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Abstract: The insect GABA receptor, RDL (resistance to dieldrin), is a cys-loop ligand-gated ion
channel (cysLGIC) that plays a central role in neuronal signaling, and is the target of several classes
of insecticides. Many insects studied to date possess one Rdl gene; however, there is evidence of two
Rdls in aphids. To characterise further this insecticide target from pests that cause millions of dollars’
worth of crop damage each year, we identified the complete cysLGIC gene superfamily of the pea
aphid, Acyrthosiphon pisum, using BLAST analysis. This confirmed the presence of two Rdl-like genes
(RDL1 and RDL2) that likely arose from a recent gene duplication. When expressed individually in
Xenopus laevis oocytes, both subunits formed functional ion channels gated by GABA. Alternative
splicing of RDL1 influenced the potency of GABA, and the potency of fipronil was different on the
RDL1bd splice variant and RDL2. Imidacloprid and clothianidin showed no antagonistic activity on
RDL1, whilst 100 µM thiacloprid reduced the GABA responses of RDL1 and RDL2 to 55% and 62%,
respectively. It was concluded that gene duplication of Rdl may have conferred increased tolerance to
natural insecticides, and played a role in the evolution of insect cysLGICs.

Keywords: Acyrthosiphon pisum; alternative splicing; fipronil; GABA receptor; gene duplication;
neonicotinoid

1. Introduction

The insect γ-aminobutyric acid (GABA) receptor, known as RDL (resistant to dieldrin), plays
a central role in neuronal signaling, and is involved in various processes, including regulation of
sleep [1], aggression [2], and olfactory or visual learning [3,4]. The GABA receptor is a member of the
cys-loop ligand-gated ion channel (cysLGIC) superfamily, which, in insects, also includes nicotinic
acetylcholine receptors (nAChRs), histamine-gated chloride channels (HisCls), and glutamate-gated
chloride channels (GluCls) [5]. CysLGICs consist of five subunits arranged around a central ion
channel. Each subunit contains an N-terminal extracellular domain where neurotransmitter binding
occurs (binding of GABA in the case of RDL), and four transmembrane (TM) domains, the second of
which lines the ion channel [6].

RDL is also of interest as it is the target of several classes of highly effective insecticides such
as cyclodienes (e.g., dieldrin), phenylpyrazoles (e.g., fipronil) and isoxazolines (e.g., fluralaner) [7].
In the genomic DNA of the model organism, Drosophila melanogaster, a mutation resulting in an alanine
to serine substitution located in TM2 of Rdl was identified, which underlies resistance to several
insecticides, including dieldrin, picrotoxin and fipronil [8,9]. This alanine to serine mutation, also
found as alanine to glycine or to asparagine [10], has since been associated with insecticide resistance
in various species, ranging from disease vectors (the malaria mosquito Anopheles gambiae [11,12]),
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to pests afflicting livestock (the horn fly Haematobia irritans [13]) or domesticated animals (the cat
flea Ctenocephalides felis [14]) and crop pests (e.g., the planthopper Laodelphax striatellus [15]). Despite
the emergence of insecticide resistance, RDL is still a potential target for insect control, since novel
compounds have been developed that are unaffected by the TM2 resistance mutation [16].

Analyses of genome sequences have shown that insects of diverse species, such as D. melanogaster,
Musca domestica, Apis mellifera, Nasonia vitripennis, and Tribolium castaneum, possess a single Rdl
gene [5,17–19]. However, other insects, notably of the Lepidoptera order, possess more Rdl subunits.
For example, Chilo suppressalis and Plutella xylostella have two Rdl-encoding genes [20,21], whilst
Bombyx mori has three [22]. There is evidence that insects in other orders can also possess multiple Rdl
genes. For instance, Southern blot analysis demonstrated the presence of two independent Rdl loci in
the aphid, Myzus persicae [23]. In accordance with this, two candidate Rdl genes were observed in the
genome of the pea aphid, Acyrthosiphon pisum [24]. Since many aphid species, such as A. pisum, are
important crop pests which cause hundreds of millions of dollars’ worth of damage each year [24,25],
it is prudent to study insecticide targets from these species in order to understand further mechanisms
of resistance, as well as to facilitate the identification and development of improved insecticides that
show specificity towards aphids whilst sparing non-target organisms.

