. 

Some of the most relevant studies of miRNAs in urine samples are discussed next. Downregulation 

of miR-145 allows to distinguish BC patients from healthy controls (77.8% sensitivity and 61.1% 

specificity for NMIBC, AUC = 0.729; 84.1% and 61.1% for MIBC, respectively, AUC = 0.790) and shows 

correlation with tumour grade [144]. Furthermore, miR-106b and miR-146a-5p have shown to be 

upregulated in BC patients, correlating with tumour stage and with grade and invasion, respectively 

[145,146]. In addition, high expression of miR-452 and miR-222 (with respect to the miR-16 expression 

level as normalizer gene) has shown to have diagnostic value (AUC = 0.848 and AUC = 0.718, 

respectively) [147] and the miR-126: miR-152 ratio has also enabled the detection of BC (AUC = 0.768) 

[148]. Upregulation of miR-214 has been associated with NMIBC patients but not with tumour grade 

or stage. Curiously, BC patients with lower levels of miR-214 presented a higher risk of recurrence 

[149]. Zhang et al. described that increased expression of miR-155 in urine is associated with tumour 

grade, stage, recurrence and invasion, allowing the discrimination of NMIBC patients, cystitis 

patients and healthy controls (80.2% sensitivity and 84.6% specificity) [150]. Besides, urine miR-200a 

has shown to have predictive properties, observing an association between low expression levels of 

this miRNA and high risk of recurrence in NMIBC patients [144]. Moreover, upregulation of miR-

92a-3p and downregulation of miR-140-5p have been related to progression after recurrence [151]. 

On the other hand, there are some studies about miRNA expression in serum or plasma samples 

from BC patients, even though they are less frequent. High expression of miR-210 has been observed 

in serum of BC patients, correlating with tumour grade and stage and predicting progression (AUC 

= 0.898) [152]. In the case of plasma, expression of miR-19a is increased in tumour patients and 

associated with tumour grade [153], miR-200b is upregulated in MIBC, whilst miR-92 and miR-33 

present inverse correlation with tumour stage [154]. 

Moreover, in the last years, several groups have developed multiple panels of miRNA 

expression, both in urine and in serum samples, to detect and monitor BC. Some of the main miRNA 

profiles are described in Table 2. 

However, appropriate genes for normalization of miRNA expression in biofluids are unclear so 

far. In tissue samples, miRNA expression is usually normalized using the expression of small nuclear 

RNAs (snRNAs). Nevertheless, expression and stability of snRNAs is minimized in this type of 

sample [137], being inadequate as housekeeping genes. Although some authors have suggested some 

miRNAs, such as miR-16, miR-28-3p and miR-361-3p, as reference genes in urine samples [147,155], 

additional extensive studies are needed to determine specific housekeeping genes in the different 

types of liquid biopsies in this pathology. As observed for other tissues and disease conditions, 

specifically designed studies are required in order to find appropriate miRNAs, which do not show 

variation among the population to be separated (e.g., patients vs healthy controls, different disease 

state, metastatic vs non-metastatic disease), in serum and urine. In 2016, Martinez-Fernandez et al. 
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described the use of two miRNAs, miR-193a and miR-448, as normalizers for urine studies [137]. 

However, these results still have to be validated in a well-designed clinical trial. 

2.3.3. Long Non-Coding RNAs 

Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides that are not 

translated into protein and can modify gene expression at transcriptional, post-transcriptional and 

epigenetic levels [156]. Although lncRNAs have not been as widely studied as mRNAs or miRNAs, 

multiple studies have shown that expression of these molecules can be altered in cancer, promoting 

tumour development, progression and metastasis [157] and, therefore, their use as biomarkers in 

biofluids is of growing interest. 

UCA1 (Urothelial cancer associated 1) is the most studied lncRNA in BC so far. Wang and 

collaborators determined that high expression of this lncRNA in urine sediments allows detection of 

high-grade superficial bladder tumours [158]. More recently, a meta-analysis of six studies, including 

578 BC patients and 562 healthy controls, confirmed that upregulation of UCA1 is able to predict BC 

(sensitivity of 81% and specificity of 86%, AUC = 0.88) [159]. Moreover, blood UCA1 levels are 

upregulated in patients with metastatic BC after cisplatin treatment, increasing WNT6 protein 

expression and activating Wnt signalling, which results in cisplatin resistance [160]. Besides, 

overexpression of other lncRNAs, such as HOTAIR, HOX-AS-2, MALAT1, HYMAI, LINC00477, 

LOC100506688 and OTX2-AS1, has been found in urine exosomes of high-grade MIBC patients [161]. 

