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Abstract: The Megalobrama amblycephala (M. amblycephala) is one of the most important economic
freshwater fish in China. The molecular mechanism under the glucose intolerance responses which
affects the growth performance and feed utilization is still confused. miR-34a was reported as
a key regulator in the glucose metabolism, but how did the miR-34a exert its function in the
metabolism of glucose/insulin in M. amblycephala was still unclear. In this study, we intraperitoneally
injected the miR-34a inhibitor (80 nmol/100 g body weight) into M. amblycephala (fed with high
starch diet, 45% starch) for 12 h, and then analyzed the gene expression profiling in livers by
RNA-seq. The results showed that miR-34a expression in M. amblycephala livers was inhibited
by injection of miR-34a inhibitor, and a total of 2212 differentially expressed genes (DEGs) were
dysregulated (including 1183 up- and 1029 downregulated DEGs). Function enrichment analysis of
DEGs showed that most of them were enriched in the peroxisome proliferator-activated receptor
(PPAR), insulin, AMP-activated protein kinase (AMPK) and janus kinase/signal transducers and
activators of transcription (JAK/STAT) signaling pathways, which were all associated with the
glucose/lipid metabolic and biosynthetic processes. In addition, we examined and verified the
differential expression levels of some genes involved in AMPK signaling pathway by qRT-PCR.
These results demonstrated that the inhibition of miR-34a might regulate glucose metabolism in
M. amblycephala through downstream target genes.
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1. Introduction

Carbohydrates are the main source of energy in most animal diets [1], and its properties such as
digestion and absorption rate, viscosity, structural features, water-binding capacity and fermentation
ability in the gastrointestinal tract are of critical importance in the effect of nutrition [2]. It has
been reported that the utilization of dietary carbohydrates and their effects on growth and nutrient
deposition are very important [3], and the dietary carbohydrate inclusion in several fish species appears
to produce positive effects on growth and digestibility [4–6].

Blunt snout bream (Megalobrama amblycephala, M. amblycephala) is one of the most important
economic freshwater fish in China [7]. According to the latest statistics from Food and Agriculture
Organization (FAO), the total output of M. amblycephala reached nearly 850 thousand tons in 2016,
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and the market demand is increasing due to its high economic value. M. amblycephala is typical
herbivorous feeding habit [8], and its digestive function and disease resistance ability are related to
high-fat and -glucose diets [9]. Researches have shown that higher carbohydrate dietary formula
(>34%) might result into glucose intolerance responses in M. amblycephala [10–12]. But the underlying
molecular mechanism is still unclear. Our previous study provided a miRNA profiling in response to
high starch treatment in M. amblycephala, and showed that miRNAs might play crucial roles in glucose
metabolism [9]. In that study, 124 differentially expressed miRNAs (DEMs) were identified in liver
tissue between fishes fed with normal and high starch diets and a noteworthy upregulated miRNA,
miR-34a, was found in the DEMs list [9]. There might be association between miR-34a upregulation
and glucose metabolism.

miR-34a, a highly conserved, endogenous, small non-coding RNA, has emerged as a key
biomarker in cellular senescence and tumor suppression through its interaction with SIRT1 (Sirtuin 1)
and p53 (Tumor protein p53) [13,14]. miR-34a has additionally been implicated in diabetes as a target
to prevent pancreatic β-cell death [15,16]. Several studies had reported that miR-34a was dysregulated
in metabolic tissues in rodent models and human patients of obesity, type 2 diabetes (T2D) and
Non-Alcoholic Fatty Liver Disease (NAFLD) [17–21]. MiR-34a was highly elevated in liver in NAFLD
and T2D patients compared to healthy controls [20,21]. Previous studies suggested that miR-34a
regulated fat metabolism and insulin secretion by targeting SIRT1 and acyl-CoA synthetase long-chain
family member 1 (ACSL1) [15,22,23]. SIRT1 is a key metabolic sensor and regulator in cells and directly
deacetylates and modulates some important metabolic regulators, including PGC-1α (peroxisome
proliferator-activated receptor γ coactivator 1-α), peroxisome proliferator-activated receptors (PPARs),
p53, and forkhead box protein O1 (FOXO1) which change the expression of transcriptional programs
that modulate cholesterol, lipid and energy homeostasis [24]. Moreover, researchers demonstrated
that miR-34a was involved in insulin hyposecretion, insulin resistance, and cell injury in a mammalian
T2D model [25]. Therefore, we hypothesized that miR-34a might play an important role in promoting
glucose intolerance in human and animals.