We report here that the two Rdl genes in A. pisum encode for GABA-gated ion channels, upon
which the insecticides fipronil and thiacloprid act as antagonists. We also show that A. pisum possesses
an unusual cysLGIC gene superfamily, in that it lacks clear orthologues of LCCH3, GRD and CG8916.
These subunits have been found in all other insect species so far where their complete cysLGIC
superfamilies have been identified [5,19]. It was concluded that the duplicated Rdl in A. pisum may
represent diversification, leading to the evolution of novel cysLGIC subunits in higher insects.

2. Results

2.1. The A. pisum cysLGIC Superfamily Possesses Two Rdl Genes

Using tBLASTn, 22 candidate cysLGIC subunits were identified in the A. pisum genome. Eleven of
these subunits are candidate nAChRs which have been previously described [24]; thus, in this report
we focus on the remainder of the aphid cysLGIC superfamily. Alignment of their protein sequences
(Figure 1) shows that the A. pisum subunits possess features common to members of the cysLGIC
superfamily. These include: an extracellular N-terminal region containing distinct regions (loops
A–F) [26] that form the ligand binding site; the dicysteine loop (cys-loop), which consists of two
disulphide bond-forming cysteines separated by 13 amino acid residues; four transmembrane regions
(TM1-4); and a highly variable intracellular loop between TM3 and TM4. As with other cys-loop LGIC
subunits, the aphid sequences also possess potential N-glycosylation sites within the extracellular
N-terminal domain, and phosphorylation sites within the TM3-TM4 intracellular loop.

A comparison of sequence identities between A. pisum and T. castaneum cysLGIC subunits (Table 1),
as well as the use of a phylogenetic tree with A. pisum, T. castaneum and A. mellifera cysLGICs (Figure 2),
indicates orthologous relationships between the aphid, beetle, and honeybee subunits. To facilitate
comparisons between species, Acyrthosiphon subunits were named after their Tribolium counterparts.
For example, the aphid orthologs of Tribolium HisCl1 and Tcas 12344 were designated Apisum HisCl1
and Apisum 12344, respectively. A. pisum possesses two putative subunits belonging to Insect Group I
(Figure 2), which consists of Drosophila CG7589, CG6927 and CG11340 [18]. These two subunits were
denoted Apisum CLGC1 and Apisum CLGC2, similar to the equivalent subunits in T. castaneum [18],
since the orthologous relationships of both aphid subunits are uncertain.
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Two putative Rdl subunit genes were identified in the A. pisum genome, encoding for protein
products denoted Apisum RDL1 and Apisum RDL2 (Figures 1 and 2). Apisum RDL1 and Apisum
RDL2 share notably high sequence identity with Tcas RDL, with 70% and 69%, respectively. However,
Apisum RDL1 is considered the true ortholog of RDL in many other species, including D. melanogaster,
T. castaneum, and A. mellifera, since it possesses alternative splicing at exons 3 (variants a or b) and 6
(variants c or d) [27], whereas Apisum RDL2 has alternative splicing only at exon 3 (Figure 3). Also,
the NATPARVA peptide sequence preceding TM2 in RDL of many species is conserved in Apisum
RDL1, whilst in Apisum RDL2 it is CATPARVS (Figure 1). The A. pisum genome also contains two
subunits showing highest identity to the pH-sensitive subunit chloride channel [28], and thus, has
been denoted Apisum pHCl1 and pHCl2 (Table 1). The identity of another subunit in the A. pisum
genome was more difficult to assign, as it showed similar identity of 29% to Tcas GluCl and Tcas
HisCl2. This subunit was tentatively denoted Apisum GluCl2, based on its slightly higher identity to
Apisum GluCl1 as opposed to Apisum HisCl2 (Table 1), and that when considering the extracellular
N-terminal region only, Apisum GluCl2 showed 33% identity to Tcas GluCl, as opposed to 30% identity
to Tcas HisCl2. Interestingly, whilst A. pisum appears to have three duplicated subunits (Apisum RDL2,
Apisum pHCl2 and Apisum GluCl2), the aphid lacks clear orthologs of LCCH3, GRD, and CG8916,
which have been found in the genomes of other insects analysed to date (Figure 2) [5,17–19].
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Figure 1. Protein sequence alignment of A. pisum cysLGIC subunits. D. melanogaster RDLbd (RDL)
is included for comparison. N-terminal signal leader peptides are shown in gray shading and white
text. Loops implicated in ligand binding (LpA–F) are indicated, as well as the four transmembrane
(TM) domains. The two cysteines forming the cys-loop are highlighted in black shading, and putative
N-glycosylation sites are boxed. Potential cAMP, PKC, CK2 and tyrosine kinase phosphorylation
sites are shown in gray shading. The sequences presented in this alignment can be found in the
Supplementary Material.
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Table 1. Percentage identity/similarity between A. pisum and T. castaneum cysLGIC subunit protein sequences.