On the other hand, other lncRNAs with biomarker potential are ABHD11-AS1 and H19 genes, whose 

increased expression has been associated with primary BC and early relapse, respectively, in tissue 

samples [162,163]. Future studies of these molecules in liquid biopsy samples of BC patients could be 

of great interest.  
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Table 2. Main miRNA panels for diagnosis, prognosis and recurrence surveillance of BC using liquid biopsy samples. 

Studies 

[References] 

Type of 

Sample 
Clinical Application miRNA Panels Predictive Capacity 

Sapre N. [164] Urine Recurrence surveillance miR16, miR200c, miR205, miR21, miR221 and miR34a 

Sensitivity = 88% 

Specificity = 48% 

AUC = 0.74–0.85 

Pardini B. [155] Urine 
Diagnostic and 

prognosis 

NMIBC G1 + G2 *: miR-30a-5p, let-7c-5p, miR-486-5p, miR-

205-5p and let-7i-5p 
AUC = 0.73 

NMIBC G3 *: miR-30a-5p, let-7c-5p, miR-486-5p, miR-21-

5p, miR-106b-3p, miR-151a-3p, miR-200c-3p, miR-183-5p, 

miR-185-5p, miR-224-5p, miR-30c-2-5p and miR-10b-5p  

AUC = 0.95 

MIBC *: miR-30a-5p, let-7c-5p, miR-486-5p, miR-205-5p, 

miR-451a, miR-25-3p, miR-30a-5p and miR-7-1-5p 
AUC = 0.99 

Jiang X. [165] Serum Diagnostic 
miR-152, miR-148b-3p, miR-3187-3p, miR-15b-5p, miR-27a-

3p and miR-30a-5p 
AUC = 0.899 

Jiang X. [166] Serum Prognosis 
MIBC: miR-422a-3p, miR-486-3p, miR-103a-3p and miR-

27a-3p 
AUC = 0.880-0.894 

Du L. [167] Urine Diagnostic 
miR-7-5p, miR-22-3p, miR-29a-3p, miR-126-5p, miR-200a-

3p, miR-375 and miR-423-5p 

Sensitivity = 82–85% 

Specificity = 87–96% 

AUC = 0.916–0.923 

Urquidi V. [168] Urine Diagnostic 

miR-652, miR-199a-3p, miR-140-5p, miR-93, miR-142-5p, 

miR-1305, miR-30a, miR-224, miR-96, miR-766, miR-223, 

miR-99b, miR-140-3p, let-7b, miR-141, miR-191, miR-146b-

5p, miR-491-5p, miR-339-3p, miR-200c, miR-106b *, miR-

143, miR-429, miR-222 and miR-200a 

Sensitivity = 87% 

Specificity = 100% 

AUC = 0.982 

  

* Including traditional BC risk factors (age and smoking status). Bold numbers indicate values from validation set. 
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In addition, expression of different types of cell-free RNAs can be combined to improve the 

accuracy of individual tests. Accordingly, Eissa and colleagues developed a panel from urine samples 

which combines the expression of one mRNA (HYAL1; Hyaluronoglucosaminidase 1), two miRNAs 

(miR-210 and miR-96) and one lncRNA (UCA1), thereby achieving a sensitivity of 100% and a 

specificity of 89.5% [169]. 

2.3.4. Other Non-Coding RNAs and Its Future Potential as Biomarkers 

Additionally, other non-coding RNAs, such as piwi-interacting RNAs (piRNAs) and circular 

RNAs (circRNAs) have been linked to BC. Although these molecules and their roles in cancer have 

been only recently studied, they could be good candidates as new biomarkers. 

piRNAs are short single strands (26–31 nucleotides) of non-coding RNAs which can repress the 

expression of target genes, mediated by their binding to PIWI proteins (members of Argonaute 

proteins subfamily) [170]. Recently, several studies have reported that piRNAs can be widely 

detected in human plasma. Besides, the expression of some piRNAs has been found to be deregulated 

in patients with colorectal, prostate and pancreatic cancer [171,172]. Downregulation of piRNA 

DQ594040 has been associated with BC, whereas its overexpression can inhibit cell proliferation and 

promote cell apoptosis by upregulation of the TNFSF4 protein [173]. However, specific piRNAs have 

not yet been found in liquid biopsies from patients with BC. 

circRNAs are a type of RNA which are covalently closed in a loop at the 3′ and 5′ ends. For this 

reason, these RNAs are more resistant than linear RNAs to degradation mediated by exonucleases 

and, therefore, show a prolonged half-life [174]. Although intra- and extra-cellular roles of these 

molecules are still largely unknown, some of them have shown relevance in several cancer types 

[175,176]. Overexpression of some circRNAs, such as circTCF25, circRNA-MYLK, circRNA-CTDP1 

and circRNA-PC, has been observed in BC tissue samples. These circRNAs competitively bind to 

tumour suppressor miRNAs, acting as RNAs sponge and inhibiting their function [177–179]. Stability 

and functional properties of circRNAs make them interesting molecules to use as biomarkers in liquid 

biopsy samples. 

