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Abstract: MicroRNAs (miRNA) regulate mRNA networks to coordinate cellular functions. In this
study, we constructed gene co-expression networks to detect miRNA modules (clusters of miRNAs
with similar expression patterns) and miRNA–mRNA pairs associated with blood (triacylglyceride
and nonesterified fatty acids) and milk (milk yield, fat, protein, and lactose) components and milk fatty
acid traits following dietary supplementation of cows’ diets with 5% linseed oil (LSO) (n = 6 cows) or
5% safflower oil (SFO) (n = 6 cows) for 28 days. Using miRNA transcriptome data from mammary
tissues of cows for co-expression network analysis, we identified three consensus modules: blue,
brown, and turquoise, composed of 70, 34, and 86 miRNA members, respectively. The hub miRNAs
(miRNAs with the most connections with other miRNAs) were miR-30d, miR-484 and miR-16b
for blue, brown, and turquoise modules, respectively. Cell cycle arrest, and p53 signaling and
transforming growth factor–beta (TGF-β) signaling pathways were the common gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched for target genes of the
three modules. Protein percent (p = 0.03) correlated with the turquoise module in LSO treatment
while protein yield (p = 0.003) and milk yield (p = 7 × 10−04) correlated with the turquoise model,
protein and milk yields and lactose percent (p < 0.05) correlated with the blue module and fat percent
(p = 0.04) correlated with the brown module in SFO treatment. Several fatty acids correlated (p < 0.05)
with the blue (CLA:9,11) and brown (C4:0, C12:0, C22:0, C18:1n9c and CLA:10,12) modules in LSO
treatment and with the turquoise (C14:0, C18:3n3 and CLA:9,11), blue (C14:0 and C23:0) and brown
(C6:0, C16:0, C22:0, C22:6n3 and CLA:10,12) modules in SFO treatment. Correlation of miRNA and
mRNA data from the same animals identified the following miRNA–mRNA pairs: miR-183/RHBDD2
(p = 0.003), miR-484/EIF1AD (p = 0.011) and miR-130a/SBSPON (p = 0.004) with lowest p-values
for the blue, brown, and turquoise modules, respectively. Milk yield, protein yield, and protein
percentage correlated (p < 0.05) with 28, 31 and 5 miRNA–mRNA pairs, respectively. Our results
suggest that, the blue, brown, and turquoise modules miRNAs, hub miRNAs, miRNA–mRNA
networks, cell cycle arrest GO term, p53 signaling and TGF-β signaling pathways have considerable
influence on milk and blood phenotypes following dietary supplementation of dairy cows’ diets with
5% LSO or 5% SFO.
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1. Introduction

Bovine milk and its products constitute a rich source of proteins, energy, minerals (e.g., calcium),
vitamins (A, B, D, E and K) and antioxidants in human nutrition. Milk supplies unsaturated fatty
acids (USFA) which have been associated with decreased risk of cardiovascular diseases (stroke, high
blood pressure, heart failure and coronary heart diseases), inflammatory diseases and some types of
cancers [1–3]. Unsaturated fatty acids make up about 30% of the fatty acid content of milk, meanwhile
it has been proposed that milk fat composition with potential positive effects on human health should
contain about 70% USFA [4]. Nutrition is one of the factors that greatly impacts milk fat composition
and the largest changes in milk fatty acid composition have been obtained either by changing the
amounts and the nature of forages in the diets of cows, particularly pasture, or by adding plant
or marine oils to the diet [5,6]. Plant products like linseed, soybeans, safflower and sunflower are
the most effective sources of unsaturated plant lipids used to enhance the conjugated linoleic acid
(CLA) and USFA contents of milk fat. Unsaturated fatty acids and other factors like physiological
and metabolic state of the cow, breed and genetics are known to influence the concentration of blood
metabolites like glucose, nonesterified fatty acids (NEFA), triacylglyceride (TAG) and β hydroxybutyric
acid [7,8]. For instance, we reported significant increases in blood NEFA and TAG concentrations and
significant reductions in milk fat and milk urea nitrogen contents in Holstein cows following dietary
supplementation with USFA [8]. Moreover, the blood metabolic profile of dairy cows is used to assess
the nutritional and health state of the dairy herd [9,10].

In our previous transcriptome studies of the bovine mammary gland, we identified mRNAs and
miRNAs that were differentially expressed in response to diets rich in USFA [11,12]. Furthermore,
we also examined the effect of diets rich in USFA on milk composition (fat, protein, milk yield
and lactose) and blood metabolites (TAG and NEFA) of lactating Holstein cows [7]. The mRNA
transcriptome analysis identified 1006 (460 up and 546 downregulated) and 199 (127 up and
72 down-regulated) genes that were significantly differentially regulated after linseed oil (LSO) and
safflower oil (SFO) supplementation, respectively, meanwhile the miRNA transcriptome analysis
detected 14 and 22 miRNAs significantly differentially regulated by LSO and SFO, respectively. Since a
network of genes and regulatory factors work in concert to influence the phenotypic expression of traits,
assessment of gene expression without taking into account the factors that regulate their activities
may not adequately explain the complex biological mechanisms underlying the expression of traits.
MiRNAs interact with mRNA(s) to regulate their (mRNA(s)) expression and consequently biological
processes, so it is important to study their synergistic effects on the phenotypic expression of traits.
Hence, an integrative approach in assessing gene expression in a network basis is necessary to unravel
the molecular mechanism underlying milk fat traits.

Network approaches have proven to be powerful tools for exploring the biological mechanisms
underlying complex traits [13–15]. It has been widely applied on output data from high throughput
sequencing technology to identify key regulators and pathways in human diseases such as cancer
and obesity [16], type 1 diabetes [17], Alzheimer’s disease [18], livestock production traits [13,19–21],
and functional annotation of cattle genes [22]. Moreover, understanding gene networks also helps
to better guide genomic selection in animal breeding programs [23]. In order to understand gene
interaction, different methods have been developed to construct co-expression networks and to
identify modules of highly connected genes. The weighted gene co-expression network analysis
(WGCNA) is among the most established and widely used of such methods [24]. We and other
authors have successfully used WGCNA to identify key genes and networks for various complex
traits in livestock species such as meat quality traits in pigs [25], feed efficiency in cattle [26] and
milk yield and component traits in cows [27]. Furthermore, integrative omics approaches have been
applied on combined mRNA and miRNA expression data to detected major regulatory mechanisms
in different phenotypes such as carcass and meat quality traits in porcine [25], abnormality in breast
cancer patients [28], and colorectal cancer [29]. Moreover, the consensus module approach (finding
common functions/processes) has proven to be a promising method for finding hub genes and
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regulators across different datasets [30–35]. Such hub genes and regulators may form targets for
further functional validation of their roles in identified networks. Furthermore, the identification of key
miRNAs, their networks, and their downstream target genes and pathways might also facilitate the use
of genetic engineering technologies, such as RNA interference technologies or gene editing, to obtain
desired phenotypes by controlling the expression of miRNAs and/or their target genes. Moreover,
the miRNAs, genes, and network information might be useful for genomic predictions [36,37].
However, these approaches have not yet been applied to explore the regulatory mechanisms in
the bovine mammary gland in response to diets rich in USFA (SFO or LSO). Therefore, this study
aimed to (i) construct consensus modules across miRNA expression data from control, LSO and SFO
treatments using the WGCNA approach; (ii) correlate important miRNA modules with milk and blood
component phenotypes; (iii) enrich target genes (mRNA) of miRNAs from important modules to
explore the possible biological processes, pathways and transcriptional regulators regulating milk and
blood component phenotypes and (iv) identify miRNA–mRNA networks regulating milk and blood
component phenotypes.

2. Results

2.1. Phenotypic Data

A summary of the data on blood metabolites, milk and component yields including fatty acid
profiles for the control and treatment periods used for co-expression and network analyses is shown
in Table 1.

2.2. Identification of Consensus Modules and Module Trait Relationship

Using the WGCNA approach for miRNA read data described by Li et al. [12], we identified a
total of three consensus modules (blue, brown, and turquoise) of co-expressed miRNAs during the
control and treatment periods (Figures 1 and 2). The modules were made up of 70 (blue), 34 (brown),
and 86 (turquoise) miRNA members (Figures 1 and 2). The grey module grouped miRNAs with no
coherent co-expression patterns; therefore it was not further discussed. MiRNAs were further selected
based on their intra modular connectivity or eigengene-based connectivity (k.ME). The k.ME is a
measure of how a miRNA is correlated to module eigengene and miRNAs with high k.ME values (>0.6)
are better representatives of module characteristics [38]. Therefore, miRNAs with k.ME > 0.6 were
selected for downstream analyses. A total of 18, 12 and 19 miRNAs with k.ME > 0.6 in the blue, brown,
and turquoise modules, respectively, were selected for downstream analyses (Table 2). Hub miRNAs or
miRNAs with the most connections with other members of the module were bta-miR-30d, bta-miR-484
and bta-miR-16b for the blue, brown, and turquoise modules, respectively (Table 2).

In LSO treatment, the turquoise module correlated significantly with protein percent (p = 0.03)
while protein yield (p = 0.003) and milk yield (p = 7 × 10−4) correlated with the turquoise module,
protein and milk yields and lactose percent (p < 0.05) correlated with the blue module and fat percent
(p = 0.04) correlated with the brown module in SFO treatment (Figure 1). Several fatty acids correlated
(p < 0.05) with the blue (CLA:9,11) and brown (C4:0, C12:0, C22:0, C18:1n9c and CLA:10,12) modules in
LSO treatment and with the turquoise (C14:0, C18:3n3 and CLA:9,11), blue (C14:0 and C23:0) and brown
(C6:0, C16:0, C22:0, C22:6n3 and CLA:10,12) modules in SFO treatment (Figure 2). Several measured
parameters also correlated with the identified modules in the control samples (Figures 1 and 2).
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Table 1. Means (± standard error) of phenotypic data * used for co-expression network analyses.