Subunit Apisum
RDL1

Apisum
RDL2

Apisum
GluCl1

Apisum
GluCl2

Apisum
HisCl1

Apisum
HisCl2

Apisum
pHCl1

Apisum
pHCl2

Apisum
CLGC1

Apisum
CLGC2

Apisum
12344

Apisum RDL1 - 83/87 25/38 23/38 20/34 20/34 15/28 15/29 16/31 17/29 15/30
Tcas RDL 70/73 69/72 28/43 27/44 23/40 24/40 19/34 18/36 20/36 19/34 19/36

Apsium RDL2 83/87 - 25/37 23/38 20/35 20/34 16/28 15/29 17/31 17/28 15/31
Apisum GluCl1 25/38 25/38 - 29/44 26/42 25/42 20/38 19/38 23/37 18/36 17/34

Tcas GluCl 25/38 25/38 74/80 29/44 26/42 26/42 21/38 20/39 22/36 19/37 18/34
Apisum GluCl2 23/38 23/38 29/44 - 26/46 28/47 18/37 20/38 24/39 20/35 18/35
Apisum HisCl1 20/34 20/34 26/42 26/46 - 49/63 18/34 18/34 18/33 18/32 19/34

Tcas HisCl1 20/35 21/36 27/43 27/47 72/78 55/69 18/35 19/35 19/34 18/33 20/35
Apisum HisCl2 20/34 20/34 25/42 28/47 49/63 - 18/34 19/36 20/35 17/32 20/35

Tcas HisCl2 22/34 22/34 26/43 29/48 48/63 79/84 18/35 19/38 19/36 19/34 20/35
Apisum pHCl1 15/28 16/28 20/38 18/37 18/34 18/34 - 49/64 21/36 19/34 13/30

Tcas pHCl 16/30 17/31 22/40 20/39 19/36 19/37 66/74 51/66 21/35 19/33 15/32
Apisum pHCl2 15/29 15/29 19/38 20/38 18/34 19/36 49/64 - 20/37 19/34 15/32
Apisum CLGC1 16/31 17/31 23/37 24/39 18/33 20/35 21/36 20/37 - 36/53 15/30

Tcas CLGC1 18/31 18/31 20/37 21/37 17/33 19/36 18/31 19/33 35/49 27/44 13/29
Apisum CLGC2 17/29 17/28 18/36 20/35 18/32 17/32 19/34 19/34 36/53 - 13/31

Tcas CLGC2 16/29 17/30 19/35 21/37 16/32 17/33 16/30 17/31 31/48 25/43 13/28
Apisum 12344 15/30 15/31 17/34 18/35 19/34 20/35 13/30 15/32 15/30 13/31 -

Tcas 12344 19/33 20/34 21/38 23/41 23/42 26/46 18/34 20/37 19/37 16/32 20/37
Tcas CLGC3 16/30 16/30 19/36 20/38 18/36 19/38 19/35 19/37 29/49 22/44 13/31

Tcas GRD 27/41 27/41 24/40 22/38 21/36 21/38 16/31 18/33 19/34 18/31 13/31
Tcas LCCH3 28/44 28/43 26/44 27/44 23/38 25/41 16/32 16/32 19/37 20/37 17/33