2.4. Proteins and Peptides 

The presence of proteins in liquid biopsy in cancer patients was first published in 1847 by Dr. 

Henry Bence Jones (reviewed in Reference [180]). Proteins and peptides (protein mass < 15 kDa) 

might be great candidates as biomarkers, since they are directly related to the “real-time” dynamic 

molecular cell phenotype. Nevertheless, the relevance of proteins and peptides as potential 

biomarkers in liquid biopsies has only been extensively studied over the last decade, due to limited 

technological advances. In BC, proteomic blood analyses [181,182] are scarce compared to the 

multiple studies performed with urine [53,132,169,183–201]. Plasma comprises the highly complex 

human-derived proteome, including the presence of a wide variety of proteins, which results in 

challenges with regard to detection and analysis systems. On the other hand, the urine proteome has 

been broadly studied and well-characterized, providing reference standards for data comparison and 

validation in the discovery of BC diagnostic markers [202]. 

2.4.1. Peptide Biomarkers 

In 2006, Theodorescu and colleagues have reported a diagnostic 22-peptide biomarker panel, 

using capillary electrophoresis coupled to mass spectrometry, which enables the differentiation 

between urinary BC patient samples and control samples (from prostate cancer, prostate hyperplasia, 

renal diseases and urinary tract infection), achieving 100% sensitivity and 73% specificity [195]. 

However, out of the 22 peptides, only fibrinopeptide A has been identified. Even though this peptide 

biomarker panel allows a good discrimination between advanced cancer and controls, less advanced 

tumours could not be correctly classified by this panel. Accordingly, the use of a predictive four 

polypeptide panel (fragments of membrane-associated progesterone receptor component 1, Collagen 

α-1 (I), Collagen α-1 (III) and Uromodulin) has been proposed as a relevant approach to distinguish 
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between NMIBC and MIBC, reaching 92% sensitivity and 68% specificity [196]. Recently, the 

previously mentioned studies have been refined by Frantzi and collaborators, who discriminated two 

different panels using urine by performing a multi-centre study including 1357 patients. A 116-

peptide biomarker panel (including identified Apolipoprotein A (APOA), β2-microglobulin, collagen 

fragments, fibrinogen A, Haemoglobin A, histidine-rich glycoprotein, insulin and small proline-rich 

protein 3) has been indicated for BC diagnosis, achieving 91% sensitivity and 68% specificity. The 

second panel has been proposed to encompass 106 peptide biomarkers (including identified 

ADAM22, ADAMTS1, Apolipoprotein A-1 (APOA-1), collagen fragments and HSPG2) allowing the 

detection of BC recurrences with 87% sensitivity and 51% specificity [197]. 

2.4.2. Protein Biomarkers 

Multiple proteomic studies have identified proteins (mass >15 kDa) and modifications with 

diagnostic and prognostic value in BC. However, a large variability has been observed between 

individual biomarker studies, reflecting proteomic complexity and the excess of applied proteomic 

approaches. Additionally, suboptimal experimental design of the individual studies contributes to 

inter-study inconsistency. Nevertheless, reproducible findings have also been reported in several 

independent studies. Some of the most relevant analyses are discussed next. 

Differential expression of urinary α-1-antitrypsin (A1AT) has been indicated between BC 

patients and hernia patients (AUC = 0.729) as well as between BC patients and healthy controls (74% 

sensitivity and 80% specificity, AUC = 0.820) [198,199]. The upregulation of A1AT in patients with 

BC has subsequently been emphasized in an analysis by Linden and colleagues (66% sensitivity and 

85% specificity) [200]. Besides, several studies have shown an increased abundance of apolipoprotein 

E (APOE) (89% sensitivity and 31% specificity, AUC = 0.745–0.756) and fibrinogen β (AUC = 0.720–

0.831) in BC urinary biopsies compared to control patients [200,201]. Additionally, multiple studies 

have validated the importance of different apoliprotein types, reporting an increased abundance of 

APOA-1 in urine of BC patients (89–94.6% sensitivity and 85–92% specificity) compared to control 

patients, as well as an upregulation of APOA-2 (AUC = 0.631–0.864) in BC patients compared to 

hernia patients [183,198,201]. Besides, the differential expression of urinary carbonic anhydrase I and 