Trait
Acronym Name Unit

Control Linseed Oil Treatment Safflower Oil Treatment

Mean ± SE Min Max Mean ± SE Min Max Mean ± SE Min Max

PROT_Y Protein yield kg 1.2 ± 0.06 0.99 1.52 1.24 ± 0.06 0.92 1.53 1.17 ± 0.06 0.89 1.47
FAT_Y Fat yield kg 1.31 ± 0.08 1.12 1.74 1.07 ± 0.11 0.61 1.98 0.97 ± 0.07 0.67 1.35
Milk Milk yield kg 36.94 ± 2.13 29.24 52.24 38.14 ± 2.42 26.44 53.56 36.64 ± 2.86 26.16 53.34
PRT Protein percentage % 3.3 ± 0.1 2.9 3.65 3.31 ± 0.11 2.81 4.17 3.27 ± 0.1 2.74 3.85
LAC Lactose percentage % 4.7 ± 0.05 4.47 4.88 4.74 ± 0.05 4.43 4.94 4.65 ± 0.04 4.42 4.84
FAT Fat percentage % 3.6 ± 0.12 3.07 4.19 2.8 ± 0.19 1.87 3.7 2.77 ± 0.24 1.42 3.99
TAG Triacylglyceride nmol/L 0.05 ± 0 0.02 0.07 0.08 ± 0.01 0.04 0.11 0.08 ± 0.01 0.05 0.12

NEFA Nonesterified fatty acids nmol/L 103.86 ± 23.55 48.66 312.99 156.48 ± 13.29 92.75 248.53 154.47 ± 14.72 101.13 276.18
C4:0 Butyric acid mg/100g of fat 2.81 ± 0.35 1.51 4.95 0.64 ± 0.1 0.06 0.95 0.74 ± 0.08 0.03 0.94
C6:0 Caproic acid mg/100g of fat 2.39 ± 0.18 1.31 3.58 0.97 ± 0.15 0.28 1.51 1.24 ± 0.16 0.52 2.26
C8:0 Caprylic acid mg/100g of fat 1.18 ± 0.07 1.05 1.66 0.72 ± 0.06 0.5 0.94 0.76 ± 0.05 0.51 1.04

C12:0 Lauric acid mg/100g of fat 2.77 ± 0.3 1.01 4.68 1.5 ± 0.24 0.56 3.03 1.44 ± 0.21 0.5 2.93
C14:0 Myristic acid mg/100g of fat 11.43 ± 0.27 10.22 12.7 7.95 ± 0.41 5.47 9.28 6.96 ± 0.51 5.01 9.86
C15:0 Pentadecylic acid mg/100g of fat 1.44 ± 0.07 1.13 1.86 0.98 ± 0.07 0.68 1.4 0.99 ± 0.05 0.8 1.4
C16:0 Palmitic acid mg/100g of fat 26.79 ± 0.28 25.46 28.55 21.17 ± 1.2 16.64 28.7 21.94 ± 0.98 17.22 26.7
C17:0 Margaric acid mg/100g of fat 0.83 ± 0.1 0.44 1.73 0.93 ± 0.12 0.36 1.49 0.73 ± 0.1 0.16 1.29
C18:0 Stearic acid mg/100g of fat 11.13 ± 0.54 8.02 13.87 8.58 ± 0.49 5.02 10.41 7.57 ± 0.37 5.5 9.02
C20:0 Arachidic acid mg/100g of fat 0.22 ± 0.03 0.1 0.34 0.21 ± 0.02 0.12 0.29 0.21 ± 0.02 0.1 0.35
C22:0 Behenic acid mg/100g of fat 0.05 ± 0 0.02 0.07 0.04 ± 0 0.02 0.05 0.04 ± 0 0.03 0.05
C23:0 Tricosanoic acid mg/100g of fat 0.04 ± 0 0.02 0.05 0.03 ± 0 0.01 0.06 0.04 ± 0 0.02 0.05
C24:0 Lignoceric acid mg/100g of fat 0.04 ± 0 0.03 0.05 0.03 ± 0 0.01 0.04 0.03 ± 0 0.01 0.05

C14:1total Myristoleic acid mg/100g of fat 11 ± 1.13 0.28 1.2 10 ± 1.6 0.25 1.02 11 ± 1.79 0.46 0.98
C16:1total Palmitoleic acid mg/100g of fat 1.31 ± 0.06 1.1 1.71 1.65 ± 0.23 0.42 3.08 1.82 ± 0.18 1.21 2.84
C18:1n9c Oleic acid mg/100g of fat 19.06 ± 1.35 10.7 24 25.91 ± 1.12 20.08 33.2 22.57 ± 0.7 19.4 26

C20:2 Eicosadienoic acid mg/100g of fat 0.03 ± 0 0.02 0.05 0.07 ± 0.01 0.01 0.14 0.08 ± 0.01 0.04 0.13
C22:5n3 Docosapentaenoic acid mg/100g of fat 0.06 ± 0.01 0.02 0.16 0.23 ± 0.04 0.04 0.47 0.14 ± 0.03 0.03 0.32
C22:6n3 Docosahexaenoic acid mg/100g of fat 0.14 ± 0 0.12 0.16 0.18 ± 0.01 0.13 0.23 0.18 ± 0.01 0.12 0.26

C18:3n3n α linolenic acid mg/100g of fat 0.27 ± 0.02 0.2 0.42 0.32 ± 0.02 0.19 0.4 0.21 ± 0.03 0.1 0.49
CLA:9,11 Cis-9, trans-11 CLA mg/100g of fat 0.3 ± 0.02 0.16 0.41 0.33 ± 0.02 0.22 0.39 0.31 ± 0.04 0.15 0.54

CLA:10,12 Trans-10, cis-12 CLA mg/100g of fat 0.02 ± 0 0.01 0.03 0.04 ± 0 0.03 0.07 0.04 ± 0 0.02 0.06
MUFA Sum of Monounsaturated fatty acids mg/100g of fat 22.99 ± 1.38 15.18 28.33 30.59 ± 1.17 24.53 37.83 27.55 ± 0.9 24.32 32.59

SFA Sum of saturated fatty acids mg/100g of fat 61.12 ± 0.96 57.42 66.05 43.73 ± 1.49 36.32 51.9 42.7 ± 1.49 35.61 49.1
PUFA Sum of Polyunsaturated fatty acids mg/100g of fat 0.84 ± 0.03 0.63 0.99 1.17 ± 0.07 0.82 1.52 0.96 ± 0.1 0.57 1.63

* Data are the means of data collected on days −14 and −1 for the control period and days +7, +14, +21 and +28 for the treatment period. This table presents an overview of the effects of
treatments on traits. Detailed results on the effects of treatments on data collected at the different time points have been described previously [7,11].
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Figure 1. Consensus modules and module-trait relationship matrix: The weighted gene 
co-expression network analysis (WGCNA) was used to group miRNAs into consensus modules 
based on their expression patterns. Four consensus modules were identified and each consensus 
module eigengene was tested for correlation with blood and milk parameters during (A) control 
period, (B) linseed oil and (C) safflower oil treatments. Correlation coefficients and corresponding 

Figure 1. Consensus modules and module-trait relationship matrix: The weighted gene co-expression
network analysis (WGCNA) was used to group miRNAs into consensus modules based on their
expression patterns. Four consensus modules were identified and each consensus module eigengene
was tested for correlation with blood and milk parameters during (A) control period, (B) linseed oil
and (C) safflower oil treatments. Correlation coefficients and corresponding p-values (in brackets)
between turquoise, blue and brown modules in the y-axis, and blood and milk parameters in the x-axis.
The module−trait relationship matrix is colored based on the intensity of the correlation: red is a strong
positive correlation, while green is a strong negative correlation.
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Figure 2. Consensus module−trait relationship matrix: The weighted gene co-expression network
analysis (WGCNA) was used to group miRNAs into consensus modules based on their expression
patterns. Four consensus modules were identified and each consensus module eigengene was tested
for correlation with milk fatty acid traits during (A) control period, (B) linseed oil and (C) safflower
oil treatments. Correlation coefficients and corresponding p-values (in brackets) between miRNA
modules in the y-axis and milk fatty acids in the x-axis. The module−trait relationship matrix is colored
based on the intensity of the correlation: red is a strong positive correlation, while green is a strong
negative correlation.
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Table 2. Consensus modules (blue, brown, and turquoise) and their miRNA members.

Module miRNA 1 k.ME_ All
p-Value

k.ME_ All
2 k.ME_ Control

p-Value
k.ME Control

3 k.ME_ Linseed
p-Value

k.ME_ Linseed
4 k.ME_ Safflower

p-Value
k.ME_ Safflower

Blue bta-miR-30d 0.93 1.58 × 10−22 0.96 5.06 × 10−7 0.95 1.24 × 10−6 0.93 1.69 × 10−5

Blue bta-miR-96 0.89 1.62 × 10−15 0.89 6.36 × 10−5 0.90 2.62 × 10−5 0.90 6.64 × 10−5

Blue bta-miR-191 0.87 4.00 × 10−20 0.93 5.88 × 10−6 0.97 9.66 × 10−8 0.87 2.89 × 10−4

Blue bta-miR-151-5p 0.83 1.04 × 10−14 0.90 2.68 × 10−5 0.92 1.50 × 10−5 0.83 7.43 × 10−4

Blue bta-miR-409a 0.80 6.90 × 10−12 0.85 2.47 × 10−4 0.80 9.23 × 10−4 0.89 1.10 × 10−4

Blue bta-miR-183 0.77 4.79 × 10−13 0.90 4.18 × 10−5 0.77 1.79 × 10−3 0.91 5.11 × 10−5

Blue bta-miR-99a-5p 0.77 1.49 × 10−14 0.91 1.82 × 10−5 0.77 1.79 × 10−3 0.94 1.20 × 10−5

Blue bta-let-7b 0.76 1.66 × 10−9 0.76 2.24 × 10−3 0.80 8.20 × 10−4 0.84 6.75 × 10−4

Blue bta-miR-2285k 0.75 2.89 × 10−9 0.75 2.29 × 10−3 0.75 2.71 × 10−3 0.86 2.96 × 10−4

Blue bta-miR-652 0.73 1.21 × 10−11 0.90 2.88 × 10−5 0.86 1.59 × 10−4 0.73 5.76 × 10−3

Blue bta-let-7a-5p 0.70 9.32 × 10−9 0.81 7.38 × 10−4 0.81 6.60 × 10−4 0.70 8.10 × 10−3

Blue bta-miR-6522 0.68 3.17 × 10−8 0.74 2.95 × 10−3 0.84 2.87 × 10−4 0.68 1.12 × 10−2

Blue bta-miR-100 0.68 2.69 × 10−8 0.77 1.57 × 10−3 0.68 7.88 × 10−3 0.83 7.85 × 10−4

Blue bta-miR-374a 0.66 8.19 × 10−8 0.77 1.72 × 10−3 0.66 9.28 × 10−3 0.80 1.46 × 10−3

Blue bta-miR-2284b 0.66 2.57 × 10−7 0.66 9.38 × 10−3 0.76 2.06 × 10−3 0.76 3.07 × 10−3

Blue bta-miR-532 0.65 1.39 × 10−7 0.83 4.06 × 10−4 0.65 1.05 × 10−2 0.71 7.23 × 10−3

Blue bta-miR-99b 0.64 1.01 × 10−10 0.89 4.73 × 10−5 0.64 1.28 × 10−2 0.88 1.92 × 10−4

Blue bta-miR-23b-3p 0.62 2.65 × 10−7 0.77 1.59 × 10−3 0.62 1.66 × 10−2 0.78 2.15 × 10−3