Tcas 8916 24/40 24/39 23/38 22/36 19/33 21/35 15/30 15/31 19/33 17/32 14/27

Proposed orthologues in A. pisum and T. castaneum are underlined.
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Figure 3. Splice variants of A. pisum and D. melanogaster RDL. Alternative splicing of exons 3 and 6.
Acyrthosiphon residues that differ from those of the orthologous Drosophila exon are highlighted in bold.
N-glycosylation sites are boxed and Loops C and F, which contribute to ligand binding, are indicated.
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A phylogenetic tree was constructed using RDL peptide sequences from various insects (Figure 4).
As previously observed [20], the RDLs segregated according to insect order, including the multiple RDL
subunits found in Lepidoptera. When considering the RDL sequences of many species, both Apisum
RDL subunits clustered close together. In line with this, the two aphid Rdl genes are arranged close
together in the A. pisum genome, within 207 kb, indicating a recent duplication event.
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which is an ancestral cysLGIC from the bacterium Erwinia chrysanthemi [29], was used as an outgroup.
Numbers at each node signify bootstrap values with 1000 replicates, and the scale bar represents
substitutions per site. A. pisum RDLs are shown in boldface type.

2.2. Cloning and Functional Expression of Apisum Rdl1 and Apisum Rdl2

The full coding regions of Apisum Rdl1 and Apisum Rdl2 were amplified by reverse-transcriptase
PCR, and cloned into the pCI plasmid. Ten clones for each subunit were sequenced. For Apisum Rdl1,
one clone lacked exon 3, whilst for Apisum Rdl2, one clone lacking exon 3 and another missing both
exons 2 and 3 were observed. Rdl variants lacking exon 3 were also observed in other insects such as
B. mori [22]. Excision of the exons lead to a frame shift and the introduction of a premature stop codon,
generating shortened open reading frames of 339 bp, 228 bp and 228 bp for Apisum Rdl1∆exon3,
Apisum Rdl2∆exon3 and Apisum Rdl2∆exon2 + 3, respectively. The remaining nine clones of Apisum
Rdl1 were full length open reading frames consisting of 1704 bp encoding 567 amino acid residues.
One of these clones encoded for the Apisum RDL1ad splice variant, whilst the remaining eight were
Apisum RDLbd, consistent with previous findings that bd is the predominant splice variant [30]. All the
eight full length clones for Apisum Rdl2 encoded for the exon3b variant; however, four of these clones
had open reading frames of 1674 bp, whilst the other four had 1677 bp, encoding 557 and 558 amino
acids, respectively. The difference in the open reading frame lengths is due to the presence of either a
TVR or TEVR peptide motif in the TM3-TM4 intracellular domain, which were previously found in
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A. mellifera RDL, and were denoted variants 1 or 2, respectively [31]. No potential A-to-I RNA editing
was observed in the twenty clones analysed.

Xenopus laevis oocytes were injected with plasmids encoding Apisum Rdl1ad, Apisum Rdl1bd and
Apisum Rdl2bvariant1. Two-electrode voltage-clamp electrophysiology showed that oocytes injected
with each of the Rdl constructs responded to GABA in a concentration-dependent manner (Figure 5a).
GABA concentration curves were generated (Figure 5b) for each of the Apisum RDL constructs. The
EC50 values of Apisum RDL1ad and Apisum RDL1bd were significantly different to each other (Table 2),
and as is the case for Drosophila RDL [30], the bd splice variant for Apisum RDL1 has the highest EC50.
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Figure 5. Responses to GABA in X. laevis oocytes expressing Apisum RDL. (a) Representative current
trace of a GABA concentration response curve showing responses to GABA from 0.1–250 µM for
Apisum RDL1bd; (b) GABA concentration response curves obtained for Apisum RDL1ad, Apisum
RDL1bd, and Apisum RDL2b variant 1. Data were normalised to the maximal response (250 µM).
Data is the mean ± SEM from n = 4–5 oocytes from ≥ 3 different frogs.