S100A8 between BC patients and hernia patients (AUC = 0.837 and AUC = 0.836, respectively) has 

been reported [198]. Moreover, Ebbing and colleagues have performed a study, including 181 

samples from BC, prostate and renal cancer patients as well as healthy controls, in order to study the 

heterodimer S100A8/S100A9, known as calprotectin [184]. They showed a significant increase of 

calprotectin in BC biopsies (AUC = 0.880, 81% sensitivity and 93% specificity) compared to samples 

of the above-mentioned other tumour types and healthy controls [184]. In addition, Miyake et al. 

reported an increased abundance of COL4A1, COL13A1 and the combination of both collagens 

(COL4A1 + COL13A1) in BC urinary biopsies compared to healthy controls (sensitivity 68.2%, 54.6% 

and 72.1%; specificity 68.9%, 77.1% and 65.6%, respectively) [203]. Besides, the diagnostic sensitivity 

of this protein combination has been found to improve with malignancy grade, observing a value of 

57.4% for low-grade tumours versus 83.7% for high-grade tumours [203]. 

The identification of biomarkers related to BC aggressiveness has been described by a limited 

number of studies. Zoidakis et al. performed a study including 108 BC patient samples and 97 urinary 

biopsies from control patients with benign disease (for example urolithisasis, benign prostate 

hyperplasia, infection/inflammation or haematuria) and found a differential expression of 

myeloblastin, aminopeptidase N and profilin-1 [185]. In addition, Nuclear interacting factor 1/Zinc 

finger 335 (NIF-1) and histone H2B have been described to be differently abundant in urinary biopsies 

from MIBC patients, NMIBC patients and benign controls [186]. 

Additionally, multiple analyses have been performed using protein panels, which might 

enhance accuracy in BC detection. In 2012, Goodison and colleagues proposed the use of a diagnostic 

8-protein biomarker panel (angiogenin (ANG), APOE, CA9, IL8, matrix metallopeptidase 9 (MMP9), 

MMP10, plasminogen activator inhibitor 1 (PAI-1) and vascular endothelial growth factor A 

(VEGFA)) to distinguish BC patients and healthy controls in a study encompassing 127 urine 

biopsies, achieving 92% sensitivity and 97% specificity (AUC = 0.980) [187]. Additionally, Rosser et 
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al. showed that a similar protein biomarker panel, namely the previously described 8-protein 

biomarker panel without CA9, enables the differentiation between BC patients and patients with 

different urological disorders (74% sensitivity and 90% specificity)[188]. Besides, Urquidi and 

collaborators reported a 3-protein biomarker panel (PAI-1, CD44 antigen and C-C motif chemokine 

18 (CCL18)) to discriminate BC patients from healthy controls [204]. In 2014, Rosser et al. described 

the combination of 10 proteins (ANG, APOE, CA9, IL8, MMP9, MMP10, SDC1, Serpin Family A 

Member 1 (SERPINA1), Serpin Family E Member 1 (SERPINE1) and VEGFA) as a potential biomarker 

panel to detect recurrent disease in urine (79% sensitivity and 88% specificity) [189]. Two years later, 

Shimizu and colleagues published a comparable study using a similar protein panel (including PAI-

1 and A1AT instead of SERPINA1 and SERPINE1) which allowed the differentiation of BC patients 

from benign and healthy controls, achieving 85% sensitivity and 81% specificity [190]. Recently, 

Soukap and collaborators reported the value of a 2-protein biomarker panel (synuclein G and 

midkine) combined with cytology in BC detection (91.8% sensitivity and 97.5% specificity) and 

showed that the addition of CEACAM1 and ZAG2 proteins to this panel enables the prediction of BC 

recurrences, achieving 92.7% sensitivity and 90.2% specificity [191]. 

As previously mentioned, only a limited number of plasma proteomic studies have currently 

been reported. Bansal et al. have proposed two differently expressed proteins, S100A8 and S100A9, 

distinguishing BC patients from healthy controls (AUC = 0.850–0.856 and AUC = 0.902–0.957) 

[181,182]. Moreover, in pre-operative compared to post-operative BC sera samples, a significantly 

increased abundance of annexin V was observed as well as a reduction of CA1, S100A4, S100A8 and 

S100A9 [181]. An upregulation of CA1 has also been observed in BC patients compared to healthy 

controls (AUC = 0.891–0.908) [181,182]. 

Overall, the previously described studies emphasize the diagnostic value of protein biomarker 

panels and individual protein biomarkers. However, their clinical value is still compromised due to 

suboptimal experimental design including benign or healthy controls (instead of clinically relevant 

patients) in many of the reported analyses, resulting in over-representation of BC. Nevertheless, some 

FDA-approved and non-approved diagnostic protein biomarkers are currently commercially 

available for clinical practice in BC (Table 1) and will be discussed next. 

