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Abstract: Toxicity prediction is very important to public health. Among its many applications, toxicity
prediction is essential to reduce the cost and labor of a drug’s preclinical and clinical trials, because
a lot of drug evaluations (cellular, animal, and clinical) can be spared due to the predicted toxicity.
In the era of Big Data and artificial intelligence, toxicity prediction can benefit from machine learning,
which has been widely used in many fields such as natural language processing, speech recognition,
image recognition, computational chemistry, and bioinformatics, with excellent performance. In this
article, we review machine learning methods that have been applied to toxicity prediction, including
deep learning, random forests, k-nearest neighbors, and support vector machines. We also discuss
the input parameter to the machine learning algorithm, especially its shift from chemical structural
description only to that combined with human transcriptome data analysis, which can greatly enhance
prediction accuracy.

Keywords: toxicity prediction; machine learning; deep learning; transcriptome; chemical structure;
molecular fingerprint; molecular fragment

1. Introduction

Toxicity evaluation is of fundamental importance in drug development and approval. It is well
known that drugs must undergo clinical trials to become legal [1,2]. Unfortunately, clinical trials are
always associated with certain degree of risk. It was reported that about half of the new drugs were
found to be unsafe or ineffective in late human clinical trials [3]. For example, the drug Sitaxentan
(Figure 1) was urgently withdrawn from global markets due to specific and irreversible hepatotoxicity
in humans [4,5]. Unsafety of clinical trials highlights the importance of preclinical evaluations,
which are absolutely necessary in order to prevent toxic drugs from entering into clinical trials.

The animal trial, a common method of preclinical evaluation, is of limited value. On the one hand,
the trial is very expensive and laborious. On the other hand, the results offer little guidance to human
toxicity reactions, due to inter-species differences and differential disease models [6,7]. For example,
Sitaxentan caused no explicit liver injury in animal experiments [8], whereas the hepatotoxicity was
prominent in humans [4,5]. Therefore, animal experiments cannot tell the human body’s response to
new drugs and offer no risk exemption [6,9].
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Figure 1. Chemical structural description of Sitaxentan and Sulfisoxazole. (a) The 166-bit molecular 
access system (MACCS) molecular fingerprints, where the different values are indicated in yellow; 
(b) The undirected graphs with atoms as nodes and bonds as edges; (c) The molecular structures of 
Sitaxentan and Sulfisoxazole, where the cyan regions are their common molecular fragment identified 
by CNN training; (d) Other chemical properties. 

To reduce the expenses and uncertainties inherent of animal experiments, it is crucial to perform 
high-throughput computer toxicity predictions. One dominant and most developed toxicity 
prediction method is Quantitative Structure-Activity Relationships (QSAR) based on chemical 
structural parameters [10]. This method uses statistics to establish, for a drug compound, a 

Figure 1. Chemical structural description of Sitaxentan and Sulfisoxazole. (a) The 166-bit molecular
access system (MACCS) molecular fingerprints, where the different values are indicated in yellow;
(b) The undirected graphs with atoms as nodes and bonds as edges; (c) The molecular structures of
Sitaxentan and Sulfisoxazole, where the cyan regions are their common molecular fragment identified
by CNN training; (d) Other chemical properties.

To reduce the expenses and uncertainties inherent of animal experiments, it is crucial to
perform high-throughput computer toxicity predictions. One dominant and most developed toxicity
prediction method is Quantitative Structure-Activity Relationships (QSAR) based on chemical structural
parameters [10]. This method uses statistics to establish, for a drug compound, a quantitative relationship
between the structural or physicochemical characteristics and its physiological activities [11]. From the
relationship, one can predict the physiological activities or other properties of the compound, including
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toxicity. The earliest and widely used QSAR method was the Hansch approach, as proposed in 1962 [12],
which assumes independence of the factors modulating the compounds’ biological activities. It relies on
methods that are related to free energy and statistical methods, such as linear regression, to obtain the
QSAR model [12]. The Free-Wilson method, as proposed in 1964, directly used molecular structure as
a variable for regression analysis of physiological activity [13]. In the 1980s, QSAR regression analysis
began its application in drug toxicity prediction [14–16]. At the turn of the 21st century, researchers
performed toxicity prediction based on single or multiple physicochemical mechanisms [17]. For the
single mechanism, linear regression analysis, multivariate analysis, and neural network models were
primarily used. For the multiple mechanisms, knowledge based systems were often used besides
statistical approaches. Nowadays, with the amount of data increasing explosively, it becomes more
and more difficult to maintain completeness of knowledge bases; thus, knowledge-based systems are
difficult to complete highly automated work with high volume of data [18]. Meanwhile, statistical
approaches, such as linear regression analysis, multivariate analysis, and early shallow neural network
models are difficult to extract more abstract features, and are thus difficult to predict with high accuracy.

To address these new challenges, researchers made great efforts to improve both the prediction
model (development of machine learning) and inputs to the prediction model (characterization of
chemical structure descriptors). The two lines of works interacted with each other and synergistically
promoted the field of computer-based toxicity prediction. They are discussed, respectively, in the following.

2. Machine Learning

Machine learning is a branch of artificial intelligence that uses sophisticated algorithms to give
computers the ability to learn from the data and make predictions [19]. Main algorithms of machine
learning, evolved from the study of cluster analysis and pattern recognition, include artificial neural
networks (ANN), decision trees, support vector machines (SVM), and Bayesian classifiers [20]. Besides
cluster analysis and pattern recognition, these algorithms have been widely linked to data mining [21].