Brown bta-miR-484 0.78 1.28 × 10−11 0.86 1.77 × 10−4 0.78 1.27 × 10−3 0.88 1.68 × 10−4

Brown bta-let-7d 0.76 1.24 × 10−13 0.89 6.15 × 10−5 0.93 6.37 × 10−6 0.76 3.08 × 10−3

Brown bta-miR-429 0.74 8.47 × 10−12 0.74 3.16 × 10−3 0.87 1.13 × 10−4 0.90 7.33 × 10−5

Brown bta-miR-885 0.73 2.27 × 10−11 0.94 4.02 × 10−6 0.77 1.57 × 10−3 0.73 5.48 × 10−3

Brown bta-miR-26b 0.72 5.57 × 10−9 0.74 2.98 × 10−3 0.87 1.32 × 10−4 0.72 6.31 × 10−3

Brown bta-miR-30c 0.71 4.04 × 10−13 0.71 4.60 × 10−3 0.93 5.77 × 10−6 0.89 1.03 × 10−4

Brown bta-let-7g 0.70 2.80 × 10−8 0.82 5.04 × 10−4 0.70 5.68 × 10−3 0.76 3.39 × 10−3

Brown bta-miR-29b 0.64 7.43 × 10−6 0.68 7.75 × 10−3 0.64 1.26 × 10−2 0.68 1.03 × 10−2

Brown bta-miR-328 0.63 1.02 × 10−6 0.63 1.39 × 10−2 0.81 6.48 × 10−4 0.64 1.67 × 10−2

Brown bta-miR-32 0.63 2.25 × 10−7 0.63 1.43 × 10−2 0.78 1.51 × 10−3 0.78 2.35 × 10−3

Brown bta-miR-107 0.61 4.32 × 10−7 0.61 1.78 × 10−2 0.77 1.79 × 10−3 0.77 2.66 × 10−3

Brown bta-let-7a-3p 0.60 2.14 × 10−8 0.83 4.16 × 10−4 0.82 5.65 × 10−4 0.60 2.51 × 10−2
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Table 2. Cont.

Module miRNA 1 k.ME_ All
p-Value

k.ME_ All
2 k.ME_ Control

p-Value
k.ME Control

3 k.ME_ Linseed
p-Value

k.ME_ Linseed
4 k.ME_ Safflower

p-Value
k.ME_ Safflower

Turquoise bta-miR-16b 0.85 4.24 × 10−12 0.86 1.93 × 10−4 0.86 1.85 × 10−4 0.85 4.94 × 10−4

Turquoise bta-miR-130a 0.84 1.36 × 10−15 0.95 1.78 × 10−6 0.88 6.75 × 10−5 0.84 6.51 × 10−4

Turquoise bta-miR-142-5p 0.84 2.35 × 10−13 0.88 7.90 × 10−5 0.89 4.54 × 10−5 0.84 6.66 × 10−4

Turquoise bta-miR-218 0.81 2.47 × 10−14 0.85 2.40 × 10−4 0.81 7.09 × 10−4 0.95 3.45 × 10−6

Turquoise bta-miR-142-3p 0.80 9.04 × 10−13 0.89 5.46 × 10−5 0.88 7.17 × 10−5 0.80 1.40 × 10−3

Turquoise bta-miR-195 0.77 1.20 × 10−12 0.77 1.55 × 10−3 0.80 8.03 × 10−4 0.95 5.53 × 10−6

Turquoise bta-miR-497 0.75 5.71 × 10−13 0.75 2.29 × 10−3 0.85 2.52 × 10−4 0.94 7.26 × 10−6

Turquoise bta-miR-16a 0.74 2.61 × 10−11 0.82 5.21 × 10−4 0.74 2.91 × 10−3 0.92 3.83 × 10−5

Turquoise bta-miR-19b 0.70 1.90 × 10−8 0.81 6.35 × 10−4 0.70 5.93 × 10−3 0.79 1.95 × 10−3

Turquoise bta-miR-3613 0.68 4.50 × 10−7 0.76 2.12 × 10−3 0.68 7.00 × 10−3 0.72 6.31 × 10−3

Turquoise bta-miR-455-3p 0.67 1.02 × 10−6 0.67 8.79 × 10−3 0.70 5.94 × 10−3 0.76 3.60 × 10−3

Turquoise bta-miR-15a 0.66 1.15 × 10−7 0.85 2.03 × 10−4 0.67 8.90 × 10−3 0.66 1.30 × 10−2

Turquoise bta-miR-424-5p 0.65 1.45 × 10−8 0.65 1.07 × 10−2 0.89 5.66 × 10−5 0.71 6.99 × 10−3

Turquoise bta-miR-106b 0.64 4.81 × 10−12 0.89 5.64 × 10−5 0.64 1.18 × 10−2 0.93 2.05 × 10−5

Turquoise bta-miR-155 0.64 2.68 × 10−7 0.83 4.77 × 10−4 0.69 6.30 × 10−3 0.64 1.68 × 10−2

Turquoise bta-miR-455-5p 0.63 7.14 × 10−7 0.67 8.50 × 10−3 0.63 1.35 × 10−2 0.81 1.14 × 10−3

Turquoise bta-miR-93 0.63 5.83 × 10−10 0.91 1.70 × 10−5 0.63 1.37 × 10−2 0.80 1.54 × 10−3

Turquoise bta-miR-199a-5p 0.61 5.53 × 10−6 0.71 4.58 × 10−3 0.68 7.05 × 10−3 0.61 2.27 × 10−2

Turquoise bta-miR-99a-3p 0.60 7.73 × 10−7 0.66 9.23 × 10−3 0.60 1.94 × 10−2 0.83 7.22 × 10−4

1 Eigengene−based connectivity (k.ME), a correlation coefficient of miRNA expression and the module eigengene value in all samples. k.ME is a measure of how the miRNA is correlated
to module eigengene; 2 Correlation coefficient of miRNA expression and the module eigengene value in control samples; 3 Correlation coefficient of miRNA expression and the module
eigengene value in linseed oil treatment; 4 Correlation coefficient of miRNA expression and the module eigengene value in safflower oil treatment.
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2.3. miRNA Target Gene Prediction and Enrichment Analysis

Using TargetScan, we identified 3199, 3727, and 4045 target mRNAs for 18, 12, and 19 miRNAs
in the blue, brown, and turquoise modules, respectively (Table S1a,c,e). Amongst them, 1311, 1533,
and 1697 mRNAs from mRNA data of the same samples [11] had significant negative correlations
(FDR < 0.05) with 18, 12 and 19 miRNAs in the blue, brown, and turquoise modules, respectively
(Table S1b,d,e). These mRNAs (filtered target mRNAs) were used as input for enrichment analyses for
GO, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and transcription factors.

A total of 6, 16, and 84 GO terms were enriched for filtered target mRNAs of the blue, brown,
and turquoise modules, respectively (Table 3). The GO term, cell cycle arrest (GO: 0007050) was
common to the three modules (Figure 3, Table 3). Vesicle docking (GO: 0048278), GDP binding
(GO: 0019003) and GTP binding (GO: 0005525) were the most significantly enriched GO terms for the
blue, brown, and turquoise modules, respectively (Table 3).
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Table 3. Enriched gene ontology (GO) terms for the blue, brown, and turquoise modules.

Module * Term GO ID p-Value ** FDR

Blue Vesicle docking GO:0048278 8.02 × 10−6 1.53 × 10−2

Blue Negative regulation of transcription from RNA
Polymerase II promoter GO: 0000122 2.49 × 10−5 2.38 × 10−2

Blue Proteasome−mediated ubiquitin-dependent protein
catabolic process GO: 0043161 5.12 × 10−5 2.44 × 10−2

Blue Protein dephosphorylation GO: 0006470 4.44 × 10−5 2.44 × 10−2

Blue Cell cycle arrest GO: 0007050 1.02 × 10−4 3.69 × 10−2

Blue RNA splicing GO: 0008380 1.16 × 10−4 3.69 × 10−2

Brown GDP binding GO: 0019003 1.16 × 10−9 6.63 × 10−7

Brown GTP binding GO: 0005525 2.35 × 10−8 6.71 × 10−6

Brown GTPase activity GO: 0003924 9.34 × 10−8 1.78 × 10−5

Brown RNA binding GO: 0003723 4.05 × 10−6 5.78 × 10−4

Brown Transforming growth factor β receptor signaling pathway GO: 0007179 5.82 × 10−7 1.19 × 10−3

Brown Protein serine/threonine kinase activity GO: 0004674 1.72 × 10−5 1.40 × 10−3

Brown Transforming growth factor β binding GO: 0050431 1.52 × 10−5 1.40 × 10−3

Brown Transforming growth factor β -activated receptor activity GO: 0005024 1.48 × 10−5 1.40 × 10−3

Brown Peptidyl-prolyl cis-trans isomerase activity GO: 0003755 6.38 × 10−5 4.56 × 10−3

Brown Ubiquitin protein ligase activity GO: 0061630 8.32 × 10−5 5.28 × 10−3

Brown Type I transforming growth factor β receptor binding GO: 0034713 1.21 × 10−4 6.91 × 10−3

Brown mRNA splicing, via spliceosome GO: 0000398 7.53 × 10−6 7.70 × 10−3

Brown Activin binding GO: 0048185 4.78 × 10−4 2.48 × 10−2

Brown Protein ubiquitination GO: 0016567 4.28 × 10−5 2.92 × 10−2

Brown Ubiquitin-protein transferase activity GO: 0004842 7.29 × 10−4 3.47 × 10−2

Brown Cell cycle arrest GO: 0007050 9.44 × 10−5 4.83 × 10−2

Turquoise GTP binding GO: 0005525 6.32 × 10−10 4.13 × 10−7

Turquoise Macroautophagy GO: 0016236 2.44 × 10−10 5.31 × 10−7

Turquoise Proteasome−mediated ubiquitin-dependent protein
catabolic process GO: 0043161 2.35 × 10−9 2.56 × 10−6

Turquoise Membrane organization GO: 0061024 4.22 × 10−9 3.06 × 10−6

Turquoise RNA binding GO: 0003723 4.15 × 10−8 9.27 × 10−6

Turquoise GDP binding GO: 0019003 4.26 × 10−8 9.27 × 10−6

Turquoise Transcription coactivator activity GO: 0003713 2.73 × 10−7 3.82 × 10−5

Turquoise GTPase activity GO: 0003924 2.93 × 10−7 3.82 × 10−5

Turquoise Ubiquitin protein ligase activity GO: 0061630 9.30 × 10−7 1.01 × 10−4

Turquoise Ubiquitin protein ligase binding GO: 0031625 1.10 × 10−6 1.03 × 10−4

Turquoise Protein serine/threonine kinase activity GO: 0004674 1.99 × 10−6 1.62 × 10−4