One of the most extensively studied proteins in BC urinary biopsies is Nuclear Matrix Protein 

22 (NMP22) and multiple studies have demonstrated the use of this protein as a diagnostic BC 

biomarker, achieving 75–100% sensitivity and 75.9–91.8% specificity [169,192–194]. Mowatt and 

colleagues reported a pooled data analysis, encompassing a total of 13885 patients from 41 studies, 

showing that the performance of biomarker NMP22 exceeds cytology in BC detection with regard to 

sensitivity of the approach (68% versus 44%), mainly due to an improved detection of low-grade 

tumours [50,205]. Two assays, NMP22 BC test kit and NMP22 BladderChek Test, are currently in 

clinical use to detect NMP22 in urine. The NMP22 BC test kit represents the original approach based 

on a quantitative sandwich enzyme-linked immunosorbent assay (ELISA) test using two antibodies 

and has been FDA-approved for BC surveillance achieving 40% sensitivity and 99% specificity [49] 

(Table 1). On the other hand, the NMP22 BladderChek Test relies on a qualitative approach designed 

as a point of care (POC) analysis. The NMP22 BladderChek Test has been approved by the FDA for 

both BC surveillance and BC diagnosis (68% sensitivity and 79% specificity) [50] (Table 1). Grossman 

and collaborators analysed the clinical accuracy of the NMP22 BladderChek Test in two multi-centre 

studies [206,207], showing an increased sensitivity compared to cytology (56% versus 16%, 

respectively) in patients with haematuria but it did not reach the level of specificity obtained by 

cytology (86% versus 99%, respectively) [207]. Additionally, a combination of NMP22 BladderChek 

Test and cystoscopy has been observed to significantly enhance the detection of BC recurrence (up to 

99%) compared to cystoscopy alone (91%) [206]. 

Next to NMP22, the bladder tumour antigen (BTA) has been approved by the FDA as a 

diagnostic biomarker in BC [208,209]. A pooled data analysis of 23 studies encompassing a total of 

2258 BC patients and 2994 non-cancer individuals has shown that BTA allows for the differentiation 

of BC patients, achieving a mean sensitivity of 64% and specificity of 76.6% [53]. Two assays, BTA 

stat and BTA TRAK, have been developed for the detection of BTA in urine. BTA TRAK is an ELISA 
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based approach, which has been approved for BC diagnosis, achieving 66% sensitivity and 65% 

specificity [51,210] (Table 1). BTA stat represents a qualitative assay for POC analysis, accepted for 

BC diagnosis with 70% sensitivity and 75% specificity [51,210] (Table 1). Besides, it has to be taken 

into account that multiple studies excluded patients with benign genitourinary conditions and 

including these patients would drastically diminish the BTA test specificity [211]. Therefore, this 

biomarker has currently limited clinical value. 

On the other hand, cytokeratin fragment 21.1 (CYFRA 21.1) represents an ELISA test detecting 

soluble cytokeratin 19 fragments [52]. Multiple studies have reported that CYFRA 21.1 allows 

differentiation between liquid biopsies of BC patients and patients with non-cancer conditions, 

achieving 70–90% sensitivity and 73–86% specificity (AUC = 0.87–0.90) [52,53,212]. The specificity of 

this test dramatically decreases with the inclusion of patients with history of BCG and radiotherapy, 

excluding current use of the CYFRA 21.1 assay as a BC surveillance test [213,214]. 

Additionally, bladder cancer rapid test represents an urinary BC (UBC) test based on the 

detection of soluble fragments of cytokeratin 8 and 18, either using a quantitative ELISA or qualitative 

POC assay [215]. Multiple reports have shown that the UBC test enables the discrimination of BC 

patients compared to non-cancer individuals with a mean sensitivity of 64.4% and specificity of 80.3% 

[53,215]. Subsequently, Babjuk et al. described an increase in sensitivity (79%) as well as a decrease 

in specificity (49%) for the UBC test, once patients with benign conditions or other urinary tract 

malignancies were included [216]. In these cases, the BTA tests exceed the UBC rapid test regarding 

their use in BC detection [216]. 

2.5. Metabolites 

The application of metabolomics in cancer is increasing over the years as this approach has 

shown importance in the search for candidate biomarkers. Since tumour cells are known to have 

altered metabolic pathways, metabolites in body fluids could be promising for the assessment of 

pathology, progression and prognosis of cancer [217]. Moreover, metabolomics has recently proved 

to be useful in the area of biomarker discovery for cancers in which early diagnostic and prognostic 

is urgently needed, such as BC. Given that the bladder is in intimate contact with urine, this body 

fluid has been mined heavily for metabolite biomarkers [218]. 