Due to merits of machine learning, such as fastness, cost-effectiveness, and high accuracy,
more and more researchers use machine learning to predict toxicity [22]. Researchers have used
a combination of algorithms, such as genetic algorithm (GA) [23,24], random forest (RF) [25–27],
artificial neural network (ANN) [28–30], and other machine learning algorithms [31–33] to optimize
traditional QSAR models in predicting a drug’s toxicity or other biological activities. Different machine
learning methods perform differently. Factors such as datasets and computational representations can
significantly affect the performance.

2.1. Shallow Architectures

In 1957, Rosenblatt put forward a perceptron model simulating the structure of a neuron,
which can be used as a binary classifier [34]. Widrow and Hoff first used Delta rules to train the
perceptron and laid the foundation for linear classifier [35]. In 1967, Cover and Hart proposed the
nearest neighbor algorithm, which allows for computers to classify sample points according to spatial
features [36]. In 1986, Quilan proposed the decision tree algorithm [37]. In 1995, Cortes et al. came
up with SVM, the key idea of which was to find a boundary that divides two categories with the
largest distance. Besides the linear classification, SVM can be applied to high dimensional nonlinear
classification [38]. In 2001, Breiman gave rise to the RF algorithm [39], which is a classifier with multiple
decision trees. Individual trees output their respective prediction category, which then vote to determine
the final category output of the classifier [40]. It is widely used in solving multiclass problems. SVMs and
RFs are both based on statistics; they thus perform well in structured and denser datasets.

In 1986, Hinton et al. invented the back-propagating algorithm (BP) of multi-layer perceptron
(MLP) with a sigmoid activation function to perform nonlinear mapping, and used ANN effectively to
solve the problem of nonlinear classification and training [41]. Soon, in 1991, it was pointed out that
BP with sigmoid activation function has the vanishing gradient problem and is thus difficult to follow
deeper and more abstract training [42]. These ANN architectures are thus called shallow learning.
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2.2. Deep Learning

In 2011, the ReLU (Rectified Linear Unit) activation function was first proposed [43], which solved
the vanishing gradient problem inherent of the sigmoid function. This breakthrough signified the
birth of deep learning [44]. Algorithms that are based on ReLU activation function have obtained
compelling performance in the field of image recognition [45,46].

As an extension to ANN, deep learning has become a very successful branch of machine learning.
It innovates many fields, including pattern recognition, speech recognition [47,48], natural language
processing [49,50], image and video recognitions [45,51,52], and life science [53,54]. Deep learning
excels when the working data are unstructured, sparse, and large. In recent years, two neural network
models, recurrent neural networks (RNN) [55,56], and convolutional neural networks (CNN) [57,58],
have been commonly used in deep learning. The former is more suitable for prediction or recognition
of sequences, such as natural language processing [59] and time series prediction [60,61]. The latter
is more suitable for the recognition of spatial arrangement features, such as the shapes in graphics
and images [62].

With the increase of computer speed, the deployment of large-scale distributed clusters [63] and
GPUs [64], and the emergence of numerous optimization algorithms [65], deep learning training time
reduced greatly and it is now useful to both bioinformatics [66,67] and chemoinformatics [68,69].

3. Chemical Structure Descriptors

Information for toxicity prediction is primarily from the drug compound’s chemical structure.
To be understood by computers, the chemical structures need to be represented by numbers or
characters, the so-called chemical descriptors. Only after chemical structures are converted into
descriptors, can the computers efficiently process a large amount of structures, via the computers’
high-throughput data processing capacity.

Cammarata and Menon first proposed a molecule-based pattern structure, and established an
8-bit digital chemical descriptor [70,71]. Later, researchers added first-order molecular connectivity
values to the existing descriptor indices, for the structural classification of compounds [72]. In addition,
a lot of researchers have applied quantum chemistry in order to calculate molecular descriptors
(e.g., [73]). By 2000, atoms and bond multiplicity were added to describe the structural parameters
of the topology; molecular hydrological, steric, or electronic descriptors were added to explore the
relationship between biological activity and chemical structure as well [74]. Around 2001, researchers
began to take the three-dimensional (3D) structure of molecules into account to establish 3D-QSAR
chemical descriptors [75,76]; some went a step further to generate four-dimensional (4D)-QSAR
chemical descriptors by adding molecular dynamics (MD) trajectories and topological information [77].

The descriptor types vary from simple features, like atomic counts or molecular weights to
structural features [78]. Different combinations of chemical descriptors and machine learning models
might perform differently.

3.1. Traditional Chemical Descriptors

Traditional chemical descriptors are those that are calculated mainly based on molecular
structure-derived information, like atomic types, atomic charges, or atomic distances. Table 1
presents the main types of traditional chemical descriptors that are categorized by the calculation
parameters [79]. Among them, molecular fingerprints are the most widely used, which are in the form
of an array of numbers. They use information, such as atomic attributes, atomic environments, bond
properties, and bond position to encode chemical structures [80]. Among them, the 166-bit molecular
access system (MACCS) is a typical one (Figure 1a). Each of the 166 bits encodes a specific structural
characteristic, such as: whether or not the number of methyl groups in the molecule is greater than 1?
whether or not the molecule is aromatic [81]?
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Table 1. The main types of traditional chemical descriptors [79].

