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Abstract: The past few decades have witnessed widespread research to challenge carcinogenesis; 

however, it remains one of the most important health concerns with the worst prognosis and 

diagnosis. Increasing lines of evidence clearly show that the rate of cancer incidence will increase in 

future and will create global havoc, designating it as an epidemic. Conventional chemotherapeutics 

and treatment with synthetic disciplines are often associated with adverse side effects and 

development of chemoresistance. Thus, discovering novel economic and patient friendly drugs that 

are safe and efficacious is warranted. Several natural compounds have proved their potential 

against this dreadful disease so far. Magnolol is a hydroxylated biphenyl isolated from the root and 

stem bark of Magnolia tree. Magnolol can efficiently prevent or inhibit the growth of various cancers 

originating from different organs such as brain, breast, cervical, colon, liver, lung, prostate, skin, etc. 

Considering these perspectives, the current review primarily focuses on the fascinating role of 

magnolol against various types of cancers, and the source and chemistry of magnolol and the 

molecular mechanism underlying the targets of magnolol are discussed. This review proposes 

magnolol as a suitable candidate that can be appropriately designed and established into a potent 

anti-cancer drug. 
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1. Introduction 

Cancer is one of the most lethal diseases and has become a major health concern globally. 

According to global cancer statistics and GLOBOCAN 2012 (http://globocan.iarc.fr/Default.aspx, 

accessed on 8 July 2018), approximately 14.1 million people are diagnosed with cancer every year 

and it accounts for 8.2 million deaths worldwide [1]. The significant advancements made in the past 

few decades for unravelling the molecular causes of cancer have led to the development of numerous 

treatment modalities including surgery, radiation, and chemotherapy, but the disease burden still 

remains a challenge [2–7]. On the other hand, these chemotherapeutic agents are also associated with 

adverse side effects like vomiting, hyper tension, cardiovascular diseases, renal dysfunction and bone 

marrow destruction along with the development of chemoresistance, which further obscures the 

treatment procedures and ultimately leads to cancer progression and recurrence [8–18]. Therefore, 

finding a remedy with minimal side effects, cost effectiveness, easy accessibility and high efficiency 

is of paramount importance for the effective treatment and management of this outrageous disease. 

Mother Nature is the origin of 70% of the pharmaceuticals, however, there is a need to explore this 

vast reserve further for identification of various novel phytochemicals and chemotherapeutic agents for 

better management of this disease [19–32]. These natural products display inherent anti-cancer 

properties which emanate from a range of phytochemicals such as alkaloids, diterpenoids, flavonoids, 

polyphenolic compounds and sesquiterpenes obtained from various medicinal plants, fruits and 

vegetables [23,27,33–37]. Besides, these herbal medicines sensitize cancers to conventional therapeutic 

agents by regulating various oncogenic targets such as growth factors, chemokines, inflammatory 

enzymes and transcription factors; averting the adverse side effects of chemotherapeutic drugs, 

extending survival time and boosting the quality of life in cancer patients [24,38–40]. 

Magnolia officinalis, Magnolia obovata and Magnolia grandiflora are important traditional Chinese 

and Japanese herbal plants which possess immense medicinal properties. Magnolia bark has been 

extensively used as Chinese folklore medicine and is still in use in modern clinical practices [41–45]. 

Magnolia trees have striking features like their alluring flowers with fragrance, and petiolate leaves 

containing large stipules surround the stem and later fall, leaving a distinctive scar around the node; 

the wood of the tree is tough, light weight and easy to work, and is sought after by craftsmen [46]. 

Historically, the tree was used commonly for gastrointestinal disorders, anxiety, cough, acute pain, 

and allergic diseases. Magnolol (MAG) is hydroxylated biphenyl isolated from the root and stem bark 

of Magnolia tree. MAG exhibits a huge range of biological activities such as muscle relaxant, anti-

oxidative, anti-atherosclerosis, anti-inflammatory, and anti-microbial effects [47–49]. 

Numerous preclinical studies have established that MAG exerts its effect on different types of human 

cancers such as those of lung, prostate, breast, gall bladder, colon, skin and hepatocellular carcinoma [50–

57]. The plausible molecular mechanisms liable for the anti-cancer potential of MAG are reduced cell 

proliferation or cell cytotoxicity, induction of apoptosis, accumulation of reactive oxygen species (ROS), 

induction of autophagy and activation/inactivation of various cellular signaling pathways [46]. Several in 

vitro studies have led to a handful of in vivo studies on different adult animal species which demonstrated 

that MAG has a good safety profile, reduced tumor growth, induced apoptosis and inhibited invasion, 

migration and metastasis [56,58–61]. This review summarizes the underlying molecular mechanisms 

responsible for the anti-cancer activity that unravels the prospective of MAG as a potent candidate that 

can be designed and developed into an accomplished anti-cancer drug. 