Researches on the dysregulation of miR-34a in glucose metabolism have been widely reported
in rodents and human [26,27], but little is known in the teleosts yet, especially in M. amblycephala.
Hence, we used next-generation sequencing technologies to identify the potential regulatory networks
of miR-34a in M. amblycephala. In this study, we conducted an in vivo experiment by injecting
the inhibitor of miR-34a into M. amblycephala, and then constructed three poly(A)+ libraries from
livers in consideration of the suggestion that the main target organ of miR-34a was liver tissue [28].
After sequencing and bioinformatics analysis, a number of differentially expressed genes (DEGs)
including the target genes of miR-34a would be identified. These results may provide new insights
into the regulatory mechanism of miR-34a in high-glucose metabolism in M. amblycephala.

2. Results

2.1. Transcriptome Sequencing in M. amblycephala

Our results suggested that the injection of miR-34a inhibitor (80 nmol/100 g body weight) for 12,
24, and 48 h showed significant effect on miR-34a expression level in livers of fishes treated with high
starch diet (HSD, 45% wheat starch, Figure 1, p < 0.001). So we performed RNA-seq analysis using
the liver samples from fishes treated with antagomiR-34a for 12 h. Three poly(A)+ RNA-seq libraries
were constructed and sequenced using paired-end (PE 2 × 150) Illumina technique. We obtained total
145.5 million pair-end (PE) reads (raw data) from three libraries (Table 1), and 143.6 million reads
(clean data) were remained after the removal of ambiguous nucleotides and low-quality sequences,
and all the further analyses were performed based on the clean data. RNA-seq data generated in this
study had been deposited in the NCBI SRA database (SRP110655).
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Figure 1. The relative expression level of miR-34a in livers of fishes treated with high starch diet.
All fishes were treated with 80 nmol/100 g body weight miR-34a inhibitors (antagomiR-34a) for 12, 24,
and 48 h, combined with high starch diet (45% wheat starch). Relative expression levels of miR-34a
was detected using qRT-PCR. *** notes p < 0.001 vs. control.

Table 1. Summary of the sequencing data from M. amblycephala.

Sample Raw Reads Clean Reads Clean Q20 (%) Clean Q30 (%) Clean GC (%)

AntagomiR34a-12h 40,929,414 40,359,036 97.33 92.81 46.96
Control-1 51,674,516 50,991,682 97.39 92.97 46.35
Control-2 52,931,508 52,218,818 97.47 93.14 47.20

Note: AntagomiR34a-12h: miR-34a knocked down for 12 h sample, control-1 and control-2 were high-starch samples.

2.2. De Novo Assembly of the M. amblycephala Transcriptome

After quality control process, de novo assembly for clean short reads generated from all samples
was accomplished by Trinity software with default parameters. Trinity produced 222,411 contigs,
corresponding to 197,425 unique genes, with ranged length from 200 to 16,839 bp and N50 of 1041
(Table 2). Length distribution analysis displayed that most contigs were in the range of 200–1000 bp,
and only 14.78% (32,879) contigs ranged from 1000 to 16,839 bp (Figure S1).

Table 2. Overall assembly statistics for the transcriptome of M. amblycephala.

Item Value

Total number of sequences 222,411
Total number of genes 197,425

Total length of sequences (bp) 151,079,306
Maximum sequence length (bp) 16,839
Minimum sequence length (bp) 200

N50 1041

2.3. Functional Annotation

To annotate the M. amblycephala transcriptome and identify genes, we performed a functional
annotation on the assembly using BLASTx alignment with a cut-off e-value < 1 × 10−10. All assembled
contigs were searched against the Nr database, UniProt-SwissProt database, COG (Cluster of
Orthologous Groups of protein) database, the KEGG (Kyoto Encyclopedia of Genes and Genomes),
and Protein Family (Pfam) conserved domain database, respectively. A total of 83,587 cumulatively
assembled contigs, corresponding to the prediction of 67,604 unique genes (Table 3), were identified.
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There were 82,223 assembled contigs with significant hits against Nr database and 87.33% contigs with
an e-value of <1 × 10−10 (Figure S2). Most of the annotated contigs were homologous to the Danio rerio
(55.85%) (Figure 2), followed by Astyanax mexicanus (3.73%) and Chrysemys picta bellii (2.48%). Moreover,
62.42% of the assembly contigs could not map to any known proteins. We speculated that some of
these sequences were M. amblycephala lineage-specific genes or non-coding RNAs and assembly noises.

Table 3. Statistics of function annotation.

Annotated Database Annotated Number Transcript Ratio (%)

All_Assembly_Contig 222,411 100

Nr 82,223 36.97
SwissProt 57,581 25.89

KEGG 71,045 31.94
KOG 45,994 20.68
Pfam 27,677 12.44
GO 25,433 11.44

All_anno_contig 83,587 37.58

Figure 2. Homologous species distribution of the annotated contigs.