Descriptor Type Descriptor Name Description

Fingerprint-based

ECFP4 atom type, extended connectivity fingerprint, maximum distance = 4

FCFP4 functional-class-based, extended connectivity fingerprint, maximum
distance = 4

MACCS 166 predefined MDL keys (public set)

Connectivity-
matrix-based BCUT atomic charges, polarizabilities, H-bond donor and acceptor abilities,

and H-bonding modes of intermolecular interaction

Shape-based

rapid overlay of chemical
structures (ROCS), combo

Tanimoto (shape and
electrostatic score)

shape-based molecular similarity method; molecules are described by
smooth Gaussian function and pharmacophore points

PMI normalized principal moment-of-inertia ratios

Pharmacophore-
based

GpiDAPH3 graph-based 3-point pharmacophore, eight atom types computed from
three atom properties (in pi system, donor, acceptor)

TGD typed graph distances, atom typing (donor, acceptor, polar, anion,
cation, hydrophobe)

TAD typed atom distances, atom typing (donor, acceptor, polar, anion,
cation, hydrophobe)

Bioactivity-based Bayes affinity fingerprints bioactivity model based on multicategory Bayes classifier trained on
data from ChEMBL v. 14

Physicochemical-
property-based prop2D physicochemical properties (such as molecular weight, atom counts,

partial charges, hydrophobicity etc.)

The importance of molecular fingerprint is easily seen: for those active substances whose
functional groups happen to locate at “ortho” or “meta” positions, their toxicity can usually be
predicted correctly with MACCS or extended connectivity fingerprint (ECFP) [82]. Autoencoder and
convolution based methods are used to predict the chemical properties where chemicals are signified
by vectors of fixed length, just like MACCS [68]. In experiments involving combinations of molecular
fingerprint and machine learning, Pubchem-SVM and MACCS-RF are the two best combinations.
The merits of SVM and RF are apparent. SVM performs the best among many machine learning
models, including SVM, RF, k-nearest neighbor (k-NN), and naive Bayes [83]. On the other hand, RF is
structured by many decision trees, which are trees with “yes” and “no” as their leaves. Since “yes”
and “no” are represented by 1 and 0, respectively, RFs correspond naturally to molecular fingerprints
or other chemical descriptors, which consist of many binary digits (0 or 1).

3.2. Deep-Minded Chemical Descriptor

Molecular fingerprints encode chemical structures in great detail (every atom or bond), which may
sometimes be unnecessary or even disadvantageous (complicated and inefficient). To obtain a coarse
grained, but more deep-mined model, researchers characterized molecules by deep learning
architectures, such as RNN and CNN.

One learning method is based on the two-dimensional planar molecular structure, whereby
the entire molecule is converted into an undirected graph (Figure 1b). With atoms as nodes and
bonds as edges, each node is sequentially traversed [68,84,85]. This would permit an understanding
of the relationship between structure and reactivity [86]. Being sensitive to time sequence or
succession, RNN and its variant long short-term memory (LSTM) are used to construct this kind
of molecular fragments [84,85].

Two-dimensional fragments can be constructed directly from the molecule (Figure 1c), without
sequentially traversing every atom in the undirected graph by RNN. CNN classifies the molecules
into molecular fragments, which are chemical substructures that are not naturally classified according
to the functional groups, but they are adjusted constantly by the “learning” machine. The final
molecular fragments should be more interpretable and readable [87]. Using CNN to automatically
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construct abstract chemical fragments, the deep learning model showed very high performance in
toxicity prediction based on high-throughput data, with an average area under the curve (AUC) of
0.846 [88]. The AUC value is the probability, according to the result of the current algorithm, that the
positive sample is ranked before the negative sample when both samples are randomly picked by the
algorithm [89]. The greater the AUC value, the more likely the current classification algorithm placing
the positive sample before the negative one, and the better the classification.

Figure 1c gives an example of CNN identifying the same substructure (colored in cyan) from two
different molecules. It can identify even smaller substructures. After extensive data training, CNN can
identify those substructure or molecular fragments that might make a molecule toxic. When working
on new test sets, CNN usually predicts with high accuracy [88].

3.3. Chemical Properties

Being determined by molecular structures, chemical properties (molecular weight, degradation
rate, solubility coefficient in different solvents, molar index, permeability, etc.) can also be used for
classification and prediction (e.g., Figure 1d) [90,91]. The use of molecular descriptor parameters
that are derived from electronegativity and covalent radii of forming atoms and interatomic
distances can also improve prediction by ANNs [92]. Molecular fingerprints that based on both
simple molecular properties and characteristics derived from two-dimensional molecular structures,
such as measurements of lipophilicity (LogP and LogD) and topological polar surface area (TPSA),
were combined with a variety of machine learning models (e.g., RF, SVM, k-NN) for toxicity prediction
and classification. By comparing their performances, it was found that RF usually outperformed [91].
Using the k-NN algorithm, Chavan et al. even tried to predict the chronic toxicity of chemical
substances by combining acute toxicity information with molecular fingerprints such as MACCS
and CDK [93]. These studies demonstrated that chemical properties can help improve accuracy of
toxicity prediction.

3.4. Examples of Chemical Structural Description

Sitaxentan is a drug to treat pulmonary arterial hypertension (PAH) and Sulfisoxazole is a
sulfonamide antimicrobial with some hepatotoxicity implications [94]. Their structural descriptions are
presented in Figure 1. The two drugs have 22/166 different places and 144/166 identical places
in the MACCS molecular fingerprint (Figure 1a). The explicit binary structure of the MACCS
molecular fingerprint is well-suited to the structural characteristics of the decision tree algorithm;
thus, RF outperformed other machine learning models when dealing with MACCS. Figure 1b displays
the undirected graphs of Sitaxentan and Sulfisoxazole, with atoms as nodes and bonds as edges.
Every node corresponds to a vector whose terminal point is just the node. The vector can be constructed
from the undirected graph by determining the paths of all the other nodes to the terminal point. Finally,
all of the vectors are added to form the molecular structure vector of the corresponding molecule [68].
In Figure 1c, the cyan region indicates the same substructure of the two molecules that are identified
by CNN. Figure 1d gives the other chemical properties of these two molecules.