Table 2. Effects of GABA on membrane currents from X. laevis oocytes expressing A. pisum RDL,
with maximum amplitude (Imax), EC50 and hill coefficient (nH) displayed. The Imax was obtained from
the initial 250 µM GABA response measured from eggs clamped at −60 mV. Also shown are the effects
of fipronil and the neonicotinoids imidacloprid (IMI), clothianidin (CLO), and thiacloprid (THI) on
GABA EC50 induced membrane currents. IC50 values are shown for fipronil, as well as the fraction of
response to GABA at EC50 after exposure to 100 µM neonicotinoid. All data are the mean ± SEM of
4-5 oocytes from ≥3 different frogs. [–] indicates that this value was not measured.

Subunit Imax (µA) GABA Fipronil
IC50 (µM)

% of GABA Response
with 100 µM:

EC50 (µM) nH IMI CLO THI
Apisum RDL1ad 1.6 ± 0.6 23 ± 1.7 1 1.6 ± 0.1 0.64 ± 0.15 100 100 –
Apisum RDL1bd 1.4 ± 1.3 51 ± 9.2 1 2.0 ± 0.3 0.18 ± 0.06 2 100 100 55 ± 7

Apisum RDL2b var 1 1.4 ± 1.5 28 ± 5.4 1.0 ± 0.1 0.72 ± 0.19 2 – – 62 ± 2
1, 2 These GABA EC50 or fipronil IC50 values are significantly different (p < 0.05) using one-way ANOVA with
Bonferroni’s multiple comparison test.
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2.3. Antagonistic Actions of Fipronil and Neonicotinoids on Apisum RDL1 and Apisum RDL2

The actions of insecticides (fipronil and neonicotinoids) on Apisum RDL1 and Apisum RDL2
expressed in Xenopus oocytes were measured. Fipronil acted as an antagonist on both aphid RDLs,
and inhibition curves were generated (Figure 6). The IC50 values for Apisum RDL1bd and Apisum
RDL2b were significantly different from each other (Table 2).
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Figure 6. Effects of fipronil on currents activated by GABA at EC50 in X. laevis oocytes expressing
either Apisum RDL1ad, Apisum RDL1bd or Apisum RDL2b variant 1. (A) Representative current traces
showing the effect of 0.001–10 µM fipronil on the GABA response for Apisum RDL1bd. (B) Fipronil
inhibition curves for Apisum RDL1ad, Apisum RDL1bd or Apisum RDL2b variant 1. Each data point
was normalised to the maximum GABA response. Data are the mean ± SEM from n = 5 oocytes from
≥3 different frogs.

The neonicotinoid, imidacloprid, has been shown to act as an antagonist of heterologously
expressed RDL [12]. We investigated to see whether imidacloprid also acted on the A. pisum RDLs.
Unlike for An. gambiae and A. mellifera RDLs [12,31], imidacloprid at 100 µM had no detectable effect on
responses of Apisum RDL1ad or Apisum RDLbd induced by GABA at EC50 concentration (Figure 7a)
or at 1 mM. We therefore tested to see whether other neonicotinoids showed any actions on the aphid
RDLs. Similar to imidacloprid, clothianidin also had no antagonistic actions on responses induced
by GABA, either at EC50 concentration (Figure 7b) or at 1 mM. However, thiacloprid reduced the
GABA-induced responses of Apisum RDL1bd and Apisum RDL2b var 1 to 55% and 62%, respectively
(Figure 7c, Table 2).
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3. Discussion

We report here the cloning and functional expression of two RDL subunits from the aphid,
A. pisum, which is a significant pest of legume crops [25]. Phylogenetic analysis and their close
proximity in the aphid genome suggest the two Rdl genes arose from a recent duplication event. Insects
of the Lepidoptera order also have more than one Rdl gene. For example P. xylostella has two Rdl
genes appearing to originate from a recent duplication [21,22]. In contrast, RDL1s of B. mori and
C. suppressalis co-segregate, as is also the case for RDL2s of the same species [20], perhaps reflecting
more distant gene duplications, with a second duplication event giving rise to RDL3 in B. mori [22].