The KEGG analysis helps us to understand the network of molecular interactions in cells in
M. amblycephala. Based on the comparison against the KEGG database, 71,045 contigs were annotated
and enriched into 322 KEGG pathways, including phosphatidylinositol3-kinase/protein kinase B
(PI3K-Akt), MAPK, and insulin signaling pathways (Table S1).

Gene ontology (GO) annotation was then performed based on the Nr annotation and 25,433
contigs (11.44%) were assigned to 52 GO terms, including 22 biological process terms, 18 cellular
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component terms and 12 molecular function terms. In the biological process category, cellular process
(11,164 genes) was the most abundant term, followed by single-organism process term (10,652 genes)
and metabolic process term (8833 genes). For the cellular component category, cell and cell part terms
enriched 8274 unigenes. Within the molecular function category, binding (10,508 genes) was the most
predominant term (Table S1 and Figure S3).

With the COG annotation, the 45,994 contigs were annotated to the 25 COG function clusters
(Table S1 and Figure S4). Among the functional classes, the largest cluster was the general function
prediction only (19.77%), followed by signal transduction mechanisms (15.77%), posttranslational
modification, protein turnover, chaperones (9.7%). Only a few contigs were assigned to cell motility
and nuclear structure (Table S1 and Figure S4).

2.4. Identification of Simple Sequence Repeat

Simple sequence repeat (SSR) markers are locus-specific, tandem, abundant and highly
polymorphic in genome and have been proven to enable the development of molecular markers
in genetics and breeding. To discover the SSRs markers in the contigs of M. amblycephala in our
study, assembled contigs were used to identify potential microsatellite motifs using MIcroSAtellite
(MISA) software. A total of 92,834 SSRs were identified in 61,845 contigs and 20,733 contigs (33.52%)
having more than one SSR (Table 4 and Table S2). It means that there is a SSR marker per 1.6 kb in
the M. amblycephala transcriptome. With the assuming that mononucleotide repeats may be caused
by the sequencing errors and assembly mistakes, we excluded 62,185 detected mono-nucleotide
repeats. Accordingly, the most abundant type of repeat motifs was dinucleotide (22.02%), followed
by trinucleotide (8.10%), tetranucleotide (2.42%), pentanucleotide (0.44%) and hexanucleotide (0.04%)
repeats. Future research direction is to discover reliable markers in M. amblycephala. The more
information of the SSR was in the Table S2.

Table 4. Distribution of simple sequence repeat (SSR)s based on the number of repeat units.

Repeat Numbers
SSR Type

Total
Mono- Di- Tri- Tetra- Penta- Hexa-

5 0 0 3436 996 154 21 4607
6 0 4847 1545 710 38 11 7151
7 0 2673 948 75 18 1 3715
8 0 1674 873 93 24 1 2665
9 0 1266 134 60 35 0 1495
10 11,710 1138 198 60 22 1 13,129
11 7843 2036 129 38 24 0 10,070
12 5217 1165 84 27 27 0 6520
≥13 37,415 5640 172 190 64 1 43,482
Total 62,185 20,439 7519 2249 406 36 92,834

% 66.99% 22.02% 8.10% 2.42% 0.44% 0.04%

2.5. Open Reading Frame Identification and Prediction

For the assembled contigs which had hits against Nr database, there were 75,338 annotated contigs
were found containing the ORF (Open Reading Frame), with a range of 102–13,158 bp and an average
of 646.79 bp (Figure 3A). The Transdecoder program was performed to detect the potential ORF
regions in the remaining unannotated contigs. Results showed that there were 3245 contigs containing
predicted ORF region, with an average, minimum, and maximum length of 394.29, 297 and 5737 bp,
respectively (Figure 3B). There were 143,828 contigs containing no ORF regions, which suggested that
they might come from non-coding genes or uncompleted assembled untranslated regions (UTR).
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Figure 3. Open reading frame (ORF) length distribution of the annotated contigs (A) and the predicted
ORF length distribution of the unannotated contigs (B) in M. amblycephala.

2.6. DEG Predication and Clustering Analysis

With the criteria of |LogFC (Fold change)| ≥ 1 and FDR (False Discovery Rate) ≤ 0.05, we
identified 2212 DEGs, including 1183 (53.55%) upregulated DEGs and 1029 (46.45%) downregulated
DEGs, in antagomiR34a-12h samples comparing with the control (Figure 4). In the list of all DEGs, we
found that PIK3R1 (phosphatidylinositol 3-kinase regulatory subunit α), PEPCK (phosphoenolpyruvate
carboxykinase), IL6RA (interleukin-6 receptor subunit α), INSIG1 (insulin-induced gene 1 protein),
MHCI (major histocompatibility complex class I), MHCII (major histocompatibility complex class II),
GADD45B (Growth arrest and DNA-damage-inducible, β), CES1 (Carboxylesterase 2), HDAC10
(Histone deacetylase 10), ACC1 (acetyl-CoA carboxylase 1), CREBBP (CREB-binding protein
isoform X3), PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1-α), and HMGCR
(3-hydroxy-3-methylglutaryl-coenzyme A reductase) were dysregulated in the antagomiR34a-12h
samples comparing with control (Table S3). All these genes were directly or indirectly responded to
glucose and insulin metabolism [24]. Hierarchical clustering and heat mapping of the DEGs indicated
the different expression profiles of all DEGs in livers between control and antagomiR34a-12h group
(see Figure S5).