Turquoise Protein K48-linked ubiquitination GO: 0070936 5.71 × 10−7 3.10 × 10−4

Turquoise Protein ubiquitination involved in ubiquitin-dependent
protein catabolic process GO: 0042787 9.25 × 10−7 4.02 × 10−4

Turquoise Regulation of transcription from RNA polymerase II
promoter GO: 0006357 1.44 × 10−6 5.18 × 10−4

Turquoise Protein deubiquitination GO: 0016579 1.91 × 10−6 5.18 × 10−4

Turquoise Nucleotide−excision repair, preincision complex assembly GO: 0006294 1.77 × 10−6 5.18 × 10−4

Turquoise Cadherin binding GO: 0045296 1.10 × 10−5 7.99 × 10−4

Turquoise Protein ubiquitination GO: 0016567 5.19 × 10−6 1.25 × 10−3

Turquoise Protein homodimerization activity GO: 0042803 2.27 × 10−5 1.48 × 10−3

Turquoise Protein polyubiquitination GO: 0000209 7.21 × 10−6 1.57 × 10−3

Turquoise Ubiquitin-protein transferase activity GO: 0004842 3.22 × 10−5 1.91 × 10−3

Turquoise Golgi organization GO: 0007030 9.86 × 10−6 1.95 × 10−3

Turquoise Transforming growth factor β receptor signaling pathway GO: 0007179 1.13 × 10−5 2.04 × 10−3

Turquoise G2/M transition of mitotic cell cycle GO: 0000086 1.74 × 10−5 2.90 × 10−3

Turquoise Negative regulation of apoptotic process GO: 0043066 2.37 × 10−5 3.69 × 10−3

Turquoise Positive regulation of apoptotic process GO: 0043065 2.59 × 10−5 3.75 × 10−3

Turquoise GABA receptor binding GO: 0050811 7.94 × 10−5 4.32 × 10−3

Turquoise Global genome nucleotide−excision repair GO: 0070911 3.83 × 10−5 5.12 × 10−3

Turquoise Stress-activated MAPK cascade GO: 0051403 4.00 × 10−5 5.12 × 10−3

Turquoise Positive regulation of ubiquitin-protein ligase activity
involved in regulation of mitotic cell cycle transition GO: 0051437 6.07 × 10−5 6.95 × 10−3

Turquoise Protein K11-linked ubiquitination GO: 0070979 5.94 × 10−5 6.95 × 10−3

Turquoise Protein phosphorylation GO: 0006468 6.40 × 10−5 6.96 × 10−3

Turquoise Anaphase−promoting complex-dependent
catabolic process GO: 0031145 1.03 × 10−4 1.07 × 10−2
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Table 3. Cont.

Module * Term GO ID p-Value ** FDR

Turquoise Post-translational protein modification GO: 0043687 1.14 × 10−4 1.11 × 10−2

Turquoise Virion assembly GO: 0019068 1.18 × 10−4 1.11 × 10−2

Turquoise Transforming growth factor β binding GO: 0050431 2.84 × 10−4 1.32 × 10−2

Turquoise Cadherin binding involved in cell-cell adhesion GO: 0098641 2.84 × 10−4 1.32 × 10−2

Turquoise Ligand-dependent nuclear receptor transcription
coactivator activity GO: 0030374 3.41 × 10−4 1.48 × 10−2

Turquoise ER to Golgi vesicle−mediated transport GO: 0006888 1.83 × 10−4 1.66 × 10−2

Turquoise Protein kinase activity GO: 0004672 4.47 × 10−4 1.69 × 10−2

Turquoise R-SMAD binding GO: 0070412 4.30 × 10−4 1.69 × 10−2

Turquoise Ubiquitin conjugating enzyme binding GO: 0031624 4.67 × 10−4 1.69 × 10−2

Turquoise Ubiquitin-dependent protein catabolic process GO: 0006511 2.03 × 10−4 1.70 × 10−2

Turquoise COPII vesicle coating GO: 0048208 1.96 × 10−4 1.70 × 10−2

Turquoise Thiol-dependent ubiquitinyl hydrolase activity GO: 0036459 5.21 × 10−4 1.79 × 10−2

Turquoise Cellular response to DNA damage stimulus GO: 0006974 2.41 × 10−4 1.87 × 10−2

Turquoise Endocytosis GO: 0006897 2.37 × 10−4 1.87 × 10−2

Turquoise Negative regulation of sequence−specific DNA binding
transcription factor activity GO: 0043433 2.51 × 10−4 1.88 × 10−2

Turquoise Regulation of signal transduction by p53 class mediator GO: 1901796 2.80 × 10−4 1.94 × 10−2

Turquoise Wnt signaling pathway, planar cell polarity pathway GO: 0060071 2.72 × 10−4 1.94 × 10−2

Turquoise Nucleotide−excision repair, DNA duplex unwinding GO: 0000717 2.86 × 10−4 1.94 × 10−2

Turquoise Transcription cofactor activity GO: 0003712 6.37 × 10−4 2.08 × 10−2

Turquoise Polynucleotide adenylyltransferase activity GO: 0004652 6.74 × 10−4 2.09 × 10−2

Turquoise Positive regulation of transcription from RNA polymerase
II promoter GO: 0045944 3.39 × 10−4 2.24 × 10−2

Turquoise Activin binding GO: 0048185 7.66 × 10−4 2.27 × 10−2

Turquoise Androgen receptor signaling pathway GO: 0030521 3.64 × 10−4 2.33 × 10−2

Turquoise BMP signaling pathway GO: 0030509 3.98 × 10−4 2.47 × 10−2

Turquoise Guanyl-nucleotide exchange factor activity GO: 0005085 9.54 × 10−4 2.71 × 10−2

Turquoise Double−stranded DNA binding GO: 0003690 1.10 × 10−3 2.98 × 10−2

Turquoise Transcription from RNA polymerase II promoter GO: 0006366 5.41 × 10−4 3.27 × 10−2

Turquoise Retrograde transport, endosome to plasma membrane GO: 1990126 6.11 × 10−4 3.59 × 10−2

Turquoise Error-free translesion synthesis GO: 0070987 6.32 × 10−4 3.62 × 10−2

Turquoise Endosomal transport GO: 0016197 6.73 × 10−4 3.66 × 10−2

Turquoise GTP metabolic process GO: 0046039 6.74 × 10−4 3.66 × 10−2

Turquoise NIK/NF-γ B signaling GO: 0038061 7.95 × 10−4 3.84 × 10−2

Turquoise Negative regulation of transforming growth factor β
receptor signaling pathway GO: 0030512 7.75 × 10−4 3.84 × 10−2

Turquoise Negative regulation of cell death GO: 0060548 7.78 × 10−4 3.84 × 10−2

Turquoise Nucleotide−excision repair, DNA incision, 5′-to lesion GO: 0006296 7.78 × 10−4 3.84 × 10−2

Turquoise Negative regulation of actin filament polymerization GO: 0030837 7.66 × 10−4 3.84 × 10−2

Turquoise Single−stranded DNA binding GO: 0003697 1.61 × 10−3 4.19 × 10−2

Turquoise G1/S transition of mitotic cell cycle GO: 0000082 9.12 × 10−4 4.22 × 10−2

Turquoise Negative regulation of ubiquitin-protein ligase activity
involved in mitotic cell cycle GO: 0051436 9.00 × 10−4 4.22 × 10−2

Turquoise Cell cycle arrest GO: 0007050 9.92 × 10−4 4.40 × 10−2

Turquoise Nucleotide−excision repair, DNA incision GO: 0033683 9.77 × 10−4 4.40 × 10−2

Turquoise Positive regulation of I-γB kinase/NF-γB signaling GO: 0043123 1.15 × 10−3 4.86 × 10−2

Turquoise Regulation of small GTPase mediated signal transduction GO: 0051056 1.22 × 10−3 4.86 × 10−2

Turquoise Regulation of transcription from RNA polymerase II
promoter in response to hypoxia GO: 0061418 1.21 × 10−3 4.86 × 10−2

Turquoise Wnt signaling pathway GO: 0016055 1.28 × 10−3 4.86 × 10−2

Turquoise Autophagy GO: 0006914 1.31 × 10−3 4.86 × 10−2

Turquoise Negative regulation of type I interferon production GO: 0032480 1.32 × 10−3 4.86 × 10−2

Turquoise Nucleotide−excision repair GO: 0006289 1.32 × 10−3 4.86 × 10−2

Turquoise Nucleotide−excision repair, preincision complex
stabilization GO: 0006293 1.25 × 10−3 4.86 × 10−2

Turquoise Nucleotide−excision repair, DNA incision, 3′-to lesion GO: 0006295 1.25 × 10−3 4.86 × 10−2

Turquoise Alternative mRNA splicing, via spliceosome GO: 0000380 1.31 × 10−3 4.86 × 10−2

* GABA: gamma-aminobutyric acid; MAPK: mitogen-activated protein kinase; R-SMAD: receptor-regulated SMADs;
BMP: bone morphogenetic protein; NIK/NF-γB: NF- γB inducing kinase/nuclear factor-γB; ** Benjamini–Hochberg
corrected p-values.
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A total of 15, 6, and 11 KEGG pathways were enriched for the blue, brown, and turquoise modules,
respectively (Table 4). Two KEGG pathways (p53 signaling and transforming growth factor (TGF) β
signaling pathways) were common to the three modules (Table 4, Figure 3). Also, five (p53 signaling,
cell cycle, Forkhead box O (FoxO) signaling, protein processing in endoplasmic reticulum and TGF-β
signaling pathways) and four (TGF-β signaling, endocytosis, p53 signaling and ubiquitin mediated
proteolysis pathways) pathways were common to the blue and turquoise, and brown and turquoise
modules, respectively (Figure 3, Table 4). The most significantly enriched pathways in the blue, brown,
and turquoise modules were p53 signaling pathway (p = 9.93 × 10−4), mitogen-activated protein
kinase (MAPK) signaling pathway (p = 3.40 × 10−2) and ubiquitin mediated proteolysis pathway
(p = 5.81 × 10−7), respectively.

Table 4. Enriched KEGG pathways for the blue, brown, and turquoise modules.