4. Chemical Structure Based Toxicity Prediction by Machine Learning

After using computer-readable and interpretable methods to represent the molecular structure,
a machine learning model is trained to predict toxicity.

4.1. Data Collection

Accuracy of toxicity prediction depends on the amount of data being collected. During the
past years, extensive data collections have resulted in some mainstream toxicity databases (Table 2).
Toxicology data network (TOXNET), which was created in 1985, is among the world’s largest collection
of toxicology databases. The first database that was added to the network was the Hazardous
Substances Data Bank (HSDB), which contains acute-toxicity information [95,96]. Toxicity ForeCaster
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(ToxCast) is also a widely used high-throughput toxicity database. It is a part of the Toxicology in the
21st Century (Tox21), whose screening workflow is represented in Figure 2. Tox21 contains both acute
and chronic toxicity information.

Table 2. The mainstream data resources of toxicity chemicals.

Database Database Description Online Websites Reference

TOXNET A collection of toxicity databases. https://toxnet.nlm.nih.gov/ [97]

ToxCast High-throughput toxicity data on thousands
of chemicals.

https://www.epa.gov/chemical-research/
toxicity-forecaster-toxcasttm-data [98]

Tox21

(1) Chemical Effects in Biological Systems;
(2) Individual data and summaries from

National Toxicology Program studies;
(3) The growth, survival, pathology and

other toxicology data.

https://ntp.niehs.nih.gov/results/dbsearch/
index.html [99,100]

PubChem

(1) Chemical structures;
(2) Identifiers;
(3) Chemical and physical properties;
(4) Biological activities;
(5) Toxicity data
(6) Patents and health, safety and so on.

https://pubchem.ncbi.nlm.nih.gov/ [94]

DrugBank Detailed drug data and corresponding drug
target information. https://www.drugbank.ca/ [101]

ToxBank Data
Warehouse Data for systemic toxicity. http://www.toxbank.net/data-warehouse [102]

ECOTOX Single chemical environmental toxicity data
on aquatic life, terrestrial plants and wildlife. https://cfpub.epa.gov/ecotox/index.html [103]

SuperToxic Toxic compound data from literature and
web sources. http://bioinformatics.charite.de/supertoxic/ [104]
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4.2. Performance

The prediction model, which was obtained by combining machine learning and the molecular
descriptors, is similar to QSAR, which has long been used to study the quantitative relationship
between molecular structure and biological activity [106]. The latter includes toxicity and
environmental behavior of chemicals, which makes QSAR one conventional method to predict
toxicity [107,108]. Here, we mainly discuss QSAR studies that are based on the two-dimensional
structure of chemical molecules combined with biological activity parameters. In the earliest days,
researchers used simple pattern recognition methods, such as k-NN, to classify and predict compound
toxicity. But, simple pattern recognition is difficult to process asymmetric data, in which positive
samples are far less than negative ones, or vice versa [109]. Asymmetric data are ubiquitous in the
toxicity database, because non-toxic compounds are not specifically labeled in the database. Fortunately,
ANNs and algorithms of the decision tree class, including random forests, can well classify and predict
asymmetric data or imbalanced data showing a strong generalization ability [110–112]. For example,
with the loss function improving, deep neural networks (DNNs) exhibited excellent performance for
classifying even extremely imbalanced data [113].

With molecular fingerprints ECFP6, FP2, MACCS combined with ANN models, the two-dimensional
QSAR virtual screening can achieve an average r test value (which measures regression fitness) of
0.75 [114,115]. Deep learning multi-task neural networks worked so well that the AUC value for
toxicity QSAR prediction of NIH/3T3 cells (mouse embryonic fibroblast) can reach 0.9, which is
slightly higher than the AUC of 0.87 in random forests, in which molecular fingerprints as input
of the model [116]. Besides ANNs, RFs have also been successfully applied to QSAR predictions.
Using a molecular fingerprint or a simplex representation of molecular structure to store chemical
molecular structure information, such as atom type and other physical-chemical characteristics of
an atom, RF was validated on the QSAR external test set [25,117]. In addition, Wu et al. recently
improved traditional molecular descriptors using element specific persistent homology (ESPH) and
auxiliary descriptors, where ESPH includes topological information from intermolecular interactions
and homology analysis on each component of molecules. On this basis, they performed RF, Gradient
Boosting Decision Tree, single-task deep learning, multi-task deep learning, multi-task deep learning
methods, and achieved the highest degree of fitness and accuracy [118].

Table 3 presents the AUC values of different machine learning models combined with different
molecular descriptors. One sees that traditional machine learning methods such as SVM and RF
have higher AUC values than deep learning algorithms. The reason might be that currently available
toxicity datasets are not sufficiently large to support deep learning algorithms to further improve their
accuracy. Otherwise, the accuracy of deep learning would increase markedly due to semi-supervised
learning characteristics.

Table 3. Comparison of area under the curve (AUC) scores among different combinations of molecular
descriptors and machine learning models.