2. Chemistry of Magnolol 

MAG is a lignan, an organic compound found in the bark of M. officinalis or in M. grandiflora 

with a molecular weight of 266.34 g/mol and monoisotropic mass of 266.131 g/mol. The molecular 

formula of MAG is C18H18O2. The melting temperature of MAG is 101.5–102 degrees Celsius and it is 

soluble in water at 1.24 mg/L at 25 degrees Celsius. The spectral property shows that the maximum 

absorption wavelength is at 293 nm [51,62–64]. The IUPAC name of MAG is 2-(2-hydroxy-5-prop-2-

enylphenyl)-4-prop-2-enylphenol and it is also commonly known as 5,5′-Diallyl-[1,1′-biphenyl]-2,2′-

diol; 5,5′-Diallyl-2,2′-biphenyldiol; 5,5′-Diallyl-2,2′-dihydroxybiphenyl; 2,2′-Bichavicol [65]. The 

structure of MAG is shown in Figure 1. The content of MAG in extracts of magnolia tree is influenced 
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by various environmental factors such as area of origin, altitude of the cultivar, the age of the tree 

and the part of the plant from where it is extracted [46,66–68]. The highest content of MAG was seen 

in the roots of the tree at a concentration of 87 – 96 mg/g of extract [66,68]. In view of all the influencing 

factors, the concentration of MAG varies from 0.05 mg/g to 91.91 mg/g in plant extracts [68]. Various 

methods can be used for the extraction of MAG from the extract obtained from bark, roots and leaves. 

These are generally aqueous and/or organic extractions, affecting the retrieval of MAG. Therefore, 

supercritical extraction, maceration and sonication can be employed to optimize the extraction [69]. 

 

Figure 1. Structure of magnolol. 

3. Biological Activities of Magnolol 

Several pharmacological active compounds such as magnolol, honokiol, 4-O-methylhonokiol, 

obovatol and few other neolignan compounds are found in the bark of Magnolia tree. MAG is 

reported to possess an array of pharmacological effects including anti-oxidant [70], anti‐

inflammatory [71], anti-bacterial [10], anti-thrombotic or anti-platelet [72], anti-stress [73], anti-

anxiety, anti-Alzheimer [74], anti-stroke [75], hypoglycemic [76], smooth muscle relaxant [77,78], 

weight control [79], anti-dyspeptic/prokinetic [80], anti-epileptic [81], and hepatoprotective effects 

[82]. Small-scale clinical studies on MAG and its interaction with gamma‐aminobutyric acid‐A 

(GABA‐A) and muscarinic receptors show that it helps in decreasing the anxiety levels in patients 

[78,83–85]. The anti-depressant activity of MAG observed in preclinical studies is due to the 

alterations in serotonin turnover in the frontal cortex, nucleus accumbens and striatum [86]. 

MAG can easily cross the blood brain barrier [87,88] and its oral bioavailability is in the region of 

10%. MAG is mainly metabolized in the liver with glucuronides as its chief metabolite. Furthermore, acute 

or long term, preclinical or clinical studies on intake of Magnolia‐based preparations did not display any 

biological alterations. However, very high dosage of MAG may induce hepatotoxicity in vitro [89,90]. 

Therefore, MAG can be used as a new generation of anti‐craving, anti‐abstinence, and neuroprotective 

drugs, with their GABA‐ergic activity as well as for the treatment of spasms, convulsions and its 

associated pain [91]. In the cardiovascular system, it displayed vascular relaxation, anti-atherosclerosis 

and anti-platelet effects. In the gastrointestinal system, it demonstrated anti-gastric ulcer, anti-esophageal 

obstruction, hepatoprotective and anti-diarrhea effects [92]. 

4. Molecular Targets of Magnolol 

MAG possesses an array of molecular targets that modulate the expression of different genes 

involved in cancer cell survival, proliferation, invasion, metastasis, chemoresistance and cell death 

(Figure 2). It is a well-established fact that inhibition of apoptosis is an important strategy for cancer 

development [37,93–96]. Release of mitochondrial cytochrome c (cyt-c) to the cytosol is controlled by 

a pro-apoptotic B-cell lymphoma protein-2 (Bcl-2) family of proteins such as Bcl-2-associated X 

protein (Bax), BH3 interacting-domain death agonist (Bid) and Bcl-2 homologous antagonist/killer 

CH2

CH2
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(Bak) and by the anti-apoptotic Bcl-2 family of proteins such as Bcl-2 and B-cell lymphoma-extra large 

(Bcl-xL) which in turn activate the intrinsic apoptosis pathway. Furthermore, it is also known that 

activation of caspases play a vital role in apoptosis-mediated cancer cell death [97]. The anti-cancer 

activity of MAG is linked with the regulation of the caspase cascades and cleaved poly (adenosine 

diphosphate-ribose) polymerase (PARP) [47,98–103]. Yang et al., in the year 2003, reported that MAG 

increased the expression of Bad, Bcl-XS, caspases-3, -6, and -9 and c-Jun N-terminal kinases (JNK) and 

suppressed the expression of Bcl-xL and extracellular phosphorylated signal-regulated kinase (ERK) in 

human lung squamous carcinoma [98]. MAG induced apoptosis via the cyt-c/caspase-

3/PARP/Apoptosis inducing factor (AIF) & phosphatase and tensin homolog (PTEN)/AKT/caspase-

9/PARP pathways in CGTH W-2 thyroid carcinoma cell [101]. Furthermore, MAG also induced 

apoptosis by enhancing the expression of PTEN and down-regulation of AKT [101,104]. 

 

Figure 2. Various molecular targets modulated upon magnolol treatment. 

MAG also exerts it anti-cancer activity by modulating various proteins involved in the cell cycle 

regulation [46]. Chen et al., reported that treatment of U373 glioblastoma cells with MAG induced 

cell cycle arrest at the G0/G1 phase by downregulating the expression of cyclin-A and -D1, and 

escalating the protein levels of p21/Cip1 [105]. Additionally, treatment of COLO-205 cells with MAG 

ameliorates the protein expression of p21 thereby inducing cell cycle arrest by inhibiting the cyclin–

cyclin dependent kinases (CDKs) system [59]. 