Module * Pathway p-Value ** FDR

Blue p53 signaling pathway 7.33 × 10−6 9.93 × 10−4

Blue Cell cycle 5.05 × 10−6 9.93 × 10−4

Blue Proteoglycans in cancer 6.12 × 10−5 5.53 × 10−3

Blue HTLV-I infection 1.77 × 10−4 1.20 × 10−2

Blue Epstein–Barr virus infection 3.27 × 10−4 1.78 × 10−2

Blue ErbB signaling pathway 4.90 × 10−4 2.21 × 10−2

Blue MAPK signaling pathway 6.61 × 10−4 2.38 × 10−2

Blue Chronic myeloid leukemia 8.32 × 10−4 2.38 × 10−2

Blue Huntington’s disease 8.52 × 10−4 2.38 × 10−2

Blue Wnt signaling pathway 9.63 × 10−4 2.38 × 10−2

Blue TGF-β signaling pathway 1.05 × 10−3 2.38 × 10−2

Blue Hippo signaling pathway 1.02 × 10−3 2.38 × 10−2

Blue Pathways in cancer 1.49 × 10−3 3.07 × 10−2

Blue Protein processing in endoplasmic reticulum 1.59 × 10−3 3.07 × 10−2

Blue FoxO signaling pathway 2.64 × 10−3 4.78 × 10−2

Brown MAPK signaling pathway 2.73 × 10−4 3.40 × 10−2

Brown TGF-β signaling pathway 1.83 × 10−4 3.40 × 10−2

Brown Endocytosis 7.46 × 10−4 3.40 × 10−2

Brown RNA degradation 6.58 × 10−4 3.40 × 10−2

Brown p53 signaling pathway 6.43 × 10−4 3.40 × 10−2

Brown Ubiquitin mediated proteolysis 7.30 × 10−4 3.40 × 10−2

Turquoise Ubiquitin mediated proteolysis 2.15 × 10−9 5.81 × 10−7

Turquoise Endocytosis 7.66 × 10−8 1.03 × 10−5

Turquoise Protein processing in endoplasmic reticulum 8.37 × 10−5 7.53 × 10−3

Turquoise p53 signaling pathway 1.69 × 10−4 1.14 × 10−2

Turquoise Renal cell carcinoma 3.39 × 10−4 1.83 × 10−2

Turquoise Focal adhesion 4.32 × 10−4 1.94 × 10−2

Turquoise TGF-β signaling pathway 6.00 × 10−4 2.31 × 10−2

Turquoise Regulation of autophagy 1.22 × 10−3 4.10 × 10−2

Turquoise FoxO signaling pathway 1.83 × 10−3 4.48 × 10−2

Turquoise Nucleotide excision repair 1.58 × 10−3 4.48 × 10−2

Turquoise Cell cycle 1.70 × 10−3 4.48 × 10−2

* HPLV-I: human T-cell leukemia virus type I; FoxO: forkhead box O; MAPK: mitogen-activated protein kinase;
TGF-β: transforming growth factor beta; ** Benjamini–Hochberg corrected p-values.

A total of 22, 18 and 33 transcription factors were enriched for the blue, brown, and turquoise
modules (p < 0.05), respectively (Figure 3, Table 5). Ten transcription factors (SMAD4, SP1,
EGR1, NRF1, STAT3, E2F1, TP53, MEF2A, ATF4, and HIF1A) were common to the three modules.
Also, four (NFYA, LEF1, PCBP1 and ATF2) transcription factors were common to the blue and turquoise
modules and another four (PLAU, THRB, E2F6 and TEAD4) were common to the brown and turquoise
modules. SMAD4 was the most significantly enriched transcription factor for the blue (p = 1.28 × 10−7)
and turquoise (p = 3.85 × 10−11) modules; meanwhile, SP1 was the most significantly enriched
(p = 2.41 × 10−8) transcription factor for the brown module.
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Table 5. Enriched transcription factors for the blue, brown, and turquoise modules.

Module Transcription Factor p-Value * FDR

Blue SMAD4 4.27 × 10−10 1.28 × 10−7

Blue SP1 1.95 × 10−9 2.93 × 10−7

Blue EGR1 3.50 × 10−8 3.50 × 10−6

Blue ZBTB16 2.99 × 10−5 2.24 × 10−3

Blue STAT3 1.52 × 10−4 7.59 × 10−3

Blue CBFB 2.60 × 10−4 1.11 × 10−2

Blue TP53 3.32 × 10−4 1.24 × 10−2

Blue FOXJ1 5.05 × 10−4 1.52 × 10−2

Blue NFYA 4.81 × 10−4 1.52 × 10−2

Blue NRF1 5.86 × 10−4 1.57 × 10−2

Blue LEF1 6.28 × 10−4 1.57 × 10−2

Blue SRF 1.00 × 10−3 2.31 × 10−2

Blue PPARG 1.33 × 10−3 2.85 × 10−2

Blue E2F1 2.32 × 10−3 4.63 × 10−2

Brown SP1 8.01 × 10−11 2.41 × 10−8

Brown EGR1 1.30 × 10−6 1.30 × 10−4

Brown SMAD4 1.12 × 10−6 1.30 × 10−4

Brown TP53 1.90 × 10−5 1.43 × 10−3

Brown E2F1 2.75 × 10−5 1.65 × 10−3

Brown PLAU 5.86 × 10−5 2.94 × 10−3

Brown NRF1 1.50 × 10−4 6.46 × 10−3

Brown THRB 1.94 × 10−4 7.29 × 10−3

Brown NRF1 2.20 × 10−4 7.35 × 10−3

Brown ATF4 4.00 × 10−4 1.21 × 10−2

Brown HIF1A 6.13 × 10−4 1.68 × 10−2

Brown E2F6 9.46 × 10−4 2.37 × 10−2

Brown CREM 1.63 × 10−3 3.76 × 10−2

Brown STAT3 2.02 × 10−3 4.34 × 10−2

Turquoise SMAD4 1.22 × 10−13 3.85 × 10−11

Turquoise SP1 3.05 × 10−11 4.82 × 10−9

Turquoise E2F1 1.40 × 10−5 8.86 × 10−4

Turquoise SP4 2.76 × 10−5 1.46 × 10−3

Turquoise THRB 6.70 × 10−5 3.02 × 10−3

Turquoise NRF1 1.77 × 10−4 7.01 × 10−3

Turquoise LEF1 2.24 × 10−4 7.86 × 10−3

Turquoise MEF2A 5.02 × 10−4 1.59 × 10−2

Turquoise CEBPD 5.97 × 10−4 1.66 × 10−2

Turquoise GATA1 6.32 × 10−4 1.66 × 10−2

Turquoise ATF4 7.62 × 10−4 1.76 × 10−2

Turquoise ATF2 8.38 × 10−4 1.76 × 10−2

Turquoise NFYA 8.29 × 10−4 1.76 × 10−2

Turquoise IRF8 1.17 × 10−3 2.32 × 10−2

Turquoise NFAT2 1.39 × 10−3 2.45 × 10−2

Turquoise STAT3 1.39 × 10−3 2.45 × 10−2

Turquoise ELK4 2.03 × 10−3 3.21 × 10−2

Turquoise TCFAP2A 1.97 × 10−3 3.21 × 10−2

Turquoise PITX1 2.37 × 10−3 3.56 × 10−2

Turquoise E2F6 2.76 × 10−3 3.97 × 10−2

Turquoise SPI1 2.92 × 10−3 4.02 × 10−2

Turquoise GTF2I 3.26 × 10−3 4.02 × 10−2

Turquoise MAX 3.24 × 10−3 4.02 × 10−2

Turquoise TEAD4 3.31 × 10−3 4.02 × 10−2

Turquoise HNF1A 3.87 × 10−3 4.40 × 10−2

Turquoise HINFP 4.13 × 10−3 4.50 × 10−2

* Benjamini–Hochberg corrected p-values.
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2.4. Integration of miRNA–mRNA and Trait Relationship

A total of 132 of 1311 filtered target mRNAs, 19 of 1533 filtered target mRNAs and 2 of
1697 filtered target mRNAs were negatively and significantly correlated with miRNAs in the
blue, brown, and turquoise modules, respectively (Table S1g). The most significantly correlated
miRNA–mRNA pairs were bta-miR-183/RHBDD2 (p = 0.003), bta-miR-484/ADM2 (p = 0.001) and
bta-miR-130a/SBSPON (p = 0.004) in the blue, brown, and turquoise modules, respectively. Moreover,
68, 6 and 2 miRNA–mRNA pairs were found to be significantly correlated with at least one phenotype
at FDR < 0.05 (Table 6, Figure 4). Milk yield, protein yield, and protein percentage were correlated
(FDR < 0.05) with 28, 31 and 5 miRNA–mRNA pairs, respectively (Table 6, Figure 4).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW 17 of 28 
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blue circles [positive correlation]) were significantly correlated with traits (octagonal red shapes).
MiRNA (‘Y’ yellow shapes) were significantly correlated with traits (positively or negatively) and
negatively correlated with corresponding mRNAs.
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Table 6. Correlation of significant miRNA–mRNA pairs with phenotypes.

Module miRNA Gene Symbol
1 Context ++

Score Percentile

2 Cor. Mir.
Gene

3 FDR. Cor.
Mir. Gene

Trait
4 Cor. Trait

Mir.