Molecular Descriptor Model AUC Reference

Shallow architectures
Dragon descriptors (2489 descriptors) RF 0.81 [119]

Pubchem keys SVM 0.948 [83]
MACCS fingerprints RF 0.947 [83]

Deep learning
Molecular fragments learned by CNN DNN 0.837 [88]
Unidirectional graph learned by CNN Graph CNN 0.867 [120]

LSTM graph One-shot learning 0.84 [84]

5. Acute (Immediate) Toxicity Prediction

Toxicity can be divided into acute toxicity and chronic toxicity. The latter includes toxicity to
reproduction, mutagenicity, and carcinogenicity [121]. Acute toxicity is usually measured by LD50
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(Lethal Dose 50) for drug testing and LC50 (Lethal Concentration 50) for environmental sciences [122].
In 1997, Gute and Basak used the simplest linear regression to predict acute aquatic toxicity [123].
In 2000, Basak et al. used ANN to predict LC50 of benzene derivatives [124]. After the development
of machine learning, in 2011, Lu et al. used k-NN combined linear regression model to predict
acute oral toxicity in rats and achieved a R square value of 0.712, for which they utilized the local
chemical structure that was represented by molecular fingerprints [31]. Martin et al. used the global
hierarchical clustering method to predict acute toxicity of pesticides and obtained better results than
linear regression [125].

Recently, Liu et al. compared performance of shallow architectures, such as RF and k-NN,
with DNN in acute toxicity prediction based on extremely unbalanced datasets. For the sake of fairness,
they used the chemical descriptor of ECFP uniformly. It was found that RF and DNN performed
better on the global dataset, while k-NN performed better on the unbalanced acute toxicity datasets.
This result also highlights the importance of neighbor information in acute toxicity prediction [126].
In order to adapt the chemical descriptor to the prediction model, Xu et al. used an enhanced molecular
graph encoding convolutional neural networks (MGE-CNN) (the gray box in Figure 3) to process the
standard molecular structure data, and finally obtained the fingerprint. The fingerprint was further
mined both forwardly and backwardly, which yielded the deep-minded fingerprint (the array of black
dots in Figure 3). The deep-minded fingerprint was then tested by the regression model (the blue
circle) and the multiclass/multitask models (the green circles), which yielded a classification accuracy
up to 95.0% and a regression R square value of 0.861 [127].
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Figure 3. An acute oral toxicity prediction. The prediction starts from a chemical molecular structure
in the simplified molecular-input line-entry system (SMILES) format, as an input to the MEG-CNN,
where the pink, purple, and cyan circles represent the first, second, and third iterations, respectively.
During each iteration, the chemical structure is processed by the convolutional kernel according to
the atom degree to obtain the corresponding pre-fingerprint. All of the pre-fingerprints are integrated
to generate the fingerprint, which was further processed to generate the deep-mined fingerprint.
The deep-minded fingerprint was then tested by the regression model (the blue circle) and the
multiclass/multitask models (the green circles) [127].

6. Chronic (Delayed) Toxicity Prediction

6.1. Prediction Based on Chemical Structure

When compared with acute toxicity, chronic toxicity is more latent and hard to discover. Chavan et al.
classified the LD50 values of compounds using k-NN. Based on the classification, they predicted the
LOEL (lowest observed effect level), which was then used to measure chronic toxicity. The R square
value of the test set was only 0.54, however [93]. In 2017, Li et al. used machine learning models,
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such as RF, SVM, and k-NN to predict the oral LOAEL (lowest observed adverse effect level) of rats.
The method k-NN obtained the best performance, yielding AUC values up to 0.814 [128].

6.2. Prediction with Cellular Transcriptome Information

Chemical structure based toxicity prediction is only the first step of drug evaluation. The subsequent
steps include cell, animal, and clinical toxicity tests. Because drugs are designed for humans,
toxicity testing on human cells is both clinically relevant and cost effective. Whole genome
expression, or transcriptome expression, reflects the state changes of a cell, either in vivo or in vitro.
For example, if a cell has a high expression of a proto-oncogene, then the chance is high of the cell’s
carcinogenesis. Therefore, machines should fully exploit gene expression data for feature selection
and classification in drug trials [129]. Deep-sequencing RNA-Seq technology has led to an unrivaled
explosion in the amount of data, which would help researchers to gain a deeper understanding of
biological mechanisms (e.g., changes of cellular signaling pathways) of toxic compounds, such as
Benzo[a]pyrene. This would, in turn, help researchers to better characterize harmful effects that are
caused by chemicals [130].

These technical developments make the following strategies practical. One can induce changes
of whole genome expression of cultured human cells of a specific type by adding a test drug to the
culture. By analyzing changes in the transcriptome, toxicity of the drug to the cell type, and to the
corresponding organ, can be predicted [131]. Schwartz et al. used both toxic and non-toxic compounds
to treat 3D-cultured human pluripotent stem cell-derived neural cells, then used RNA-Seq to determine
the whole genome expression profile, and then used SVM to classify the chemicals according to their
toxicity. The scheme gained an average AUC value of 0.91 [132]. Yamane et al. used chemicals to treat
human embryonic stem cells and analyzed their transcriptomes. By classifying the chemicals into
different categories, such as neurotoxins, genotoxic carcinogens, and non-genotoxic carcinogens, and by
analyzing gene interaction networks, they gained much richer information, which greatly improved the
accuracy of toxicity prediction and even allowed for them to predict the delayed chemical toxicity with
SVM [133]. What underlay their success was the fact that delayed toxicity is associated with changes
in gene expression, which can, in turn, affect the expression of downstream genes [134,135]. Although
the number of affected genes is small at the induction, much greater gene expression changes will
occur 24 h after induction [136]. Therefore, the accurate prediction of late-onset chemical toxicity might
be ascribed to the analysis of gene interaction networks: alterations that are caused by a compound
propagate through gene-gene interactions; and, the chain reactions finally lead to genome instability
and cytotoxicity. Because gene expression is not immediate, toxicity onset is often delayed and it is
difficult to detect immediately after the induction. Following the same logic, the degree of toxicity
would positively correlate with the degree of connectivity of the genetic network, because the number
of affected genes would increase explosively as the complexity of the network increases [137,138].