Figure 4. Differentially expressed genes in M. amblycephala in response to miR-34a inhibitor
treatment. (A) Blue represents upregulated genes and red represents the downregulated genes in
antagomiR34a-12h group vs. control group. |log2FC(Fold change)| ≥ 1 and p-value ≤ 0.05; (B) MA
plot of all DEGs, the y-axis represents the logarithm of fold change and the x-axis represents the
logarithm of read counts. Red color represents DEGs and black color represents non-DEGs.
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To validate the reliability of RNA-seq in this study, the expression level of 15 glucose
metabolic-related genes were analyzed by qRT-PCR. As shown in Figure 5, the qRT-PCR results
were in high accordance with the RNA-seq analysis. All genes were in consistent with the RNA-seq
results. The results showed that the expression patterns of these genes were in consistent in two
methods, which was helpful for confirming the validity of our analysis of glucose metabolism in
M. amblycephala.

Figure 5. Gene expression patterns of RNA-Seq and qRT-PCR. β-actin was used as an internal control
and used for the normalization of the expression level of each gene. Log-fold changes are expressed as
the ratio of gene expression. Error bars represent standard error.

2.7. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways Enrichment
Analysis of differentially expressed genes (DEGs)

In order to obtain the potential function annotation of all DEGs, further enrichment analysis
of the GO terms and KEGG pathways were performed (Figures 6 and 7, and Table S4). Based on
the GO functional annotation, we found DEGs were classified into decades of molecular functions,
cellular components and biological processes (corrected p < 0.05, Figure 6 and Table S4), including
somelipid, glucose, insulin metabolic-related terms (i.e., lipid metabolic process (GO:0006629),
cholesterol metabolic process (GO:0008203), glucose metabolic process (GO:0006006), response to
lipid (GO:0033993), carboxylic acid metabolic process (GO:0019752) and carboxylic acid transport
(GO:0046942)). For example, some genes including downregulated PEPCK, PKM (pyruvate kinase
PKM-like), and INSIG1 were enriched into these GO terms.

KEGG pathway enrichment analysis showed that the most significant enriched signal pathway
was JAK-STAT signaling pathway (ko04630) (Figure 7 and Table S4). It has been reported that the
JAK-STAT pathway was responded to the metabolism in both type 1 diabetes (T1D) and T2D [29].
Obesity is a major risk factor for development of T2D, and lacking of leptin or the leptin receptor
(LepRb/ObRb) will develop severe obesity and insulin resistance. When leptin binds to the β-isoform of
the leptin receptor, JAK2 is activated by autophosphorylation to phosphorylate tyrosine residues on the
cytoplasmic tail of the receptor [30]. The enriched DEGs, such as STAT1 (signal transducer and activator
of transcription 1), were upregulated and the leptin was downregulated in antagomiR34a-12h samples,
which was in coincidence with the former research [29,30]. In addition, we found some notable
pathways, including type I diabetes mellitus (ko04940), type II diabetes mellitus (ko04930), PPAR
signaling pathway (ko03320), fatty acid biosynthesis (ko00061), fat digestion and absorption (ko04975),
p53 signaling pathway (ko04115), insulin signaling pathway (ko04910), PI3K-Akt signaling pathway
(ko04151), glycolysis/gluconeogenesis (ko00010) and insulin secretion (ko04911), were associated with
these DEGs. DEGS were found to be significantly enriched into glucose/insulin related pathways,
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in which upregulated MHC1 and CREBBP and downregulated MHCII and PIK3R1 serve as key
regulatory proteins. For instance, MHC1, a T1D related genes [31], was found upregulated in the
antagomiR34a-12h sample.

Figure 6. Gene ontology enrichments of all differentially expressed genes responded to miR-34a
inhibitor treatment.