5 FDR. Cor.
Trait Mir.

6 Cor. Gene.
Trait

7 FDR. Cor.
Gene. Trait

Blue bta-let-7a-5p STX3 97 −0.428 0.022 Protein percentage 0.484 0.010 −0.438 0.023
Blue bta-let-7b APBB3 98 −0.394 0.037 Protein yield −0.400 0.041 0.620 <0.001
Blue bta-let-7b C14orf28 97 −0.485 0.008 Milk yield −0.509 0.006 0.424 0.029
Blue bta-let-7b MXD1 97 −0.457 0.014 Protein yield −0.400 0.041 0.446 0.020
Blue bta-let-7b PPP1R15B 96 −0.420 0.025 Protein yield −0.400 0.041 0.609 0.001
Blue bta-let-7b QARS 98 −0.386 0.041 Milk yield −0.509 0.006 0.491 0.009
Blue bta-let-7b SLC20A1 96 −0.391 0.039 Milk yield −0.509 0.006 0.502 0.007
Blue bta-let-7b STX3 97 −0.464 0.012 Protein yield −0.400 0.041 0.531 0.004
Blue bta-let-7b THTPA 98 −0.431 0.021 Protein yield −0.400 0.041 0.409 0.036
Blue bta-let-7b TP53 97 −0.413 0.028 Protein yield −0.400 0.041 0.459 0.016
Blue bta-miR-183 CTDSP1 98 −0.433 0.020 Protein yield −0.452 0.018 0.443 0.021
Blue bta-miR-183 DGCR2 99 −0.516 0.005 Protein yield −0.452 0.018 0.442 0.021
Blue bta-miR-183 HLTF 98 −0.428 0.022 Protein yield −0.452 0.018 0.502 0.007
Blue bta-miR-183 HNRNPA1 96 −0.479 0.009 Milk yield −0.599 0.001 0.414 0.034
Blue bta-miR-183 ICA1 99 −0.443 0.017 Protein yield −0.452 0.018 0.548 0.003
Blue bta-miR-183 ILF2 96 −0.373 0.050 C17:0 0.414 0.033 −0.400 0.041
Blue bta-miR-183 MAFF 97 −0.427 0.022 Milk yield −0.599 0.001 0.467 0.014
Blue bta-miR-183 MGME1 98 −0.456 0.014 Milk yield −0.599 0.001 0.399 0.042
Blue bta-miR-183 MTA1 99 −0.475 0.010 Protein yield −0.452 0.018 0.415 0.033
Blue bta-miR-183 PPP2R5C 95 −0.446 0.017 Milk yield −0.599 0.001 0.433 0.025
Blue bta-miR-183 RHBDD2 95 −0.538 0.003 Protein percentage 0.547 0.003 −0.411 0.035
Blue bta-miR-183 RHPN2 99 −0.407 0.031 Milk yield −0.599 0.001 0.433 0.025
Blue bta-miR-183 SESN1 97 −0.375 0.048 Protein yield −0.452 0.018 0.396 0.043
Blue bta-miR-183 SFT2D1 97 −0.500 0.006 C17:0 0.414 0.033 −0.425 0.028
Blue bta-miR-183 SPRY2 99 −0.418 0.026 Protein yield −0.452 0.018 0.488 0.009
Blue bta-miR-183 SRSF2 98 −0.473 0.010 Protein yield −0.452 0.018 0.617 0.001
Blue bta-miR-183 UTP6 96 −0.432 0.021 protein yield −0.452 0.018 0.545 0.003
Blue bta-miR-183 ZFAND5 99 −0.427 0.022 protein yield −0.452 0.018 0.430 0.026
Blue bta-miR-2284b ACVR1 96 −0.419 0.025 Milk yield −0.442 0.021 0.416 0.032
Blue bta-miR-2284b ARL15 97 −0.443 0.017 protein yield −0.429 0.026 0.427 0.027
Blue bta-miR-2284b CCNT2 96 −0.398 0.035 protein yield −0.429 0.026 0.439 0.023
Blue bta-miR-2284b CLIC2 99 −0.416 0.027 protein yield −0.429 0.026 0.610 0.001
Blue bta-miR-2284b ERG 95 −0.448 0.016 protein yield −0.429 0.026 0.393 0.045
Blue bta-miR-2284b FAM114A1 96 −0.425 0.023 Milk yield −0.442 0.021 0.459 0.016
Blue bta-miR-2284b FAM8A1 95 −0.386 0.042 protein yield −0.429 0.026 0.414 0.033
Blue bta-miR-2284b FAR1 95 −0.387 0.041 Milk yield −0.442 0.021 0.399 0.042
Blue bta-miR-2284b IVNS1ABP 95 −0.404 0.032 protein yield −0.429 0.026 0.509 0.006
Blue bta-miR-2284b LBR 96 −0.510 0.005 protein yield −0.429 0.026 0.462 0.015
Blue bta-miR-2284b LIMA1 97 −0.446 0.017 protein yield −0.429 0.026 0.403 0.039
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Table 6. Cont.

Module miRNA Gene Symbol
1 Context ++

Score Percentile

2 Cor. Mir.
Gene

3 FDR. Cor.
Mir. Gene

Trait
4 Cor. Trait

Mir.

5 FDR. Cor.
Trait Mir.

6 Cor. Gene.
Trait

7 FDR. Cor.
Gene. Trait

Blue bta-miR-2284b NRROS 96 −0.406 0.031 Milk yield −0.442 0.021 0.480 0.011
Blue bta-miR-2284b POLR2A 99 −0.415 0.027 protein yield −0.429 0.026 0.667 0.000
Blue bta-miR-2284b RRN3 96 −0.377 0.047 protein yield −0.429 0.026 0.501 0.007
Blue bta-miR-2284b SETD2 97 −0.399 0.035 protein yield −0.429 0.026 0.438 0.023
Blue bta-miR-2284b SLC38A2 95 −0.417 0.026 Milk yield −0.442 0.021 0.526 0.004
Blue bta-miR-2284b THAP2 96 −0.385 0.042 protein yield −0.429 0.026 0.445 0.020
Blue bta-miR-2284b UBE4A 96 −0.414 0.027 protein yield −0.429 0.026 0.490 0.009
Blue bta-miR-2284b ZDHHC17 95 −0.384 0.043 protein yield −0.429 0.026 0.426 0.028
Blue bta-miR-2284b ZNF175 97 −0.407 0.031 Milk yield −0.442 0.021 0.433 0.025
Blue bta-miR-23b-3p RBM4B 95 −0.463 0.012 Milk yield −0.390 0.047 0.549 0.003
Blue bta-miR-30d CAMK2D 95 −0.384 0.042 protein percentage 0.459 0.016 −0.433 0.025
Blue bta-miR-409a ALG13 99 −0.490 0.008 Milk yield −0.553 0.002 0.462 0.015
Blue bta-miR-409a GALNT5 96 −0.482 0.009 Protein percentage 0.641 0.000 −0.616 0.001
Blue bta-miR-409a RPL11 98 −0.484 0.009 Fat percentage 0.387 0.049 −0.447 0.020
Blue bta-miR-409a TMEM159 99 −0.410 0.029 Fat percentage 0.387 0.049 −0.396 0.044
Blue bta-miR-409a TRA2B 97 −0.382 0.044 Milk yield −0.553 0.002 0.598 0.001
Blue bta-miR-6522 FAM107B 95 −0.384 0.043 Milk yield −0.441 0.022 0.554 0.002
Blue bta-miR-6522 ZNF623 95 −0.376 0.048 Milk yield −0.441 0.022 0.550 0.003
Blue bta-miR-96 CHST1 98 −0.373 0.050 Milk yield −0.429 0.026 0.485 0.010
Blue bta-miR-96 EIF5 96 −0.416 0.027 Milk yield −0.429 0.026 0.494 0.009
Blue bta-miR-96 FARP1 97 −0.466 0.012 Milk yield −0.429 0.026 0.599 0.001
Blue bta-miR-96 GRHL2 95 −0.398 0.035 Milk yield −0.429 0.026 0.481 0.011
Blue bta-miR-96 LONP2 97 −0.439 0.019 Fat percentage 0.613 0.001 −0.415 0.033
Blue bta-miR-96 PRKAR1A 97 −0.375 0.049 Milk yield −0.429 0.026 0.442 0.022
Blue bta-miR-96 SPIN1 95 −0.392 0.038 Milk yield −0.429 0.026 0.533 0.004
Blue bta-miR-96 SPROT 97 −0.410 0.029 Milk yield −0.429 0.026 0.535 0.004
Blue bta-miR-96 TP53 95 −0.440 0.018 Milk yield −0.429 0.026 0.427 0.027
Blue bta-miR-96 TRIB3 97 −0.397 0.035 Fat percentage 0.613 0.001 −0.550 0.003
Blue bta-miR-96 ZCCHC3 99 −0.453 0.015 Milk yield −0.429 0.026 0.567 0.002

Brown bta-miR-484 CPPED1 95 −0.413 0.028 C22:6n3 −0.402 0.040 0.600 0.001
Brown bta-miR-484 DOLPP1 96 −0.393 0.037 C16:0 0.394 0.045 −0.396 0.043
Brown bta-miR-484 EIF1AD 95 −0.470 0.011 Fat percentage 0.421 0.030 −0.432 0.025
Brown bta-miR-484 LY6E 97 −0.420 0.025 C16:0 0.394 0.045 −0.394 0.045
Brown bta-miR-484 NUDT16 96 −0.390 0.039 Fat percentage 0.421 0.030 −0.456 0.017
Brown bta-miR-484 QDPR 99 −0.391 0.039 C16:0 0.394 0.045 −0.596 0.001

Turquoise bta-miR-130a SBSPON 96 −0.529 0.004 Protein percentage −0.486 0.010 0.626 < 0.001
Turquoise bta-miR-455-5p HPGD 99 −0.384 0.043 Protein yield 0.491 0.009 −0.492 0.009

1 Context++ score percentile from TargetScan prediction; 2 Correlation coefficient between miRNA and gene; 3 FDR (Benjamini–Hochberg corrected p-values) for Pearson correlation
between miRNA and gene; 4 Correlation coefficient between miRNA and trait; 5 FDR for Pearson correlation between miRNA and trait; 6 Correlation coefficient between gene and trait;
7 FDR for Pearson correlation between gene and trait.
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3. Discussion

Previously, we reported effects of diets rich in USFA on milk components and blood metabolites
and on mRNA and miRNA expression in the bovine mammary gland [7,11,12]. In the current study,
we performed WGCNA of the miRNA data of the same animals and identified miRNA consensus
modules (blue, brown, and turquoise) as well as miRNA–mRNA co-expressed pairs with potential
effects on milk components, fatty acid phenotypes and blood metabolites. Nine miRNA members
of the blue (bta-miR-30d, miR-96, miR-409a, miR-183, miR-99a-5p, miR-2285k, miR-652, miR-6522
and miR-374a), 5 of the brown (bta-let-7d, miR-885, miR-29b, miR-32 and miR-107) and 14 of the
turquoise (bta-miR-16b, miR-130a, miR-142-5p, miR-218, miR-142-3p, miR-195, miR-19b, miR-455-3p,
miR-15a, miR-424-5p, miR-106b, miR-155, miR-93 and miR-99a-3p) modules were previously reported
as differentially expressed between lactation stages [39]. Additionally, 5 miRNAs (bta-miR-30d,
miR-191, miR-151-5p, miR-99a-5p and let-7d), two miRNAs (bta-miR-26b and let-7g) and one miRNA
(bta-miR-142-5p) in the blue, brown, and turquoise modules, respectively, were most abundant in milk
fat, milk whey, milk cell and mammary gland tissues of lactating Holstein cows [40] further supporting
the influence of the blue, brown, and turquoise miRNA members on milk yield and components in
this study. Previous studies have demonstrated the effects of diets rich in USFA on milk and blood
components. Salehi et al. [41] demonstrated the effects of diets rich in USFA on blood NEFA levels
in dairy cows. Furthermore, increased blood plasma levels of NEFA in cows fed diets supplemented
with flaxseed (linseed) and fish oil have been reported [42–44]. Similarly, TAG concentrations in serum
increased when cows in early lactation received increasing levels of dietary fatty acids from canola oil
(1% canola oil +1% fish oil, or 2% canola oil) [45].

3.1. Blue Module miRNAs and Their Potential Roles

The blue module miRNAs were significantly correlated with milk and protein yields during the
control period, milk yield, protein percent and lactose during treatment with SFO, protein percent
and protein yield with LSO treatment. The miRNA expression data of these animals revealed
that several of the blue module miRNAs were differentially expressed in response to dietary
supplementation with SFO (bta-miR-96, miR-99a-5p, miR-199b, miR-16a, miR-484 and miR-99b)
and LSO (bta-miR-885, miR-23b-3p and miR-99a-5p) [12], thus supporting their relationship to milk
yield and milk components.