The use of metabolomic analysis in BC has been primarily focused on the distinction between 

normal-appearing urothelium and BC. Zhou et al. found a urinary four-biomarker panel (5-

hydroxyvaleric acid, cholesterol, 3-phosphoglyceric acid and glycolic acid) including important 

metabolic characteristics (e.g., organic acid metabolism, steroid hormone biosynthesis, glycolysis and 

glyoxylate metabolism) and defined this panel as a combinatorial biomarker for the differentiation 

between BC patients and healthy controls (AUC = 0.804 with 78.0% sensitivity and 70.3% specificity 

in the validation set) [219,220]. Besides, Huang and colleagues reported the elevation of component I 

and decrease of carnitine C9:1 in BC urine samples, compared to healthy controls, as a promising 

biomarker panel for the identification of BC patients (92.6% sensitivity and 96.9% specificity; AUC = 

0.963) [221]. However, the structure and biological function of component I is still unclear and 

required to be studied as it has not been previously observed in nature. Nevertheless, carnitines are 

an example of disturbed fatty acid transportation, fatty acid-oxidation, or energy metabolism that is 

happening in tumour cells [221]. Supporting these findings, Ganti proposed that acylcarnitine 

appearance in BC patient urine samples varies widely in function of tumour grade, suggesting that 

consistently lower levels of acylcarnitines are present in the urinary biopsies of BC patients with low 

grade tumours as compared to both BC patients with high grade tumours as well as healthy controls 

[222]. These results have raised the possibility that fatty acid abnormalities might be involved in the 

pathogenesis of the tumour. 

Moreover, Sahu and colleagues confirmed unique pathway alterations that differentiate MIBC 

and NMIBC [223]. MIBC appears to preferentially enhance cyclooxygenase (COX) and lipoxygenase 

(LOX) signalling (Eicosanoids, prostaglandins and tromboxanes (p-value < 0.004), increase heme 

catabolism (p = 0.0001) and alter nicotinamide adenine dinucleotide (NAD+) synthesis (kynurenine 

(p = 0.0212), anthranilate (p = 0.0111) and quinolate (p = 0.0015)) [223] with a possible influence in 
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inflammatory cell regulation, cell proliferation and angiogenesis [224,225]. Supporting these results, 

Loras and colleagues were recently able to identify metabolites in urine enabling the discrimination 

of BC patients with a high sensitivity (87.9%) and specificity (100%) and a negative likelihood value 

of 0.1, as well high negative predictive values for low, low-intermediate and high-intermediate and 

high-risk patients [226]. Metabolomic analysis revealed altered phenylalanine, arginine, proline and 

tryptophan intermediate metabolism associated to NMIBC [226]. These studies suggest that different 

stages/grades of BC might generate distinct metabolic profiles, which might be due to the fact that 

cancer cells in advanced grades/stages require more energy for survival and continuous growing. 

Next to the use of urinary analysis for the identification of metabolites as possible biomarkers, 

the evaluation of global serum profiles of BC, kidney cancer and non-cancer controls has revealed 

potential biomarkers for BC, including eicosatrienol (AUC = 0.98), azaprostanoic acid (AUC = 0.977), 

docosatrienol (AUC = 0.972), retinol (AUC = 0.801) and 14′-apo-beta-carotenal (AUC = 0.767) [227]. 

Overall, the BC metabolic signature is mainly characterized by alterations in metabolites related 

to energy metabolic pathways, amino acid and fatty acid metabolism, which are known to be crucial 

for cell proliferation as well as glutathione metabolism, a determinant in maintaining cellular redox 

balance [228]. However, the absence of a standard for sample acquisition, use of different platforms 

to profile metabolites, environmental stress and food intake strongly influence the composition of the 

metabolome and all these factors have led to a large diversity of metabolomic profiles obtained from 

different laboratories. These issues need to be considered, since they heavily affect the quality of the 

results by introducing bias and artefacts. Nevertheless, despite remaining challenges, metabolomics 

shows great clinical promise. The improved sensitivity, specificity of technics and the development 

of an in-depth reference metabolome may help to identify good metabolic biomarkers which can 

eventually be translated into the clinic. 

2.6. Extracellular Vesicles 

The concept of extracellular vesicles (EVs) has evolved from being considered garbage bags to 

the demonstration that extracellular vesicles could play very interesting roles and functions in cancer 

biology by promoting survival and growth of disseminated tumour cells; enhancing invasiveness; 

promoting angiogenesis, migration, tumour cell viability and inhibiting tumour cell apoptosis 

[229,230]. EVs include microvesicles, apoptotic bodies and exosomes, with the latter being mostly 

studied at present. Therefore, in this review, we will mainly focus on the potential of exosomes as 

cancer biomarkers in BC. 