Figure 7. Glucose metabolic-related KEGG pathways for differentially expressed genes responded to
miR-34a inhibitor treatment.
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2.8. Change of Some Other Glucose Metabolism Related Genes after Inhibition of miR-34a

The RNA-seq results showed that the mRNA levels of some gluconeogenic genes were not
significantly differentially expressed, such as PPARb (Peroxisome proliferator-activated receptor b),
4EBP2 (Eukaryotic translation initiation factor 4E-binding protein 2), AMPK (AMP-activated protein
kinase), STAT1, PKM (pyruvate kinase PKM-like isoform X1), G6Pase (Glucose6-phosphatase), and SCD
(Stearoyl-CoA Desaturase). So we carried out additional qRT-PCR analysis to detect their expression
levels in livers of M. amblycephala treated with miR-34a inhibitor or control. In addition, we planned to
determine if these dysregulations were progressive with treatment time or not. Changes in the relative
mRNA levels of these genes were shown in Figure 8. The expression of PPARb, 4EBP2, AMPK, STAT1
and PKM were increased by antagomiR34a treatments comparing with control, and the expression
levels of G6Pase and SCD were downregulated in antagomiR34a-12h group in comparison with control.
We also found that 3/7 tested genes were increased in liver samples at 24 h post antagomiR34a
treatment comparing with those at 12 h. These might suggested that glucose related genes were
progressively accumulated in livers by miR-34a inhibitor injection into M. amblycephala.

Figure 8. qRT-PCR analysis of some glucose metabolism-related genes involved in AMPK signaling
pathway. * p < 0.05; ** p < 0.01. Data not included between the whiskers was plotted as an outlier with
black dot.

3. Discussion and Conclusions

M. amblycephala is a widely cultured freshwater fish in China, but the molecular mechanism of
nutritional utilization of dietary carbohydrates is still unclear [32]. Previous studies had demonstrated
that altered dietary and metabolic conditions were affected by gene regulation in the cell nucleus [24].
We had previously performed a next-generation sequencing study between normal starch diet and
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high starch diet treated fishes, and identified hundreds of DEMs that responded to HSD treatment in
intestine, liver, and brain in M. amblycephala, respectively, suggesting that miRNAs might play crucial
roles in glucose metabolism [9]. Among the DEMs, we found that the miR-34a was significantly
upregulated in HSD group. miR-34a was a key regulator in the glucose metabolism [17–21],
and miR-34a upregulated expression had been identified in T2D patients compared to health
controls [21]. A plausible molecular mechanism for the role and function of miR-34a in metabolism was
the loop of miR-34a, SIRT1 and p53 [33]. But how miR-34a affected the course of glucose intolerance
responses in M. amblycephala was still unknown.

So we conducted an in vivo experiment with intraperitoneally injection of miR-34a inhibitor
into M. amblycephala, and identified the DEGs related to miR-34a inhibition. The qRT-PCR analysis
showed that miR-34a was significant inhibited at 12, 24 and 48 h post the antagomiR34a treatments,
with dysregulation of 2212 DEGs. GO and KEGG pathway analysis showed that the DEGs were
enriched in the signaling pathways, including PPAR pathway, insulin signaling pathway, JAK/STAT
signal pathway, Type I diabetes mellitus and Type II diabetes mellitus, which were associated with
glucose/lipid metabolic pathways and biosynthetic processes. All these results implied that the
inhibition of miR-34a could regulate a series of genes, which might be crucial for glucose metabolism
in M. amblycephala.

Previous studies have demonstrated that miR-34a could reduce the expression level of SIRT1 and
prevent the activation of PGC-1α, PPARα, p53 and FOXO1 to alter the expression of transcriptional
progresses and supervise lipid/glucose, cholesterol and energy homeostasis [34–41]. But the expression
levels of these genes were not significantly differentially expressed in our study. We found that one of
the PPARs family members, PPARb, was upregulated in antagomiR34a treated samples by qRT-PCR
(Figure 8). PPARb was a nuclear hormone receptor which governs a variety of biological processes and
may be involved in the development of several diabetes and obesity diseases [42,43]. For example,
Sanderson et al., proved that PPARb/δ deletion could downregulate the pathways associated with
lipoprotetin metabolism and various pathways related to glucose utilization [44]. Consistent with
these results, we found PPARb was upregulated in samples injected with miR-34a inhibitors, implying
that the deletion of miR-34a could upregulate PPARb and the pathways associated with the glucose
metabolism in M. amblycephala. These might provide a potential novel role of miR-34a in the regulation
of glucose metabolism in M. amblycephala.