Based on a large-scale dataset of gene expression, and by using drugs’ chemical structure as the
input and the altered gene expression as the output, Liu et al. established a variable-nearest neighbor
model to predict the QSAR between chemical structures and gene expression profiles, and obtained an
AUC value of more than 0.7 [139].

7. An in Silico Platform of Deep Learning Based Toxicity Prediction

On the basis of the above researches, we are establishing a pertinent system encompassing
all of the major aspects of toxicity prediction: chemical structure, gene expression, deep learning,
etc. Besides immediate toxicity prediction, delayed toxicity can also be predicted (Figure 4). In this
system, drug molecular structures are represented by chemical fragments learned by CNN [88].
Gene expression data are mainly obtained by splicing gene embedding identified by RNA-Seq.



Int. J. Mol. Sci. 2018, 19, 2358 11 of 20

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  11 of 21 

 

chemicals to treat human embryonic stem cells and analyzed their transcriptomes. By classifying the 
chemicals into different categories, such as neurotoxins, genotoxic carcinogens, and non-genotoxic 
carcinogens, and by analyzing gene interaction networks, they gained much richer information, 
which greatly improved the accuracy of toxicity prediction and even allowed for them to predict the 
delayed chemical toxicity with SVM [133]. What underlay their success was the fact that delayed 
toxicity is associated with changes in gene expression, which can, in turn, affect the expression of 
downstream genes [134,135]. Although the number of affected genes is small at the induction, much 
greater gene expression changes will occur 24 h after induction [136]. Therefore, the accurate 
prediction of late-onset chemical toxicity might be ascribed to the analysis of gene interaction 
networks: alterations that are caused by a compound propagate through gene-gene interactions; and, 
the chain reactions finally lead to genome instability and cytotoxicity. Because gene expression is not 
immediate, toxicity onset is often delayed and it is difficult to detect immediately after the induction. 
Following the same logic, the degree of toxicity would positively correlate with the degree of 
connectivity of the genetic network, because the number of affected genes would increase explosively 
as the complexity of the network increases [137,138]. 

Based on a large-scale dataset of gene expression, and by using drugs’ chemical structure as the 
input and the altered gene expression as the output, Liu et al. established a variable-nearest neighbor 
model to predict the QSAR between chemical structures and gene expression profiles, and obtained 
an AUC value of more than 0.7 [139]. 

7. An in Silico Platform of Deep Learning Based Toxicity Prediction 

On the basis of the above researches, we are establishing a pertinent system encompassing all of 
the major aspects of toxicity prediction: chemical structure, gene expression, deep learning, etc. 
Besides immediate toxicity prediction, delayed toxicity can also be predicted (Figure 4). In this 
system, drug molecular structures are represented by chemical fragments learned by CNN [88]. Gene 
expression data are mainly obtained by splicing gene embedding identified by RNA-Seq.  

 
Figure 4. Toxicity prediction with gene expression data. 

7.1. Collection of Gene Expression Data 

Table 4 represents the databases we are using to gain gene expression data after drug treatment 
to the cells. Among the databases, CMap is the most popular one to analyze the relationship between 
transcriptome data and drugs [140]. 

Table 4. Databases of drug induced gene expression. 

Database Description Websites References 

GEO database 
Gene expression data of drug-treated samples in 
subsets. 

https://www.ncbi.nlm.nih.gov/geo/ [141,142] 

Connectivity 
Map (CMap) 

(1) Genome-wide transcriptional expression 
data from cultured human cells treated 
with bioactive small molecules;  

https://portals.broadinstitute.org/cmap/ [140] 

Figure 4. Toxicity prediction with gene expression data.

7.1. Collection of Gene Expression Data

Table 4 represents the databases we are using to gain gene expression data after drug treatment to
the cells. Among the databases, CMap is the most popular one to analyze the relationship between
transcriptome data and drugs [140].

Table 4. Databases of drug induced gene expression.

Database Description Websites References

GEO database Gene expression data of drug-treated samples in subsets. https://www.ncbi.nlm.nih.gov/geo/ [141,142]

Connectivity
Map (CMap)

(1) Genome-wide transcriptional expression data from
cultured human cells treated with bioactive
small molecules;

(2) Simple pattern-matching of functional connections
between drugs, genes and diseases through the
transitory feature of common
gene-expression changes.

https://portals.broadinstitute.org/cmap/ [140]

DSigDB
(1) Drug and small molecule-related genes based on

quantitative inhibition;
(2) Drug-induced gene expression changes data.

http://tanlab.ucdenver.edu/DSigDB [143]

LINCS Canvas
Browser (LCB)

(1) Experiment data about the landmark gene
expression changes in response to a drug;

(2) Both gene expression records before and after
drug application.

http://www.maayanlab.net/LINCS/LCB [144]

Therapeutic
target database
(TTD)

(1) Drug resistance mutations in drug-target genes;
(2) Drug resistance mutations in regulatory genes;
(3) Differential expression profiles of drug-targets in

the disease-relevant drug-targeted tissues of
different diseases;

(4) Expression profiles of drug-targets in the
non-targeted tissues of healthy individuals;

(5) Target combinations of different drugs.

http://bidd.nus.edu.sg/group/ttd/ttd.asp [145]

Comparative
Toxicogenomics
Database (CTD)

(1) Cross-species chemical-gene/protein
interactions data;

(2) Chemical- and gene-disease relationships.
http://ctdbase.org/ [146]