Constitutive activation of nuclear factor kappa B (NF-κB) down-regulates apoptotic gene and/or 

upregulates anti-apoptotic gene expression. Furthermore, it also increases the expression of the genes 

involved in malignant conversion and tumor promotion [8,63,106–115]. It is now well known that the 

primary targets of MAG are NF-κB and NF-κB regulated proteins and that MAG induces cell death and 

reduces cell proliferation by inhibition of NF-κB activity [116–118]. MAG prevents invasion and migration 

of cancer cells by reversal of epithelial-mesenchymal transition (EMT) via inhibition of NF-κB activation. 

MAG inhibits cancer metastasis by reducing the expression of matrix metalloproteinase-7, -9 (MMP-7, -9) 

and urokinase plasminogen activator (uPA) [116,119]. 

MAG activates autophagic cell death by suppressing the levels of phosphorylated AKT and 

mammalian target of rapamycin (mTOR) [52]. Furthermore, it causes lung cancer autophagy by 

blocking the Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/PTEN/AKT pathway [120]. An 

MAG derivate, Ery5 inhibited angiogenesis and induced cell death via autophagy and not apoptosis 

in human umbilical cord vein endothelial cells (HUVEC) and PC-3 cells. In addition, treatment with 
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MAG and knocking down of vital autophagic protein ATG7 reversed the Ery5-mediated autophagy 

and inhibition of angiogenesis [121]. Regulation of all these molecular targets by MAG in different 

malignancies will be discussed in the next section of this review. 

5. Cancer Chemopreventive and Therapeutic Properties of Magnolol 

Increasing lines of evidence confirm that MAG controls survival, proliferation, invasion, 

angiogenesis, metastasis, and chemoresistance of various types of cancers such as bladder cancer, 

brain cancer, breast cancer, colon cancer, leukemia, liver cancer, lung cancer, ovarian cancer, prostate 

cancer and skin cancer by regulating multiple signaling pathways (Figure 3). These studies provide 

a considerable amount of proof that MAG has significant potential as an effective multi-targeted 

agent for both the prevention and treatment of several cancers and are briefly summarized below. 

 

Figure 3. Effect of magnolol on different molecular signaling pathways. (MAG: Magnolol; Τ: 

Inhibition/Downregulation; ↑: Activation/Upregulation; Τ: Inhibition/Downregulation by MAG; ↑: 

Activation/Upregulation by MAG). 

6. Effect of Magnolol in Different Cancers 

6.1. Bladder Cancer 

Approximately 429,800 new cases and 165,100 deaths occurred globally due to bladder cancer 

in 2012 [1]. Various studies have shown the efficacy of MAG against this cancer (Table 1). Treatment of 

MAG with the human urinary bladder cancer 5637 cells showed that it promoted apoptosis and arrested 

the cells at the G2/M phase of the cell cycle. This anti-cancer activity is achieved through downregulation 

of cyclin and CDK expression and upregulated expression of the CDK inhibitor p27Kip1 [122]. Another 

study conducted by the same group of scientists revealed that MAG treatment of 5637 bladder cancer cells 

inhibits expression of MMP-9 induced by Tumor necrosis factor–alpha (TNF-α) by decreasing the binding 

affinity of the transcription factor NF-κB to the MMP-9 promoter [103]. MAG attenuated angiogenesis in 

vitro and in vivo which is mediated by inhibition of the expression of hypoxia-inducible factors-1α (HIF-

1α) and vascular endothelial growth factor (VEGF) secretion in human bladder cancer cells [123]. In an 

animal study on bladder cancer-bearing mice, MAG downregulated the expression of transcriptional 

factor Forkhead box O3 (FoxO3), ubiquitin ligase, MuRF-1 and MAFbx/atrogin-1. MAG has an anti-

atrophic effect on cells undergoing chemotherapy [53]. 
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Table 1. Magnolol (MAG) and its mechanism of actions against different cancers. 

Cancer Models Mechanism(s) of Action References 

Bladder cancer 

In vivo 
↓Myostatin, activin A formation, FoxO3, ubiquitin ligases MuRF-1 & 

MAFbx/atrogin-1 
[53] 

In vitro ↑p27Kip1 ↓cyclin -B1/CDC2 [122] 

In vitro ↓MMP-9 [103] 

In vitro ↓HIF-1α/VEGF-dependent angiogenesis pathways [123] 

In vivo ↓HIF-1α/VEGF-dependent angiogenesis pathways [123] 

Breast cancer 

In vitro ↑miR-200c & E-cadherin [54] 

In vitro ↓LOX [124] 

In vitro ↓Cell growth [125] 

In vitro 
↑Cell cycle arrest at G2/M phase, ROS, release of cyt-c, AIF, Bax, p21 & 

p53 ↓MMP, Bcl-2, cyclin-B1 & CDK-1 
[126] 

In vitro ↓MMP-9 & NF-κB activity [116] 

In vivo ↓MMP-9 & NF-κB activity [116] 

Cervical cancer 

In vitro ↓Cell survival [127] 

In vitro ↓P-gp & MDR [128] 

In vitro ↑Cell cytotoxicity [129] 

Cholangiocarcinoma 
In vitro 

↓PCNA, Ki67, MMP-2,-7,-9, cyclin-D1, p-IκBα & p-P65 ↑Cell cycle arrest 

in G1 phase 
[130] 

In vivo ↓Tumor growth [130] 

Colon cancer 

In vitro ↑Cytosolic free Ca(2+); translocation of cyt-c; caspase-3, -8, & - 9  ↓Bcl-2 [57] 