In addition to the genes involved in the putative regulatory loop of miR-34a and SIRT1
(Figure 9) [45], other regulators responded to insulin and glucose homeostasis were found dysregulated
in the analysis of RNA-seq data. For example, NSIG1, the negative regulator of SREBPs, was
downregulated in antagomiR34a-12h sample. Previous study showed that the overexpression of
INSIG1 could significantly inhibit SREBP-1c expression and thereby blocking the expression of
downstream genes related to insulin and lipid metabolic pathways (Figure 9) [46]. Consistent with
this, the downregulated INSIG1 was detected in antagomiR34a-12h sample, which might increase the
expression of SREBPs and the downstream genes. We also found that PLCB (phosphatidylinositol
phospholipase C, β), GADD45A (Growth arrest and DNA-damage-inducible protein GADD45 α),
and FABP (fatty acid-binding protein) and ACSL1 were downregulated after inhibiting miR-34a in
M. amblycephala (Table S3). ACSL1 is one of the long chain acyl-CoA synthetases in lipid metabolism
and also been implicated in the cellular uptake of fatty acids. The overexpression of ACSL1 showed
increased acyl-CoA synthetase activity and fatty acid uptake [47]. In this study, the ACSL1 was found
downregulated in antagomiR34a-12h sample comparing with control. These results implied that the
inhibition of miR-34a might play potential novel roles in glucose homeostasis in M. amblycephala by
directly or indirectly regulating these key genes.

The DEGs in response to miR-34a inhibition in M. amblycephala livers was associated with
JAK/STAT and PPAR signaling pathways. Some not significantly enriched pathways, including
insulin-signaling pathway, Type I diabetes mellitus and Type II diabetes mellitus, were also found
in the result of KEGG analysis. These pathways were related to DEGs including upregulated PPP1C
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(serine/threonine-protein phosphatase PP1 catalytic subunit) and IL6RA (interleukin 6 receptor α,
downregulated) and downregulated CNTF (ciliary neurotrophic factor). Elevated IL6 had been
reported in diabetes mellitus type 2 [48]. We checked the expression level of IL6 and found that IL6 was
upregulated in the antagomiR34a-treated sample (Figure 5). All these results suggested that inhibited
miR-34a might regulate the glucose metabolism by altering pathways related to glucose utilization.

To avoid the incomplete results of RNA-seq from being less sequences samples, we carried out
an additional qRT-PCR analysis to detect the expression profiles of glucose metabolism related genes.
The results showed that the profiles of 7 selected key genes were all as expected and most of these
genes were involved in the AMPK signaling pathway (Figures 8 and 9). AMPK is an energy sensor
that regulates cellular metabolism which could stimulate glucose uptake to produce energy when
activated by a deficit in nutrient status [49]. Evidence has shown that gluconeogenesis in the liver
is regulated by multiple enzymes such as PEPCK and G6Pase (Figure 9) [50], and the activation of
AMPK could suppress the transcription of G6Pase in hepatoma cells [51]. Andreelli et al., suggested
that there was glucose intolerant and fasting hyperglycemia in AMPK α2 liver-specific knockout mice,
which presumably due to the increased PEPCK and G6Pase activity [52]. In our study, AMPK was
found to be upregulated in the miR-34a inhibitor-injected samples and the expression level of G6Pase
was decreased by qRT-PCR analysis (Figure 8). Another gene PPARb was involved in the glucose
metabolism by activating a program that increased the coupling of glycolysis to glucose oxidation in
muscle via the cooperation with AMPK signaling pathway to activate Ldhb gene transcription [53].
As expected, the relative expression level of PPARb was found to be increased in the miR-34a-inhibited
group by qRT-PCR analysis, which revealed that the knock-down of miR-34a might upregulate PPARb
expression, which then subsequently interacted with AMPK to regulate the glucose metabolism in
the liver tissue in M. amblycephala. In addition, the expression level of 3/7 selected AMPK signaling
pathway related genes showed a progressively accumulation along with handling time post injection
of miR-34a inhibitor (Figure 8). These results implied that miR-34a could interact with AMPK signaling
pathway to regulate the glucose embolism in M. amblycephala.

Figure 9. The potential interaction and molecular mechanism of putative genes involved in glucose
metabolism process regulated by miR-34a inhibition. Green indicates downregulation, while and red
and yellow note upregulation in our study. Gray notes no detection of dysregulation. The blue, red
and grey circles include related genes in JAK-STAT1 pathway, AMPK pathway and PPAR pathway,
respectively. The green line with an arrow and the green line with a ball stand for positive and negative
effect between genes, and the green dot line with an arrow and the green dot line with a ball stand for
supposed positive and negative effect between genes.
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All the results in this study showed that the miR-34a was an important regulator in the glucose
metabolism by activating or inactivating the downstream genes involved in the glycometabolism.
The regulation of the expression level of miR-34a or its targets genes might provide a novel regulatory
role in glucose metabolism in M. amblycephala.

4. Material and Methods

4.1. Ethics Statement

All experimental protocols, methods and feeding scheme were approved on October, 2017 by
the Institutional Animal Care and Use Committee of Freshwater Fisheries Research Center, Chinese
Academy of Fishery Sciences (Wuxi, China) in this study. All fishes were anesthetized in well-aerated
water with 0.01% tricaine methanesulfonate (MS-222; Sigma, Saint Louis, MO, USA) and sacrificed
according to the Guide for the Care and Use of Laboratory Animals of China.