Drug-Path Drug-induced pathways. http://www.cuilab.cn/drugpath [147]

CancerDR

(1) Anticancer drugs and their effectiveness against
cancer cell lines;

(2) Drug target gene information like function,
structure, and gene sequences in respective cancer
cell lines.

http://crdd.osdd.net/raghava/cancerdr/ [148]

KEGG DRUG

(1) Chemical structures and/or chemical components;
(2) The interaction network with target molecules,

metabolizing enzymes, and other drugs;
(3) The chemical structure transformation network in

the history of drug development.

https://www.genome.jp/kegg/drug/ [149]

7.2. Representation of Gene Expression Data

Each of these human gene embeddings can be represented by a 300-dimensional gene vector
trained from 984 datasets of the GEO database based on gene co-expression patterns [150]. This vector

https://www.ncbi.nlm.nih.gov/geo/
https://portals.broadinstitute.org/cmap/
http://tanlab.ucdenver.edu/DSigDB
http://www.maayanlab.net/LINCS/LCB
http://bidd.nus.edu.sg/group/ttd/ttd.asp
http://ctdbase.org/
http://www.cuilab.cn/drugpath
http://crdd.osdd.net/raghava/cancerdr/
https://www.genome.jp/kegg/drug/
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representation reflects gene functions indirectly. Besides this co-expression based gene embedding,
there are other methods for vector representation of genes. One method is similar to word2vec used
in natural language processing [151,152]. The method word2vec converts words into vectors that
are computer understandable by using shallow neural networks with a large amount of neurons.
In another method, vectors are constructed based on a similarity of different gene annotations in Gene
Ontology, which allows for the quantification of similarities between genes [153]. This representation
directly reflects gene functions and indirectly reflects gene interactions. Besides the use of gene
vectors, the dimension of RNA-Seq data can be reduced by techniques, such as Stacked Denoising
Autoencoder (SDAE), which allows for the discovery of gene interaction patterns [154] and specific
gene expression patterns [155] by extracting features from RNA-Seq data by a supervised learning
classification model. By scoring pathway activation and regarding “landmark genes” as new features
to perform dimensionality reduction, Aliper et al. combined processed gene expression data with
DNNs to identify the pharmacological properties of multiple drugs under different biological systems
and conditions [156].

With gene expression data at hand and with chemical structures digitalized, one can use the
system to find deeper and intrinsic links between the two through machine learning models (Figure 5),
by either establishing the association with chemical structures as input and gene expressions as output
(from structure to effect), or vice versa (from effect to structure). The former can help with QSAR
prediction, including toxicity, while the latter can help with the design of inducing drugs based on the
desired changes of gene expression pattern.
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7.3. Toxicity Prediction

Incorporating genetic information would render more accurate toxicity prediction and QSAR
construction [133]. The fundamental reason is that changes in gene expression provide biological
information, which is much richer and more complex than the simple molecular structure and chemical
properties. Furthermore, the biological information is not only at the molecular level, involving only a
single pair of drug-protein interaction, but also at the systems level with a drug targeting the whole
gene interaction network, affecting the whole cell and even the whole organism.

One can not only distinguish between toxic and non-toxic, but also perform classified toxicity
prediction (neurotoxins, carcinogens, etc.). For example, Gayvert et al. performed classified toxicity
prediction on FDA-approved drugs and drugs that had failed to pass toxicity-tests, with the
RF supervised learning algorithm. The learning was from multiple sources: chemical structure
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characterizations, the median value of the expression of the drug targeted genes from the transcriptome
of various tissues, the frequency or possibility of functional mutations (i.e., drug induced gene
mutations that lead to loss of function). They finally obtained an AUC value of about 0.8263 [157].
Calculation of median expression of drug target genes is useful, but they may ignore tissue specificity
and differential toxic reactions. For example, a toxic drug may induce high expression of a particular
gene only in the liver, but not in the other organs or tissues. The median value of the gene expression,
being based on the whole body measurement, is thus very low and cannot reflect the drug’s toxicity
specific to the liver. In this event, the use of tissue transcriptome data might be more specific and can
help to extract more relevant features.

When compared with the random forest approach, the deep learning approach can handle higher
throughput and larger amounts of data, and be capable to deal with higher-level and more abstract
features, resulting in a better performance after subsequent data accumulation.

8. Summary

The 21st century has witnessed the rapid development of artificial intelligence, including machine
learning. This rapid development is partly stimulated by its many important applications, one of
which is drug toxicity prediction in silico [88,127,158]. Together with “Big Data” science [159], machine
learning techniques may provide much more information about toxicity than ever before.

In this article, we have reviewed machine learning methods that have been applied to toxicity
prediction. We have also discussed the input parameter to the machine learning algorithm, especially
its shift from chemical structural description only to that combined with human transcriptome data
analysis, which can greatly enhance prediction accuracy.

The merits of machine learning based toxicity prediction are summarized, as follows. Firstly,
many harmful and risky animal or clinical trials can be spared, due to toxicity predicted by
computers. Secondly, in silico prediction is risk-free, low-costly, and of high throughput. Thirdly,
because human transcriptome data are often used, the prediction is essentially based on system-level
complexities; the method is thus more global than those studying single protein related toxicity. Finally,
due to its capacity of extracting complex and abstract features in pharmacology and bioinformatics
applications [160], machine learning may eventually become completely in silico, as the data continue
to expand and the accuracy continues to improve.

Acknowledgments: This work was partly supported by National Natural Science Foundation of China (61773196,
61471186), Shenzhen Municipal Research Fund (JCYJ20170307104535585, JCYJ20170817104740861), and Shenzhen
Peacock Plan (KQTD2016053117035204).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ting, N. (Ed.) Introduction and New Drug Development Process. In Dose Finding in Drug Development;
Springer: New York, NY, USA, 2006; pp. 1–17.