In vitro 
↓DNA synthesis  ↑cell 

cycle arrest at G0 /G1 phase 
[59] 

In vivo ↓Tumor growth ↑p21 [59] 

In vivo 
↑ERK phosphorylation, p21  

↓thymidine incorporation 
[131] 

In vitro ↓β-catenin, MMP-7, uPA & c-myc [109] 

In vivo ↓Invasion & motility of tumor cells [109] 

In vitro ↑p53, Bax & AMPK activation ↓Bcl-2 [132] 

In vitro ↑Apoptosis & p27Cip1 protein [133] 

Fibrosarcoma In vitro ↓MMP-9  [134] 

Gallbladder cancer 

In vitro 
↑Cell cycle arrest at G0 /G1 phase, p53 & p21 ↓cyclin -D1, CDC25A, & 

CDK-2 
[58] 

In vivo 
↓Tumor growth ↑cell cycle arrest at G0 /G1 phase, p53 & p21 ↓cyclin -D1, 

CDC25A & CDK-2 
[58] 

Gastric cancer In vitro ↓PI3K/AKTsignaling pathways [135] 

Glioblastoma 

In vitro ↓Cyclin-A, -D1 & CDK-2, -4& -6 [136] 

In vitro ↓Tumor growth  ↑apoptosis [136] 

In vitro 
↑Cell cycle arrest at G0 /G1 phase& p21/Cip1 ↓cyclins -A & -D1& DNA 

synthesis 
[105] 

In vitro ↑p27Kip1 & apoptosis [133] 

In vivo ↑p27Kip1 & apoptosis [133] 

In vitro ↓myosin light chain phosphatase & N-cadherin [137] 

Kidney cancer 
In vitro ↓Cell survival [127] 

In vivo ↓Tumor growth, invasion & metastasis [61] 

Leukemia 

In vivo ↓LTs, PLA2, 5-LO, LTC4 synthase & LTA4 hydrolase [138] 

In vitro ↑Bax & cleavage of caspase-3, ↓PI3K/AKT pathway [121] 

In vitro ↑Apoptosis, cyt-c release, caspase-9,-3 &-2 & cleaved PARP [139] 

In vitro ↓ERK signal transduction &Bcl-2 protein ↑AIF [140] 

Liver cancer 

In vitro ↓Cell viability [51] 

In vitro ↓Cell survival [127] 

In vitro ↓Cell proliferation [141] 

In vitro ↓Cell viability [142] 

In vitro ↑Cytosolic free Ca (2+), translocation of cyt-c, caspase-3, -8, & -9 ↓Bcl-2 [57] 

In vitro ↓DNA synthesis ↑cell cycle arrest at G0/G1 phase& apoptosis [59] 

In vivo ↓Tumor growth, invasion & metastasis [61] 

In vitro ↑Cell cytotoxicity [129] 

In vitro ↑Cell cytotoxicity [143] 

Lung cancer 
In vitro 

↑Cell cycle arrest in M phase, polymerization of microtubule, apoptosis 

via p53-independent pathway & autophgy via ↓AKT/mTOR 
[52] 

In vivo ↓Tumor growth [52] 
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In vitro ↓Cell proliferation [144] 

In vitro 
↑Cell apoptosis cell cycle arrest in G0/G1 phase ,TRAIL-R2 (DR5), Bax, 

caspase-3, & cleaved PARP 
[145] 

In vivo ↓Tumor growth [145] 

In vitro ↑Bad ,Bcl-XS, & caspase-9, -3 & -6↓Bcl-xL  [98] 

In vivo ↓Tumor growth, invasion & metastasis [61] 

In vitro ↓NF-κB activation  [117] 

In vitro ↑Autophagy ↓PI3K/PTEN/AKT pathway [120] 

In vitro ↑Caspase-3 & cleavage of PARP↓NF-κB/Rel A [118] 

In vitro ↑Release of Bid, Bax & cyt-c from mitochondria ↑PI3K/AKT & ERK1/2 [146] 

Melanoma In vitro ↑Casapase-3, -8, -9 activities [147] 

Neuroblastoma In vivo ↑Cytosolic free Ca (2+); via PLC-mediated pathway [60] 

Oral cancer In vitro 
↑Ca (2+) influx via PKC-sensitive store-operated Ca (2+) entry & ↑Ca (2+) 

release from ER in a PLC-associated manner 
[148] 

Ovarian cancer 

In vitro ↑Cell cytotoxicity [129] 

In vitro ↓PI3K/AKT/mTOR-signaling, ↑PARP cleavage, caspase-3 activation [149] 

In vitro ↓P-gp [150] 

Prostate cancer 

In vitro ↓IGF-1, IGFBP-5, p-IGF-1R & ↑IGFBP-3, IGF-1R [151] 

In vitro ↑Cell cytotoxicity, ↓cyclins -A,- B1,-D1 & -E, ↓CDK-2 & -4  [55] 

In vitro ↓Inhibiting the EGFR/PI3K/AKT signaling, ↑cyt-c release, Bax [152] 

In vitro ↓MMP-2 & MMP-9 [153] 

In vitro ↑Autophagy; ↓cell proliferation, migration, invasion & tube formation [121] 

Skin cancer 

In vitro ↑GAS5 & apoptosis [154] 

In vivo ↓Tumor growth [56] 

In vivo ↓ERK-1/2; MAPK; PI3K/AKT, iNOS & COX-2 [155] 