4.2. Sample Collection

M. amblycephala were obtained from the Freshwater Fisheries Research Center (FFRC) in Wuxi,
Jiangsu province, China. 120 healthy and young fishes (initial weight: 27.54 ± 0.16 g) were maintained
in conical fiberglass tanks (volume: 300 L) in a flow-through water system (speed: 3 L/min) during
the acclimation and experimental period. Water temperature was maintained at 26.0 ± 1.5 ◦C, pH
= 6.8–7.0, dissolved oxygen ≥ 6 mg·L−1, ammonia nitrogen ≤ 0.2 mg·L−1, nitrite ≤ 0.02 mg·L−1.
Aeration was supplied to each tank 24 h per day and natural photoperiod was followed. All fishes
were fed with high starch diet (45% wheat starch, HSD). The formulation and proximate composition
of the HSD were shown in Table 5.

Table 5. Formulation and proximate composition of the HSD (%).

Ingredient Quantity (g) Proximate Composition (% of Dry Matter)

Casein 1 20 Crude protein 33.32
Gelatin 5 Crude lipid 8.58

Fish meal 2 16 Digestible carbohydrate 45.25
Wheat starch 3 45 Energy (kJ·g−1) 18.55
Soybean oil 4 7 Calcium 1.06

Vitamin additive 5 1 Total phosphorus 1.32
Mineral additives 5 1

Carboxymethycellulose 4
Monocalcium phosphate 5 1

Note: 1 Provided by Provided by Feeer Co., Ltd. (Shanghai, China), protein content 88.7%; 2 Provided by Tongwei
Co., Ltd. (Wuxi, China). Protein content 61.2%; 3 Provided by Jinglingta Co., Ltd. (Wuxi, China); 4 Fat acid content
of 0.096% C14:0, 11.479% C16:0, 0.105% C16:1, 0.095% C17:0, 4.264% C18:0, 20.132% C18:1, 55.706% C18:2, 7.247%
C18:3n3, 0.319% C20:0, 0.246% C20:1 and 0.313% C22:0; 5 Provided by Wuxi Hanove Animal Health Products Co.,
Ltd. (Wuxi, China). Vitamins premix and mineral premix was as referred to Ren et al. [54].

After the preliminary breeding of 8 weeks, 60 fishes were randomly selected for
further researches. Thirty fishes were intraperitoneally injected with miR-34a inhibitors (5′-
ACAACCAGCUAAGACACUGCCA-3′, antagomiR-34a; 80 nmol/100 g body weight (RIOBIO,
Guangzhou, China), and the other 30 fishes were intraperitoneally injected with miR-34a inhibitor
negative control (5′-UGUUGGUCGAUUCUGUGACGGU-3′, NC; 80 nmol/100 g body weight; RIOBIO,
Guangzhou, China) and were set as control group. Nine fishes injected with antagomiR-34a NC and
antagomiR-34a at 12 h (antagomiR-34a-12h), 24 h (antagomiR-34a-24h) and 48 h (antagomiR-34a-48h)
were collected, respectively, and anaesthetized using MS-222. The liver tissues were stripped
immediately, stored at −80 ◦C and prepared for RNA isolation.
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4.3. qRT-PCR Analysis for the miR-34a

Total RNA was extracted from M. amblycephala samples using TRizol (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s protocol. RNA purity was assessed using the NanoDrop-2000
(Thermo Fisher Scientific, BRIMS, Cambridge, MA, USA). RNA samples with A260:A280 ratios above
1.9 and A260:A230 ratios above 1.8 were used for reverse transcription with miRNA specific stem-loop
primers (Table S5) and the PrimeScript RT Reagent kit (Takara Bio, Dalian, China). QRT-PCR analyses
were performed according to methods described by Miao et al. [9]. The relative expression level of the
miR-34a was calculated in terms of threshold cycle value (Ct) and normalization to the expression of
5S rRNA using the equation 2−∆∆Ct, where ∆Ct = Ct miRNA − Ct 5s.

4.4. cDNA Library Construction and Sequencing

Total RNA was extracted as described above. Three samples (control-1, control-2 and
antagomiR-34a-12h) with the RNA integrity Number (RIN) larger than 7.0 were selected for
transcriptome sequencing. Next, three sequencing libraries were constructed by TruSeqTM RNA
Sample Preparation Kit according to the product instruction (Illumina, San Diego, CA, USA).
Each library was sequenced using Illumina HiSeq 4000 for 2 × 150 bp pair-end (PE) sequencing.