2. Janodia, M.D.; Sreedhar, D.; Virendra, L.; Ajay, P.; Udupa, N. Drug Development Process: A review. Pharm. Rev.
2007, 5, 2214–2221.

3. Hwang, T.J.; Carpenter, D.; Lauffenburger, J.C.; Wang, B.; Franklin, J.M.; Kesselheim, A.S. Failure of
Investigational Drugs in Late-Stage Clinical Development and Publication of Trial Results. JAMA Intern. Med.
2016, 176, 1826–1833. [CrossRef] [PubMed]

4. Erve, J.C.; Gauby, S.; Maynard, M.J., Jr.; Svensson, M.A.; Tonn, G.; Quinn, K.P. Bioactivation of sitaxentan
in liver microsomes, hepatocytes, and expressed human P450s with characterization of the glutathione
conjugate by liquid chromatography tandem mass spectrometry. Chem. Res. Toxicol. 2013, 26, 926–936.
[CrossRef] [PubMed]

5. Galiè, N.; Hoeper, M.M.; Simon, J.; Gibbs, R.; Simonneau, G. Liver toxicity of sitaxentan in pulmonary
arterial hypertension. Eur. Heart J. 2011, 32, 386–387. [CrossRef] [PubMed]

http://dx.doi.org/10.1001/jamainternmed.2016.6008
http://www.ncbi.nlm.nih.gov/pubmed/27723879
http://dx.doi.org/10.1021/tx4001144
http://www.ncbi.nlm.nih.gov/pubmed/23721565
http://dx.doi.org/10.1183/09031936.00194810
http://www.ncbi.nlm.nih.gov/pubmed/21416695


Int. J. Mol. Sci. 2018, 19, 2358 14 of 20

6. Johnson, D.E. Fusion of nonclinical and clinical data to predict human drug safety. Expert Rev. Clin. Pharmacol.
2013, 6, 185–195. [CrossRef] [PubMed]

7. Akhtar, A. The Flaws and Human Harms of Animal Experimentation. Camb. Q. Healthc. Ethics 2015, 24,
407–419. [CrossRef] [PubMed]

8. Owen, K.; Cross, D.M.; Derzi, M.; Horsley, E.; Stavros, F.L. An overview of the preclinical toxicity and
potential carcinogenicity of sitaxentan (Thelin®), a potent endothelin receptor antagonist developed for
pulmonary arterial hypertension. Regul. Toxicol. Pharmacol. 2012, 64, 95–103. [CrossRef] [PubMed]

9. Thomas, R.S.; Paules, R.S.; Simeonov, A.; Fitzpatrick, S.C.; Crofton, K.M.; Casey, W.M.; Mendrick, D.L.
The US Federal Tox21 Program: A strategic and operational plan for continued leadership. Altex 2018, 35,
163–168. [CrossRef] [PubMed]

10. Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.;
Martin, Y.C.; Todeschini, R. QSAR Modeling: Where have you been? Where are you going to? J. Med. Chem.
2014, 57, 4977–5010. [CrossRef] [PubMed]

11. Roy, K.; Kar, S.; Das, R.N. Chapter 7—Validation of QSAR Models. In Understanding the Basics of QSAR for
Applications in Pharmaceutical Sciences and Risk Assessment; Roy, K., Kar, S., Das, R.N., Eds.; Academic Press:
Boston, MA, USA, 2015; pp. 231–289.

12. Hansch, C.; Maloney, P.P.; Fujita, T.; Muir, R.M. Correlation of Biological Activity of Phenoxyacetic Acids
with Hammett Substituent Constants and Partition Coefficients. Nature 1962, 194, 178–180. [CrossRef]

13. Free, S.M.; Wilson, J.W. A Mathematical Contribution to Structure-Activity Studies. J. Med. Chem. 1964, 7,
395–399. [CrossRef] [PubMed]

14. Quinn, F.R.; Neiman, Z.; Beisler, J.A. Toxicity and quantitative structure-activity relationships of colchicines.
J. Med. Chem. 1981, 24, 636–639. [CrossRef] [PubMed]

15. Denny, W.A.; Cain, B.F.; Atwell, G.J.; Hansch, C.; Panthananickal, A.; Leo, A. Potential antitumor agents. 36.
Quantitative relationships between experimental antitumor activity, toxicity, and structure for the general
class of 9-anilinoacridine antitumor agents. J. Med. Chem. 1982, 25, 276–315. [CrossRef] [PubMed]

16. Denny, W.A.; Atwell, G.J.; Cain, B.F. Potential antitumor agents. 32. Role of agent base strength in the
quantitative structure-antitumor relationships for 4′-(9-acridinylamino) methanesulfonanilide analogs.
J. Med. Chem. 1979, 22, 1453–1460. [CrossRef] [PubMed]

17. Barratt, M.D. Prediction of toxicity from chemical structure. Cell Biol. Toxicol. 2000, 16, 1–13. [CrossRef] [PubMed]
18. Compton, P.; Preston, P.; Edwards, G.; Kang, B. Knowledge Based Systems That Have Some Idea of Their

Limits. CIO 2000, 15, 57–63.
19. Mitchell, T.M. Machine Learning; McGraw Hill: Ridge, IL, USA, 1997; Volume 45, pp. 870–877.
20. Bishop, C.M. Pattern Recognition and Machine Learning, 1st ed.; Springer: New York, NY, USA, 2006; p. 738.
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