Many of the blue module miRNAs have been reported to play diverse roles in many biological
processes. For example, human homologue of bta-miR-191 has been found to be dysregulated
in different types of tumors in humans including colorectal [46], breast and prostate cancers [47],
while miR-199b is involved in acute myeloid leukemia [48,49] and breast cancer metastasis [50–52].
The implication of these miRNAs (bta-miR-191 and miR-199b) in the different types of cancers suggests
roles in cellular functions in the mammary gland. The development of breast and prostate cancers
is linked to cellular processes like cell death or apoptosis, therefore suggesting a link between these
miRNAs and the milk phenotypes in this study.

Some blue module miRNAs like bta-miR-183 and bta-miR-2284b correlated negatively with
many candidate genes for protein yield (CTDSP1, DGCR2, HLTF, ICA1, MTA1, SESN1, SPRY2, SRSF2,
UTP6 and ZFAND5), milk yield (C14orf28, QARS, SLC20A1, HNRNPA1, MAFF, MGME1, PPP2R5C
and RHPN2) and C17:0 fatty acid (ILF2 and SFT2D1) (Figure 4) thus suggesting potential roles
in the regulation of these genes. In addition to the report of differential expression of some blue
module miRNAs between lactation stages [39], the importance of blue module miRNAs for milk yield
and components is further supported by results of pathways enrichments of their target mRNAs.
For instance, ErbB, MAPK, Wnt, TGF β and Hippo signaling pathways are involved in the regulation
of mammary gland development and lactation processes (reviewed in [53]). Furthermore, ErbB and
TGF β signaling pathways have been associated with lactation persistency in Holsteins [54]. The p53
signaling pathway, the second most enriched pathway for the blue module, functions by preventing
cancer formation and hence acts as a tumor suppressor [55]. The p53 gene has been nicknamed
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“guardian of the genome” due to its role in maintaining the stability of the genome [56]. In addition,
this pathway regulates proper cellular differentiation and development, and it is also important for
tissues undergoing postnatal development [57]. Furthermore, inappropriate expression of the p53
signaling pathway within the mammary epithelium of transgenic mice caused apoptotic cell death
of the alveolar epithelium of the mammary gland [58]. In this study, enrichment of p53 signaling
pathway supports the significant correlation of the blue module miRNAs with milk yield, protein
yield and lactose percent.

Moreover, we also reported several enriched GO terms for the blue module filtered target mRNAs
such as vesicle docking, negative regulation of transcription from RNA polymerase II promoter and
proteasome−mediated ubiquitin-dependent protein catabolic process. However, it is not clear how
these GO terms are linked to the studied phenotypes. We identified 22 important transcription factors
which could mediate the functions of miRNAs in the regulation of the target mRNAs or phenotypes
(Table 5). SMAD4, SP1 and EGR1 were the top three transcription factors enriched for the target
mRNAs of the blue module miRNAs. SMAD4 is a tumor suppressor gene and it is essential for
transforming growth factor beta (TGFβ) signaling [59], and plays important roles in cell differentiation,
growth and apoptosis [60]. Other important transcription factors such as STAT3 and PPARG are well
known to regulate milk and milk fat synthesis [61–63].

3.2. Brown Module miRNAs and Their Potential Roles

Bta-miR-484, a member of the brown module was previously reported as differentially
expressed due to LSO and SFO treatments and it is also important in the regulation of lactation
signaling [40]. Correlation analyses indicated that this miRNA negatively correlated with previously
reported candidate genes for fat percentage (EIF1AD and NUDT16), C22:6n3 (CPPED1) and C16:0
(LY6E, DOLPP1 and QDPR). The effects of LSO and SFO supplementation reduced fat percentage in
the studied animals by 30.38% and 32.42%, respectively [11] thus supporting the present observation.
Additionally, bta-miR-484 has been observed to prevent cell proliferation and epithelial–mesenchymal
transition process by targeting both ZEB1 and SMAD2 genes, thus functions like a tumor suppressor
and may serve as a prospective biomarker for cervical cancer [64]. Other members (bta-miR-26b
and bta-miR-107) of the brown module have functions related to cellular processes [40,53] which are
essential for lactation processes or milk synthesis. The human homologue of bta-miR-26b was shown
to play a protective role in the etiology of breast cancer by promoting apoptosis through targeting
SLC7A11 [65] while bta-miR-107 is associated with mammary stem cell activities [66].

The most significantly enriched biological process GO term in the brown and turquoise modules,
GDP binding, is involved in cell proliferation, signal transduction, protein synthesis, and protein
targeting [67] (Table 3). Other enriched pathways in the brown module like MAPK signaling
pathway plays an important part in numerous cellular processes such as apoptosis, proliferation
and differentiation [68], stress responses, and immune defense [69,70] and have been noted to be
important for mammary gland development and milk secretion in caprine [71].

The most enriched transcription factor for the brown module was specific protein 1 (SP1) known to
regulate the expression of numerous genes involved in cell proliferation, apoptosis and differentiation,
and increase in its transcriptional activities is associated with tumorigenesis [72].

3.3. Turquoise Module miRNAs and Their Potential Roles

The hub miRNA (bta-miR-16a) for the turquoise module has been reported to be differentially
expressed in response to SFO treatment [12]. Bta-miR-16a being differentially regulated by SFO and
also having the highest intra modular connectivity suggests involvement in the regulation of the
traits (C14:0, C18:3n3 and 9, 11-CLA) that were significantly correlated with the turquoise module
in SFO treatment. Although a direct role for this miRNA in mammary gland functions has not been
demonstrated, a previous study suggests its involvement in tumor suppression through inhibition of
cell cycle progression [73]. Some turquoise module miRNAs like bta-miR-130a and bta-miR-142-5p
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have been linked to milk fat synthesis [40,74] and disease parthenogenesis [75–77]. Additionally,
overexpression of bta-miR-130a affects cellular triacylglyceride synthesis in bovine mammary epithelial
cells via regulation of PPAR-γ [74], fatty acid storage and glucose metabolism. Besides, some predicted
target genes of miR-130a have been associated with neurodevelopmental disorders such as autism,
schizophrenia and hereditary spastic paraplegia [78]. GO enrichment indicated that target mRNAs of
turquoise module miRNAs participate in many different processes such as GTP binding, GDP binding,
transcription coactivator activity, membrane organization, protein ubiquitination and regulation of
apoptotic processes. Several KEGG pathways such as Ubiquitin mediated proteolysis, TGF-β signaling
pathway and cell cycle, and transcription factors such as STAT3, SMAD4, SP1 and EGR1 with roles
in many different processes involving milk production and related traits [39,63] were enriched for
target mRNAs of turquoise module miRNAs. TGF-β signaling pathway and p53 signaling pathway
were common pathways enriched by target mRNAs from all three modules and their roles in related
traits have been discussed above. Ubiquitin mediated proteolysis, the most enriched pathway for
turquoise module is important for protein degradation [77] and many processes including mediation
of lactation signal in skeletal muscle of dairy cows [76]. Top transcription factors enriched for the target
mRNAs of turquoise module were SMAD4, SP1, and EGR1.The early growth response protein 1 (EGR1)
acts as a transcription regulator of target genes, hence play roles in the regulation of cell survival,
proliferation, cell death response to growth factors, DNA damage, and ischemia [79]. A notable
enriched transcription factor was STAT3 with known association with milk production [75], fertilization
and embryonic survival rates [80] in dairy cows.

3.4. Association Between miRNA and mRNA with Expressed Phenotypes

The most interesting part of this analysis is the different pathways linking miRNAs to the actual
phenotypes through their target genes (Table 6 and Figure 4). Interestingly, different miRNAs that
shared the same target genes regulated different traits. For instance, by targeting TP53, bta-let-7b might
influence milk yield but also, bta-miR-96 might have an influence on protein percentage. Since many
genes (mRNAs) and miRNAs influencing milk yield have been characterized such as TP53, GRHL2,
bta-miR-183, bta-let-7b and bta-miR-96, we will not discuss about the network of miRNAs influencing
milk yield. Meanwhile, for the first time, the link between some milk fatty acids, genes (mRNAs) and
miRNAs have been reported. Interestingly, we observed negative correlation between bta-miR-484 and
three different genes (QDPR, LY6E and DOLPP1) and positive correlation with C16:0 concentrations in
milk. The roles of bta-miR-484 have been reported above, while it is not clear how these three genes are
involved in the metabolism of C16:0. However, DOLPP1 has a potential role in regulating subcutaneous
fat [81] while LY6E might play a role in the regulation of glycosylphosphatidylinositol. Also, QDPR is
important for fat traits in pigs [82]. Therefore, these genes might be interesting candidates for milk
fat traits. The influence of bta-miR-183 on protein yield and protein percentage suggests that it can
down regulate 8 different genes to influence protein yield. Nevertheless, these connections are based
on correlations so it might not reflect true associations; therefore more studies are needed to validate
the identified links and how they participate in mammary gland response to dietary USFA.

4. Materials and Methods

4.1. Animal Management and Sampling

Animal management and sampling procedures were according to the national codes of practice
for the care and handling of dairy cows (http://www.nfacc.ca/codes-of-practice) and approved by the
Animal Care and Ethics Committee of Agriculture and Agri-Food Canada (CIPA#402, 04 April 2012).

Detailed procedures for animal management and data collection have been reported
previously [12]. Briefly, 12 Canadian Holstein cows in mid-lactation were randomly assigned to
either LSO or SFO treatment (6 cows/treatment). These animals were fed a control diet of total mixed
ration of corn and grass silages (50:50) and concentrates for 28 days (control period), after which the

http://www.nfacc.ca/codes-of-practice
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control diet was supplemented with 5% LSO or 5% SFO on a dry matter basis (treatment period) for
another 28 days. Animals were milked every day at 8:00 am and 6:00 pm. Analysis of fat, protein and
lactose contents in milk samples collected on days −14 and −1 (control period) and +7, +14, +21 and
+28 (treatment period) were done using 80 mL of milk (pool of morning (40 mL) and evening (40 mL)
milk) by a commercial laboratory (Valacta Laboratories Inc., Ste. Anne de Bellevue, QC, Canada).
Daily milk yield for each cow was recorded with electronic milk meters (MU-480, De Laval Inc.,
Kansas City, MO, USA). Milk fat from milk samples (40 mL) was extracted by centrifugation at 4500× g
for 20 min at 4 ◦C.

Blood samples were aseptically collected from animals on days −14 and −1 (control period) and
+7, +14, +21 and +28 (treatment period) and centrifuged at 7500× g for 20 min at room temperature.
The resulting plasma was used for the analysis of non-esterified fatty acid (Wako Chemicals,
Kit HR series NEFA-HR, Richmond, VA, USA) and triacylglyceride (enzychrom TAG assay kit,
Bioassay System, Hayward, CA, USA), following manufacturers’ instructions.