In vivo ↑Cleavage of caspase-8 & PARP, p21 & G2/M phase cell cycle arrest [156] 

In vitro 
↑G2/M phase cell cycle arrest, Cip/p21, cleavage of caspase-8 & PARP, 

↓cyclin -B1, -A, CDK-4, CDC2 
[156] 

In vivo ↓Cell viability & proliferation↑apoptosis [157] 

In vitro ↓Cell proliferation, Bax & Bcl-2 ↑apoptosis & caspases-3, 8, 9 [147] 

Spleen cancer In vivo ↓Tumor growth, invasion & metastasis [61] 

Thyroid cancer In vitro 
↑Apoptosis via the cyt-c/caspase-3/PARP/AIF & PTEN/AKT/caspase-

9/PARP pathways & necrosis via PARP activation 
[101] 

6.2. Brain Cancer 

Glioblastoma multiforme (GBM) is the most encroaching primary malignant tumor of the central 

nervous system [158]. A study conducted by Chen L.C. et al., on the effect of MAG has shown it to 

induce anti-proliferative activity against the U373 human glioblastoma cell line. MAG 

downregulated the expression of cyclins A and D1 and upregulated the expression of p21/Cip1 which 

ultimately resulted in cell cycle arrest at the G0/G1 phase [105]. Another group of scientists showed 

that MAG at a higher concentration of 100 µM induced apoptosis and DNA fragmentation through 

upregulation of p27Kip1 protein expression in U373 cells both in vitro and in vivo [133]. Preclinical 

studies on the effect of combination of MAG and honokiol in U87MG and LN229 glioma cells and 

the human GBM orthotopic xenograft model showed that MAG acts synergistically with honokiol 

and halts tumor progression by regulating cyclin-A, -D1 and CDK-2, -4, -6 and through induction of 

autophagy and apoptosis [136]. Furthermore, another in vitro study on LN229 and U87MG glioma 

cell lines revealed that MAG downregulates myosin light chain phosphatase and N-cadherin protein 

expression level, which plays a pivotal role in cell migration and malignancy [137]. Preclinical studies 

on treatment of MAG with rat cortical neurons and human neuroblastoma SH-SY5Y cells showed an 

increase in calcium level in cells via the phospholipase C (PLC)-mediated pathway where calcium is 

released into the cytoplasm from intracellular storage (Table 1) [60]. 

6.3. Breast Cancer 

Breast cancer is the most commonly diagnosed cancer and is one of the leading causes of cancer 

death in women worldwide [1]. In vitro and in vivo studies on the effect of MAG against cells of the 

highly invasive human breast cancer cell line MDA-MB-231 and female nude immunodeficient mice 

revealed that MAG downregulates MMP-9 expression by inhibiting the binding of NF-κB to the MMP-
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9 promoter [116]. MAG causes cell cycle arrest at the G2/M phase in MCF-7 cells and induces the caspase 

independent intrinsic apoptotic pathway mediated by enhanced reactive oxygen species (ROS) 

production, upregulation of proapoptotic proteins like Bax, p21 and p53, down-regulation of anti-

apoptotic proteins like Bcl-2, cyclin-B1 and CDK-1 and translocation of cyt-c and release of AIF from 

mitochondria to the cytosol [126]. Hou X. et al., disclosed the anti-proliferative activity of MAG by 

analytical techniques such as 2D LC-MS, where it was found that MAG inhibits the growth of the MDA-

MB-231 cell line [125]. MAG can potentially diminish metastasis by inhibiting enzyme Lysyl oxidase 

(LOX) and downregulation of focal adhesion kinase expression which is considered as a strong 

mechanism by which extracellular matrix remodulation takes place during metastasis [124]. Hagiwara K. 

et al., identified that MAG treatment has the ability to induce novel tumor suppressor microRNA-200c 

(miRNA-200c) which led to ZEB1 inhibition and E-cadherin induction in breast cancer cells (Table 1) [54]. 

6.4. Colorectal Cancer 

According to the global cancer statistics 2012, colorectal cancer is the third most common cancer [1]. 

Interestingly, MAG treatment with colon cancer induced apoptosis by upregulating the expression 

of the p27Cip1 protein [133]. Park J.B. et al., reported that HCT-116 colon cancer cells upon treatment 

with MAG activated AMP-activated protein kinase (AMPK), enhanced the expression of pro-

apoptotic protein Bax and p53 and downregulated the anti-apoptotic protein Bcl-2 [132]. Another 

study conducted by Kang Y.J. et al., in 2012 demonstrated that MAG potentially inhibited Wnt3a-

mediated β-catenin translocation into the nucleus and suppressed the expression of c-myc, MMP-7, 

and uPA in SW480 and HCT116 human colon cancer cells [119]. In vitro and in vivo studies showed 

treatment with MAG induced cell cycle arrest at the G1/G0 phase of the cell cycle by increasing the 

p21 level and decreasing DNA synthesis [131]. Two different studies conducted by the same group 

indicated that MAG induced apoptosis in COLO205 cells by downregulating the expression of Bcl-2 

protein and increasing the cytosolic free Ca (2+) level, cyt-c translocation from mitochondria to cytosol 

and activation of caspase-3, -8 and -9 [57]. It suppressed proliferation of cells by inhibiting DNA 

synthesis and arrested the cells at the G0/G1 phase of the cell cycle. Furthermore, COLO-205 cells 

implanted subcutaneously in nude mice upon treatment with MAG led to profound regression of 

these tumors which was mediated by the increase in the p21 protein expression level and the 

induction of apoptosis (Table 1) [59]. 