Exosomes are small (30–100 nm) membrane vesicles released into the extracellular environment 

due to fusion of multivesicular bodies with the plasma membrane. They were first described in 1983 

in two different papers, published simultaneously [231,232] and currently tumour-released 

microvesicles, which are abundant in the body fluids of patients with cancer, are suggested to be 

involved in tumour progression [233]. Besides, it has been demonstrated that exosomes may help in 

immune response modulation, presentation of antigens to immune cells and intercellular 

communication through transfer of proteins, mRNAs and miRNAs, which could be a useful tool for 

diagnostic, predictive and prognostic purposes in different types of tumours. Regarding this, Valenti 

and colleagues showed that another kind of EVs, microvesicles, released by human melanoma and 

colorectal carcinoma cells, can promote the differentiation of monocytes to myeloid-derived 

suppressor cells, which support tumoral growth and immune escape [234]. 

Currently, there is an increasing interest in the application of exosomes as non-invasive cancer 

biomarkers and many studies have demonstrated that molecules, such as the lncRNAs HOTAIR, 

HOX-AS-2, among others and proteins, like EDIL3 and periostin, are significantly altered in patients 

with BC [161]. Therefore, EVs are proposed to be enriched in proteins that can be associated with 

signalling pathways related to tumorigenesis. In this way, Silvers reported that EVs collected from 

urine of six BC patients (pT1-pT3) showed, at least, a fifteen fold enrichment in the protein levels of 

β-Hexosaminidase (HEXB), S100A4 and Staphylococcal nuclease and tumour domain containing 1 

(SND1) compared to the urinary protein levels of six healthy volunteers (p < 0.05) [235]. However, 
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despite these promising preliminary results, the size of this study population is confined and 

additional extensive research is required for the validation of these data. 

Furthermore, based on their stability in body fluids, especially exosomal miRNAs are discussed 

to be useful diagnostic and prognostic biomarkers in liquid biopsies. Baumgart and colleagues 

showed that exosomes from invasive BC cell lines, compared to non-invasive BC cell lines, are 

characterized by a specific miRNA signature which could play a role in the modification of the 

tumour microenvironment (p < 0.05; FC > 1.5) [236]. These results confirmed the hypothesis that the 

molecular content of exosomes is, at least in part, similar to that of host cells and reflects their cellular 

properties. However, Baumgart also analysed urinary exosomes from BC patients and they exhibited 

only in part the miRNA alterations detected in cell line exosomes [236]. Therefore, further analyses 

will have to clarify the functional relevance of exosomal miRNAs and their role as molecular markers 

in liquid biopsies. 

Even though EVs are a promising source of cancer biomarkers, few studies have been done and 

no exosomal biomarkers have been implemented in BC clinical practice so far. In general, the interest 

in EVs is growing but the introduction as established predictive biomarkers has been hampered by 

challenges in exosome isolation and characterization, indicating the need for new sensitive platforms 

which allow more accurate isolation and detection methods. Furthermore, the use of an efficient, 

rapid and reproducible isolation method is fundamental for analytical reproducibility. 

3. Summary and Discussion 

Among body fluids, urine and saliva are the most attractive fluids for liquid biopsy due to their 

accessibility and low invasiveness of collection. As somatic alterations detected in ctDNA are 

reflective for those present in tumour tissue, the ctDNA profile could be a practical method for 

obtaining the tumour genome independently of direct tissue sequencing. Additionally, mutations in 

ctDNA of cancer patients could be detected over one year prior to clinical diagnosis, which 

emphasizes the great potential of liquid biopsy for the detection of cancer at early stages [98,237,238]. 

At present, there are several diagnostic kits based on the detection of mutations in liquid biopsy 

samples using ctDNA or CTCs from the bloodstream. Most of them have been designed for 

blood/plasma/serum samples using qPCR and NGS techniques. Only the diagnostic kit Trovera 

(initially designed for the identification of mutations in BRAF, KRAS, EGFR in plasma samples; 

Trovagene) is marketed for both plasma and urine samples. A diagnostic alternative is based on the 

detection of both circulating RNA and extracellular vesicles (such as exosomes), for which multiple 

diagnostic kits are brought on the market in order to detect and monitor prostate (like ExoDx Prostate; 

IntelliScore) or bladder (like CxBladder; Pacific Edge, among others) cancer in urine samples. 