Mammary biopsies were collected from animals in each group on day −14, day +7 and day
+28 which corresponded to middle of control period, early treatment and end of treatment periods,
respectively, following an established protocol [83]. Biopsies were snap frozen in liquid nitrogen and
stored at −80 ◦C pending isolation of total RNA.

4.2. RNA Isolation

Procedures for RNA isolation have been reported previously [11]. In brief, 50 mg of mammary
gland biopsy sample was used for total RNA isolation using miRNeasy Kit (Qiagen Inc., Toronto,
ON, Canada) following manufacturer’s instructions. The Turbo DNase Kit (Ambion Inc., Foster City,
CA, USA) was used to remove contaminating DNA from isolated RNA. The Nanodrop ND-1000
instrument (NanoDrop Technologies, Wilmington, DE, USA) was used to measure RNA concentration
and Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) was used to accessed RNA
quality. The RNA Integrity Numbers of all the samples were >8.

4.3. mRNA Sequencing and Data Processing

Procedures for mRNA sequencing and data processing have been reported previously [11].
Briefly, 250 ng of total RNA/sample was use for library generation using the TruSeq stranded mRNA
Sample Preparation Kit (Illumina Inc., San Diego, CA, USA). The Quant-iT™ PicoGreen® dsDNA
Assay Kit (Life Technologies, Burlington, ON, Canada) and the Kapa Illumina GA with the Revised
Primers-SYBR Fast Universal Kit (D-Mark Biosciences, Toronto, ON, Canada) were used to quatify
prepared libraries. The 2100 Bioanalyzer instrument (Agilent Technologies) was used to determine
the average fragment size of libraries. Generated libraries (36) were multiplexed and subjected
to 100 bp paired-end sequencing on six lanes of a HiSeq 2000 system (Illumina Inc.) by McGill
University and Genome Quebec Innovation Centre (Montreal, QC, Canada). Generated reads were
processed using a pipeline developed by McGill University and Genome Quebec Innovation Centre
(http://gqinnovationcenter.com/).

4.4. miRNA Sequencing and Data Processing

Procedures for miRNA library preparing, sequencing and bioinformatics management of data
have been reported previously [12]. Briefly, the procedure for miRNA library preparation and barcoding
for sequencing was according to Vigneault, et al. [84] with slight modifications [12]. Total RNA was
first ligated to a primer (adaptor) at the 3′ by T4 RNA Ligase 22tr K227Q (New England Biolabs Inc.,
Canada) and 5′ ends by T4 RNA Ligase 1 (Enzymatics Inc., a division of Qiagene Inc., Beverly, MA USA)
followed by reverse transcription into cDNA using Superscript III Kit (Life Technologies, Carlsbad, CA,
USA). Barcoding of the different libraries was done followed by size separation by polyacrylamide gel
electrophoresis and finally the concentration of the purified libraries was assessed by PicoGreen assay
(Life Technologies, USA) on a Nanodrop 3300 fluorescent spectrophotometer. Multiplexed libraries

http://gqinnovationcenter.com/
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were sequenced on 3 lanes on an Illumina HiSeq 2000 system (Illumina Inc., USA) by McGill University
and Genome Quebec Innovation Centre (Montreal, QC, Canada).

The FastQC program version 0.10.1 (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) was used to check sequencing quality. Then, the cutadapt v1.2.2 program (http://code.
google.com/p/cutadapt/) was used to trim adaptor sequences. Clean reads were parsed into one
and mapped to the bovine genome (Bta_4.6.1) using bowtie 1.0.0. [85]. Reads that mapped to 1 to 5
positions were further used. miRDeep2 v2.0.0.5 tool was used to identify known miRNAs and also in
the discovery of novel miRNAs.

4.5. Fatty Acid Analysis

Fatty acid methyl ester preparation and quantification of fatty acid profiles have been reported
previously [11]. Briefly, fatty acid methyl esters were prepared and quantified using the Hewlett
Packard 6890 N gas chromatographic system (Agilent Technology, Wilmington, DE, USA). The carrier
gas was hydrogen and the capillary column used was SLB-IL111 (100 m× 0.25 mm, 0.2 µm in thickness,
Supelco, Bellefonte, PA, USA). The oven temperature was set at 40 ◦C for 1 min followed by 80 ◦C to
170 ◦C for 1 min, then 40 ◦C to 195 ◦C for 2 min and finally 20 ◦C to 210 ◦C for 15 min. Individual
fatty acids were determined by comparing their retention time with that of fatty acid methyl esters
standards (GLC No. 463 and No. UC-59-M, Nu-Chek Prep Inc., Elysian, MN, USA). The Chemstation
B.04.03 software (Agilent technologies) was used for data analysis.

4.6. Construction of Gene Co-Expression Networks

The expression of miRNAs was normalized using Deseq2 package (v1.11.19) [86] and the final
normalized matrix of 321 miRNAs were used as input for co-expression network analysis using the
WGCNA R-package [24]. For WGCNA analysis, a signed co-expression measure for each pair of
miRNAs was computed based on their co-expression level. Then weighted adjacency matrix was
calculated from the signed co-expression measure using a power function. A topological overlap
measure (TOM) was then calculated based on a combination of a value between the adjacency of two
miRNAs and the connection strength that the two miRNAs share with other miRNAs. A TOM of 0 or
1 was assigned to each pair of miRNAs. When miRNAs shared the same neighbor, a TOM value of 1 is
assigned while a TOM value of 0 indicates that they do not share any neighbor. To produce a clustering
tree (dendrogram), the dynamic tree−cutting algorithm was used [87]. To construct the consensus
module, the blockwiseConsensusModulesfunction was run [88,89] with option of soft-thresholding
power for network construction of 9, and minimum module size of 20. Moreover, the medium threshold
was also applied to control the sensitivity of module detection (deepSplit of 2) and to merge modules in
the dynamic tree (mergeCutHeight of 0.25). The signed network option was chosen when constructing
the consensus modules. In the gene network, a gene might interact with many others to perform its
function, therefore, a minimum module size of 30 genes has been recommended for the gene network
construction, by the software developers [24]. Since a lower number of miRNAs might interact with
each other to form networks [90,91], we applied a lower threshold of 20 miRNAs for minimum module
size. Each branch of a tree is a module and a module with at least 20 miRNAs was assigned to a color
(Figure S1). Details about WGCNA and its merits have been reported previously [24,89,92].

4.7. Module−Trait Relationship

Module−trait relationships were computed based on Pearson’s correlation between the module
eigengene and blood and milk components data. The eigengene is defined as the first principal
component of a given module and it represents a measure of miRNA expression profiles in the module.
A module was chosen for further analysis if it presented a module−trait relationship > |0.5| and a
p-value < 0.05. Potential biologically interesting (significant) modules were selected for downstream
analysis. Furthermore, miRNAs in selected modules were used for functional enrichment analysis if
eigengene−based connectivity (k.ME), a measure of how the miRNA is correlated to module eigengene,

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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was > 0.6 (k.ME > 0.6) [26]. A k.ME > 0.6 indicates higher connectivity and thus higher representation
of modular functions.

4.8. Predicted Target mRNAs of miRNAs

In order to investigate the function of miRNAs in module significantly correlated with
traits, we first predicted their target mRNAs. The perl scripts from the TargetScan website
(http://targetscan.org) were used to predict target mRNAs (targetscan_60.pl) and also to calculate their
context scores (targetscan_61_context_scores.pl). TargetScan computes the context++ score for a specific
site as the sum of the contribution of 14 features of the miRNA, miRNA site, or mRNA (including
the mRNA surrounding sequence) (http://www.targetscan.org/vert_70/docs/context_score.html)
to define sites on mRNAs most effectively targeted by miRNAs [93]. Predicted target mRNAs with
context ++ scores above 95th percentile were further used [12,27,39]. The predicted target mRNAs
were then filtered against the mRNA expression data from the same animals [11]. Only target mRNAs
that were present in the mRNA expression data were retained for further analysis.

4.9. Co-Expression Analysis of miRNA–mRNA Expression

For miRNA–mRNA co-expression, the Pearson correlation coefficient between target mRNAs and
miRNAs were calculated. A miRNA–mRNA pair was considered co-expressed if it had a negative and
significant correlation value at FDR < 0.05. To further explore how miRNAs contributed to particular
traits, we examined the correlation between miRNAs and their mRNA targets with the phenotypes
in each significantly correlated module. Important interactions between miRNA and mRNAs were
visualized using Cytoscape [94].

4.10. Gene Ontologies, Pathways and Transcription Factors Enrichment

Functional enrichment of GO terms of target mRNAs was performed for each selected module
using EnrichR [95,96]. EnrichR presents results according to hierarchy and relationship between terms
which facilitates the interpretation of results. In this enrichment, the p-values for each term were
adjusted using Benjamini–Hochberg (BH) correction [95]. Gene ontology terms, Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways and transcription factors were considered significantly
enriched at adjusted p < 0.05 (FDR < 0.05).

5. Conclusions

In this study, three consensus modules (blue, brown, and turquoise) composed of 70 (blue),
34 (brown) and 86 (turquoise) miRNA members were identified. We also demonstrated how miRNAs
in these modules interacted with mRNAs to influence blood and milk phenotypes following dietary
supplementation with USFA. Hub miRNAs for the blue, brown, and turquoise modules were
bta-miR-30d, bta-miR-484 and bta-miR-16b, respectively. Turquoise module had the most significant
correlations with several traits including protein percentage in LSO treatment, protein yield, milk yield,
C14:0, C18:3n3n and 9, 11-CLA in SFO treatment. The association of miRNA modules with milk
and blood phenotypes has provided information about miRNA modules, hub miRNAs, GO terms,
transcription factors and pathways that are involved in the regulation of blood and milk parameters
following dietary supplementation with diets rich in USFA. This study will contribute to the molecular
understandings of the co-expression patterns of miRNAs, miRNA–mRNA, and regulatory activities in
the bovine mammary gland following dietary supplementation with USFA.

http://targetscan.org
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Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/
9/2500/s1. Table S1a–g: Predicted target genes (mRNAs) for miRNA members of the (a) blue, (c) brown,
and (e) turquoise modules. Predicted filtered target genes for miRNA members of the (b) blue, (d) brown
and (f) turquoise modules (these are predicted target mRNAs of the miRNAs that were present in the mRNA
transcriptome data of the same animals and negatively correlated with any of the miRNAs in the blue, brown,
and turquoise modules) (predicted target mRNAs that were not present in the mRNA transcriptome of the same
data were not further used). (g) Specific mRNA-miRNA pairs in the blue, brown, and turquoise modules (each
pair contains a miRNA that is negatively correlated with its target gene. Figure S1: The dynamic cut tree obtained
from weighted co-expression network analyses.
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