6.5. Leukemia 

Leukemia occurs in the tissue that forms blood. The incidence and the mortality rate of this cancer 

is increasing significantly every year. MAG treatment effectively inhibited proliferation of human HL-

60 cells and Jurkat-T leukemia cells by promoting apoptosis in a dose- and time-dependent manner 

which was mediated through increased cytosolic cyt-c concentration, proteolytic cleavage of PARP and 

activated caspase-2, -3 and -9 activities [139]. Ikai T. et al., in the year 2006 reported that MAG treatment 

with human leukemia U937 cells induced caspase independent apoptosis by diminishing the 

mitochondrial membrane potential, Bcl-2 protein expression and ERK signaling pathway [140]. In 

addition, it also increased the translocation of apoptosis inducing factor (AIF) from mitochondria to the 

cytosol [140]. MAG was found to exert its anti-cancer activities against human myeloid leukemia HL-

60 cells by augmenting the level of Bax and cleavage of caspase-3 and repressing the PI3K/AKT 

pathway which led to the induction of apoptosis and autophagy [121]. In an in vivo study, treatment of 

rat basophilic leukemia (RBL)-2H3 cells with MAG showed decreased leukotriene (LT) C4 and LTB4 

production. Moreover, MAG also decreased the Ca (2+) level within the cells, resulting in inhibition of 

two Ca (2+) dependent enzymes, i.e., cytosolic phospholipase A2 (PLA2) and 5-lipoxygenase (5-LO). It 

also inhibited the functioning of two other enzymes, namely, LTC4 synthase and LTA4 hydrolase which 

are essential for LT-synthesis (Table 1) [138]. 
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6.6. Liver Cancer 

Liver cancer accounts for second highest death from cancer globally [1,159]. Many in vitro and 

in vivo investigations offer evidence of the effectiveness of MAG against liver cancer where it is found 

to increase cell cytotoxicity, repress cell proliferation/cell viability and reduce tumor growth 

significantly [61,127,129,141–143]. MAG induced apoptosis in HepG2 cells by increasing the 

intracellular level of calcium along with increased translocation of cyt-c from mitochondria to the 

cytosol and activation of caspase-3, -8, and -9 [57]. Another in vitro study on the same cell line 

conducted by the same group displayed enhanced apoptosis by upregulation of the p21 protein and 

inhibition of DNA synthesis. Therefore, it arrested the cell cycle progression at the G0/G1 phase of 

the cell cycle [59]. Furthermore, Maioli M. et al., in 2018, reported that modifying the MAG hydroxyl 

group into a suitable ester derivative showed a decrease in hepatic tumor malignancy (Table 1) [51]. 

6.7. Lung Cancer 

Lung cancer is the leading cause of death in males and has surpassed breast cancer as the leading 

cause of cancer death among females [1]. MAG is known to repress cell proliferation and reduce 

tumor growth, invasion and metastasis in lung cancer (Table 1) [61,144]. Non-small cell lung cancer 

cell lines (NSCLC) such as A549, H441 and H520 upon treatment with MAG increased DNA 

fragmentation, exhibited a change in mitochondrial membrane potential and release of pro-apoptotic 

proteins like Bid, Bax and cyt-c from mitochondria resulting in the induction of apoptosis. Further, it 

also helped in the nuclear translocation of AIF, activation of endonuclease G and cleavage of PARP 

(caspase independent apoptotic pathway) [146]. In vitro studies on A549 and H1299 cells showed 

that MAG causes cell cycle arrest at the G0/G1 phase while simultaneously upregulating pro-

apoptotic proteins expression, including TRAIL-R2 (DR5), Bax, caspase-3, cleaved caspase-3, and 

cleaved PARP. Further, in the same study, the scientists reported that in vivo A549 xenograft model 

upon treatment with MAG suppressed tumor growth and induced apoptosis by epigenetically 

activating DR5, which in turn activated death receptor-mediated apoptosis [145]. Seo J.U. et al., in 

2011, revealed that MAG can alter the cell cycle in A549 cells and can also mediate caspase-dependent 

apoptosis via downregulation of NF-κB/Rel A in the nucleus [118]. Another study on small lung 

cancer H460 cells demonstrated that MAG initiates cell death via autophagy instead of apoptosis 

[120]. Ahn K.S. et al., reported that MAG inhibited NF-κB activation in H1299 cells [117]. MAG 

treatment inhibited proliferation and induced apoptosis of CH27 cells through downregulation of 

the Bcl-2 family, increase in cytosolic cyt-c and activation of caspase-9, -3 and -6 [98]. In vitro studies 

on A549 cells confirmed that MAG causes cell cycle arrest at the mitotic phase by inhibiting 

microtubule polymerization, and in vivo studies on the xenograft model of human A549 NSCLC 

tumor showed a reduction in tumor growth and size [52]. 

6.8. Ovarian Cancer 

Although the rate of incidence of ovarian cancer is not as high as breast cancer and lung cancer, 

it remains one of the leading causes of deaths due to cancer among women. MAG effectively induced 

cell cytotoxicity and reduced cell proliferative activity in OVCAR-3 cells [129]. MAG treated with 

HER2-overexpressing ovarian cancer cells showed downregulation of HER2 mRNA expression 

mediated by the suppression of VEGF, MMP-2, cyclin-D1 proteins and the PI3K/AKT/mTOR-

signaling pathway and enhancement in PARP cleavage and activated caspase-3 [149]. It was evident 

from the report of Han H.K. et al., that MAG significantly reduced multidrug resistance (MDR) via 

the downregulation of phosphorylated-glycoprotein (P-gp) expression (Table 1) [150]. 