Although it is true that urine can reflect genetic alterations of a large number of solid tumours 

[239], it will probably be more relevant for the diagnosis and monitoring of tumours of the 

genitourinary tract. In these cases, the content of nucleic acids from the tumour cells is released 

directly into the urine, which minimalizes the DNA/RNA contamination background of blood cells 

as observed in plasma (Figure 3) [240]. 

As previously mentioned, the high recurrence rate and the need for expensive diagnostic and 

monitoring methods, such as cystoscopy, make BC the most expensive human cancer from diagnosis 

to death. For this reason, efforts to develop diagnostic, prognostic and follow-up systems for BC have 

been enormous in recent years, with various systems published for liquid biopsy samples. 

Accordingly, several diagnostic laboratories have launched different diagnostic and monitoring 

systems for BC patients, which are based on the determination of gene expression or protein 

biomarkers in urine samples (Table 1). Moreover, the identification of metabolites as potential 

biomarker in BC liquid biopsy has also been explored. Several authors have found specific 

metabolites that are able to identify patients with BC, even before appearance of the first clinical 

symptoms of this disease [241]. However, the main concern regarding metabolomics in urine as a 

diagnostic system is the variability of glomerular filtration, both with medication and dietary habits 

as the main confounding factors [242,243]. Therefore, large cohort studies and standardization of 
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sample taking and processing procedures will be necessary to finally establish metabolomics as a 

diagnostic approach. 

Regarding MIBC patient follow-up, it should be taken into account that, even though cystectomy 

is performed in most cases, progression of bladder tumours is produced by metastasis in other tissues 

and organs. In case of metastatic tumours, blood becomes perhaps the most appropriate fluid for 

follow-up and to explore possible therapies once progression of the disease is established (Figure 3). 

Therefore, the determination of mutations or alterations of gene expression patterns has been 

explored from both ctDNA in plasma/serum and from the isolation of CTCs in the bloodstream 

(reviewed in [244–246]). However, care must be taken with predictions regarding the future of these 

new technologies and the studies that support them. Some of the current FDA-approved systems for 

the diagnosis and monitoring of BC do not meet sensitivity and specificity requirements (e.g., the 

NMP22 determination), whereas other tests have such high costs that their use in daily health practice 

is limited (e.g., the UroVysion test). Consequently, there is an urgent need for suitable studies in order 

to validate biomarkers for early detection. Nevertheless, conventional case-control studies have 

proven not to be adequate, emphasizing the importance of prospective cohort studies, consisting of 

serial samples at different time points from a person at-risk, as well as large randomized trials, 

validating biomarker clinical benefit compared to actual gold standard methods. Additionally, a 

coherent and comprehensive set of guidelines must be delineated to ensure success once an approach 

is approved for clinical set-up. For example, Pepe et al. described a prospective randomized open 

blinded end-point (PROBE) study design which takes into account components related to the clinical 

context and outcomes, criteria for measuring biomarker performance, the biomarker test itself and 

the size of the study as a guidance for the design of a biomarker accuracy study [247]. Besides, sample 

repositories (crucial for the discovery and evaluation of biomarkers with potential use in clinical 

medicine) should follow this design strategy in order to maximize biomarker values. 

 

Figure 3. Hypothetical flowchart of liquid biopsies management in BC. In NMIBC patients, urine 

could be the best type of biofluid for diagnosis, prognosis, surveillance and therapy response due to 

its intimate contact with the tumour, whilst in MIBC patients, though urine could also be used, plasma 

and serum acquire more importance to monitor patients. 
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4. Concluding Remarks 

In general, physicians and researchers agree that liquid biopsy is the most promising strategy 

for diagnostics, selection of treatments and follow-up in various tumour types. However, it is 

important that the development of these new diagnostic and follow-up systems come together with 

the appropriate proposals for changes in the therapeutic procedure, either with a better 

characterization of the patients or with an adequate proposal of an effective treatment line. On the 

other hand, the lack of validation of these systems, which are capable of detecting a tumour burden 

much smaller than the imaging technologies, currently prevents them from clinical practice, since 

they can generate great anxiety among patients and possibly lead to overtreatment of the patient. 

Therefore, more studies with long follow-up periods and large cohorts are required to demonstrate 

that the positive result in a liquid biopsy test is valid as a starting point to initiate or change an 

oncologic treatment. However, despite the difficulties and current limitations in liquid biopsy 

technologies and the current lack of robust and confident methodologies that unequivocally allow 

diagnosis, prognosis or detection of therapy response, with the current accumulation of clinical 

evidence, we are convinced that it will only be a matter of time until liquid biopsy replaces tissue 

biopsy in all solid tumours. 
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