4.5. De Novo Assembly of Reference Sequences

Fastqc (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) software was used to
perform the quality control of all raw reads. In this filtering step, we excluded the poor quality reads,
including adaptor reads or unknown base more than 10% and low-quality reads (reads having more
than 50% bases with quality value≤5). Then the clean reads were firstly de novo assembled into contigs
by Trinity software (version trinityrnaseq-2.0.2) with default parameters [55]. Finally, the obtained
non-redundancy assembled contigs were clustered using CD-Hit (version v4.6.4) at 90% similarity and
the remaining contigs were used for downstream analysis [56]. The resulting contigs were considered
as the M. amblycephala reference sequences.

4.6. Assembled Sequence Annotation and Classification

BLASTx(version 2.5.0) alignment with a cut-off e-value < 1 × 10−10 was performed to
search against four public database, including NCBI Nr (Non-redundant protein) database [57],
the UniProt-SwissProt (The Universal Protein Resource) database [58], the COG database [59], Pfam
database [60] and the KEGG database [61]. The gene name and description of the best blast hit was
assigned to each contig.

4.7. SSRs Identification

MIcroSAtellite (MISA) (http://pgrc.ipk-gatersleben.de/misa/misa.html) was used to detect the
SSR motifs in all assembled contigs with the parameters of at least 6 repeats for di-nucleotide and 5
repeats for tri-, tetra-, penta- and hexa-nucleotide. The compound motifs containing more than one
microsatellite sequences separated by 100 bases were also identified.

4.8. ORF Identification and Prediction

We used an in-house Perl scripts to obtain the ORF regions within the contigs which had hits
against the Nr database. For the unannotated contigs, we used Transdecoder (http://transdecoder.
sourceforge.net/) program to predict the putative ORFs regions. Full-length ORF region were defined
as the ORF region of a contig can cover the entire length of the subject protein. As for the other case,
the completeness percentage was calculated by the subject protein coverage.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://pgrc.ipk-gatersleben.de/misa/misa.html
http://transdecoder.sourceforge.net/
http://transdecoder.sourceforge.net/
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4.9. Identification of DEGs

Bowtie (version 1.0.0) [62] and RSEM (version 1.2.21) [63] program were used to quantify the
abundances for all genes and isoforms in two groups. Gene expression was normalized by FPKM
(fragments per kilobase of exon per million reads mapped). Then, edgeR (version 3.10.5) [64] was
used to identify the DEGs by pairwise comparisons in the control and antagomiR-34a-12h samples.
The cut-off criteria for DEGs were |logFC| ≥ 1 and FDR ≤ 0.05 between two groups. GO term
annotation was performed using the GO::TermFinder program (version 0.86) to unravel the statistically
significant enrichment of DEGs with a correct p-value cutoff of 0.05 [65]. KEGG metabolic pathway
analysis was conducted using the KOBAS program (version 2.0), taking the correct p-value ≤ 0.05 as a
threshold to identify enrichment pathway [66].

4.10. QRT-PCR Analysis for DEGs

Total RNA was extracted as described before and the primers of all selected genes were designed
(Table S1). qRT-PCR was performed on the ABI PRISM 7500 real-time PCR System (Applied Biosystems,
USA). The amplifications were performed in a total volume of 10 µL and included 5 µL of 2X SYBR
Green MasterMix reagent (Thermo Fisher Scientific, Rockford, IL, USA), 1 µL of cDNA and 0.2 µL of
each primer (10 µM). The thermal cycling profile consisted of an initial denaturation at 95 ◦C for 5
min followed by 40 cycles of denaturation at 95 ◦C for 15 s and annealing/extension at 60 ◦C for 45 s.
An additional temperature-ramping step from 95 to 65 ◦C was performed to enervate the melting curve.
All samples were examined in triplicates of two biology replicates and accompanied with negative
controls. The β-actin was used as the internal control and the relative expression was calculated by the
2−∆∆Ct method [39].

4.11. Statistical Analysis

The statistical analysis of miR-34a in fish livers by qRT-PCR was analyzed using student’s t-test
in Graphad prism 6.0 (Graphpad Software, San Diego, CA, USA). p < 0.05 was set as the criteria for
statistically significant.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/8/
2417/s1.
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DEM Differentially expressed miRNA
T2D Type 2 diabetes
NAFLD Non-alcoholic fatty liver disease
ACSL1 Acyl-CoA synthetase long-chain family member 1
FOXO1 Forkhead box protein O1
PPARs Peroxisome proliferator-activated receptors
PGC-1α Peroxisome proliferator-activated receptor γ coactivator 1-α
COG Cluster of Orthologous Groups of protein
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KEGG Kyoto Encyclopedia of Genes and Genomes
ORF Open reading frame
FPKM Fragments per kilobase of exon per million reads mapped
FDR False Discovery Rate
HSD High starch diet
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