6.9. Prostate Cancer 

Approximately 1.1 million new cases of prostate cancer occurred in 2012, and this is the second 

most frequently diagnosed cancer in men worldwide [1,160]. Several preclinical studies have shown 

the efficacy of MAG against prostate cancer. MAG treatment of PC-3 cells can potentially induce 

apoptosis by decreasing the concentration of phosphorylated AKT and the epidermal growth factor 



Int. J. Mol. Sci. 2018, 19, 2362 10 of 20 

 

receptor (EGFR) signal transduction pathway. Further, it decreased phosphorylation of serine 136 of 

Bad protein, assisted in the translocation of Bax to mitochondria and promoted the release of cyt-c, 

which in turn activated downstream caspase cascade to induce apoptosis [152]. MAG diminishes cell 

proliferation activity by autophagy and inhibits angiogenesis in PC3 cells [121]. Hwang E.S. et al. 

reported that MAG suppressed the metastatic property of PC-3 cells via downregulation of MMP-2, 

-9 both at the transcriptional and translational levels [153]. In vitro studies on androgen insensitive 

prostate cancer cell lines DU 145 and PC3 cells disclosed that MAG treatment causes cytotoxicity and 

affects the cell cycle progression by arresting the cells at the G2/M phase of the cell cycle by 

suppressing the expression of cell cycle regulatory proteins such as cyclin-A, -B1, -D1 and -E, and 

kinases like CDK-2 and CDK-4 [55]. The same research team performed another preclinical study on 

LNCap and PC3 cells and revealed that treatment with MAG downregulated the expression of 

Insulin-like growth factor-1 (IGF-1) and associated proteins such as insulin-like growth factor binding 

Protein-5 (IGFBP-5) and IGFBP-4 (Table 1) [151]. 

6.10. Skin Cancer 

Malignant melanoma of the skin is an important global health problem. It is the most commonly 

diagnosed cancer, found predominantly in the white population [161]. Various preclinical studies 

showed MAG to be effective against skin cancer. A study conducted by Wang T.H. et al., reported 

that MAG induced apoptosis by upregulating the expression of the long non-coding RNA of growth 

arrest-specific 5 (GAS5) [154]. Further, MAG treatment can prevent chemically and UVB-induced 

skin cancer by inducing apoptosis [157]. MAG inhibits the expression of inducible nitric oxide 

synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear translocation of the NF-κB subunit thereby 

reducing its efficacy to bind with DNA. Furthermore, MAG also suppressed ERK1/2 kinase, MAPK, 

and the PI3K/AKT pathway in DMBA/TPA-induced skin cancer in female mice [155]. MAG inhibited 

cell proliferation in the human malignant melanoma A375-S2 cell line by increasing caspases-3, -8,-9 

activities, augmenting the expression of anti-apoptotic mitochondrial protein Bcl-2 while decreasing 

the expression of pro-apoptotic protein Bax [147]. In vivo studies on different animal models of skin 

cancer demonstrated that MAG reduced tumor growth, induced apoptosis and arrested cell cycle at 

the G2/M phase (Table 1) [56,156,157]. 

6.11. Other Cancers 

As discussed above, MAG possesses a potent anti-cancer effect against different types of cancers. 

In addition to the above-mentioned cancers, it has been found to be effective against other cancers as 

well such as gall-bladder cancer, fibrosarcoma, oral cancer, thyroid cancer, cholangiocarcinoma, 

cervical cancer, gastric cancer, kidney cancer and spleen cancer (Table 1). However, only a handful 

of literature is available on the effect of MAG in these cancers. Gallbladder cancer is a relatively rare 

cancer and the prevalence of this cancer shows geographical and racial variations. It is common in 

central and eastern Europe, central and South America, Japan and northern India [162]. MAG 

downregulated the expression of cyclin-D1, CDC25A, and CDK-2 protein and upregulated the 

expression of p53 and p21 proteins in human gallbladder cancer cell lines GBC-SD and SGC-996. 

Further, the in vivo study showed that MAG treatment of BALB/c homozygous nude mice reduced 

tumor growth significantly [58]. 

Fibrosarcoma, commonly known as fibroblastic sarcoma, is a malignant mesenchymal tumor 

which originates from fibrous connective tissue. MAG efficiently reduced malignancy in human 

fibrosarcoma cell line HT-1080 through inhibition of MMP-9 activity [134]. In 2012, approximately 

300,400 new cases and 145,400 deaths occurred due to oral cancer globally [1]. An investigation on 

the efficacy of MAG against OC2 oral cancer cells showed that it increases Ca (2+) concentration 

within the cells via PLC dependent endoplasmic reticulum release and Ca (2+) influx via store-

operated Ca (2+) channels (SOC) activated by protein kinase C (PKC) [148]. Thyroid cancer is a cancer 

that initiates from the tissues of the thyroid gland and gradually the rate of cancer incidence is 

increasing every year. It was reported by Huang et.al that MAG treatment of CGTH W-2 thyroid 

carcinoma cells, robustly induced apoptosis by augmenting the expression of activated caspases. 
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Apoptosis was mediated by the cyt-c/caspase-3/PARP/AIF and PTEN/AKT/caspase-9/PARP pathways 

whereas necrosis induced by MAG occurred via PARP activation [101]. Gastric cancer is the fourth 

most commonly diagnosed cancer in the world. The effects of MAG on SGC-7901 gastric cancer cells 

showed that it induced morphological changes in the cells and its cytotoxic effects were associated 

with DNA damage, the mitochondrial-mediated apoptosis pathway, increased ratio of Bax/Bcl-2, 

dissipation of mitochondrial membrane potential and sequential activation of caspase-3 and 

inhibition of PI3K/AKT-dependent pathways [135]. 

Cholangiocarcinoma is a malignancy that arises primarily from the epithelial lining of the bile 

duct. Treatment of cholangiocarcinoma CCA cells with MAG decreased malignancy and proliferation 

of the cells by downregulation of PCNA, Ki67, MMP-2, -7 and -9 protein expression and inhibition of 

the NF-κB signaling pathway [130]. Around 265,700 deaths occurred worldwide due to cervical 

cancer in 2012. It is the third leading cause of cancer death among females in less developed countries 

[163]. Two different studies conducted by Li M. et al., and Syu W.J. et al., on Hela cells reported that 

MAG increased cell cytotoxicity and reduced the cell survival capability of the cancer cells [127,129]. 

Moreover, MAG strongly inhibited TNF-α stimulated NF-κB activation and prevented MDR in 

KB/MDR1 cells by decreasing P-gp expression [128]. Kidney cancer, generally known as renal cancer, 

is a type of cancer that originates in the cells of the kidney [164]. MAG displays potent anti-cancer 

activity against human renal tubular ACHN cells [127]. Spleen cancer is a very rarely occurring cancer 

that develops in the spleen. Ikeda K. et al., in 2003, suggested that treatment with MAG in vivo 

displayed a substantial reduction in tumor growth, invasion and metastasis [61]. 

7. Conclusions 

MAG, honokiol, 4-O-methylhonokiol, obovatol and other neolignans found in the bark of 

Magnolia tree are some of the principle compounds that confer medicinal qualities to the plant. MAG, 

an organic compound (lignan) isolated from various Magnolia species, has been studied extensively 

for its biological activities such as anti-oxidant, anti‐inflammatory, anti-bacterial, anti-thrombotic or 

anti‐platelet, anti-stress, anti-anxiety, anti-Alzheimer, anti-stroke, hypoglycemic, smooth muscle 

relaxant, weight control, anti‐dyspeptic/prokinetic, anti-epileptic and hepatoprotective activities. 

Numerous preclinical studies on MAG have shown its cytotoxic potential against different cancers 

and other medical conditions. Through several molecular mechanisms, MAG suppressed the 

pathogenesis and repressed the spread of cancer in vitro and in vivo. It acts via onset of the tumor 

suppressor p53 pathway and inhibition/downregulation of tumor progression NF-κB, Wnt/β-catenin, 

PI3K-AKT and MAPK/ERK pathways. 

The molecular targets associated with MAG activity are enzymes, apoptotic proteins, 

transcription factors, growth factors, oncoproteins, tumor suppressor genes, receptors, and other 

proteins involved in cell proliferation, cellular differentiation, survival, angiogenesis, migration, and 

invasion, or other cellular processes involved in cancer. Various animal studies strongly advocate the 

potential role of MAG in controlling the growth of different tumors. However, not even one clinical study 

has investigated the efficacy of MAG. As MAG is obtained from Mother Nature, it could drastically 

economize the expenditure associated with this ever-growing dreadful disease. However, additional 

preclinical and clinical investigations are essential to proclaim the therapeutic potential of MAG that 

would help to bring this compound to the clinic. 
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Abbreviations 

AIF apoptosis inducing factor 

AMPK AMP-activated protein kinase 

Bak Bcl-2 homologous antagonist/killer 

Bax Bcl-2-associated X protein 

Bcl-2 B-cell lymphoma 2 

Bcl-XL B-cell lymphoma-extra large 

Bid BH3 interacting-domain death agonist 

Ca (2+) Calcium 

CDC25A cell division cycle 25 homolog A 

CDK cyclin-dependent kinase 

Cip1 CDK-interacting protein 1 

COX-2 Cyclooxygenase-2 

cyt-c cytochrome-c 

DNA Deoxyribo nucleic acid 

DR5 Death receptor 5 EGFR :epidermal growth factor receptor 

ERK extracellular phosphorylated signal-regulated kinase 

FoxO3 Forkhead box O3 

GAS5 growth arrest-specific 5 HIF-1α:hypoxia-inducible factors-1α 

IGF-1 Insulin-like growth factor 1 

IGFBP-5 Insulin-like growth factor binding Protein-5 

iNOS inducible nitric oxide synthase 

Kip1 Kinase inhibitory protein 

5-LO 5-lipoxygenase 

LOX Lysyl oxidase 

LT Leukotriene 

MDR Multidrug resistance 

MMP Matrix metalloproteinases 

mTOR mammalian target of rapamycin 

NF-κB Nuclear factor kappa B 

NSCLC Non-small cell lung cancer cell lines 

PARP Poly ADP ribose polymerase 

PCNA Proliferating cell nuclear antigen 

P-gp Phosphorylated-glycoprotein 

PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase 

PKC protein kinase C 

PLA2 phospholipase A2 

PLC phospholipase C 

PTEN phosphatase and tensin homolog 

SOC Store-operated Ca (2+) channels 

TNF-α Tumor necrosis factor-alpha 

TRAIL TNF-related apoptosis-inducing ligand 

uPA urokinase plasminogen activator 

VEGF Vascular endothelial growth factor 
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