A. pisum possesses the most unusual cysLGIC gene superfamily characterised to date, in that as
well as having a duplicated Rdl gene, it also possesses duplicates of pHCl and GluCl subunits (Figure 2,
Table 1). However, this does not result in an expanded cysLGIC gene superfamily, as no LCCH3, GRD
or CG8916 subunits were detected in the A. pisum genome. This feature appears to be particular to the
aphid, since insects of the Lepidoptera order have at least the LCCH3 and GRD subunits, as shown
by B. mori [22]. With the cys-LGIC superfamily of A. pisum being the most evolutionary ancient
characterised to date [32], it is tempting to speculate that duplication of Rdl, pHCl and GluCl represent
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diversification leading to the generation of LCCH3, GRD, and CG8916 in more highly evolved insects.
A similar finding was noted when characterising A. pisum nAChRs, where it was concluded that the
α5 subunit was the newest member of the insect core group of nAChR subunits [24].

As with RDL of many other insect species, Apisum RDL1 has alternative splicing at exons
3 and 6, giving rise to four possible variants [10,27]. Functional expression of Apisum RDL variants
showed that alternative splicing diversifies the functional properties of aphid RDL, as demonstrated
by significantly different GABA EC50 values for Apisum RDLad and Apisum RDLbd. The use of
differential splice sites can generate TM3-TM4 intracellular loops of varying length [10]. In the
miridbug, Cyrtorhinus lividipennis, this can effectively create a 31 amino acid insertion, which decreased
sensitivity to fipronil [33]. For the aphid RDL, only Apisum RDL2 was found to have variants where
the intracellular loop varied in length. Here, an insertion of a single amino acid (TVR to TEVR) was
identified. We did not functionally characterise these variants, as we have already shown that they
have similar responses to GABA and fipronil in A. mellifera RDL [31]. With no potential A-to-I RNA
editing isoforms detected, the extent of functional diversification of aphid RDL is less than that of other
insects such as D. melanogaster and An. gambiae, which have at least 8 and 24 isoforms, respectively,
arising from RNA editing [30,34]. RNA editing of An. gambiae RDL was found to influence the actions
of ivermectin [34]. Without RNA editing, the aphid RDLs lack this mechanism to potentially alter
target site sensitivity to insecticides.

It has been previously noted that duplicated RDLs possess an amino acid substitution at the
2′-position of TM2, which is associated with insecticide resistance. For example, RDL2 of C. suppressalis
possesses 2′ serine, instead of the highly conserved alanine present in RDL1 [20], an amino acid change
found in dieldrin-resistant insects [8]. For B. mori, either alanine, serine, or glutamine are present at
2′ in RDL1, RDL2 and RDL3, respectively [22]. Consistent with previous findings in the aphid, M.
persicae [23], we found that alanine (in RDL1) or serine (in RDL2) were present at 2′ in A. pisum RDLs.
Functional expression of C. suppressalis RDLs showed that the alanine-to-serine substitution decreased
sensitivity to dieldrin, but that both RDLs had similar IC50s in response to fipronil [20]. Studies of RDL
from other insect species, such as Nilaparvata lugens, have also shown that alanine-to-serine mutation
does not affect the antagonistic action of fipronil [35]. In contrast, we found that Apisum RDL1bd and
Apisum RDL2b had significantly different fipronil IC50s. Apisum RDL2 has the amino acid sequence
CATPARVS at TM2, which differs to NATPARVS present in C. suppressalis RDL2 [20]. Perhaps the
unusual presence of the cysteine residue accounts for Apisum RDL2 showing lower sensitivity to
fipronil. However, Apisum RDL1ad, which possesses NATPARVA at TM2, has a similar IC50 to Apisum
RDL2b, suggesting that the cysteine residue does not underlie the differential sensitivity to fipronil.
Apisum RDL1ad and Apisum RDL1bd differ by four amino acid residues located in the N-terminal
extracellular domain, which is not associated with the actions of fipronil. Further experiments, such as
site-directed mutagenesis, are required to clarify the basis of the differential sensitivity of Apisum
RDL1bd and Apisum RDL2b to fipronil. It will be of interest to see whether differential expression
of the aphid RDLs and their splice variants are associated with resistance to insecticides such as
fipronil. It is also tempting to speculate that the evolution of insect cysLGICs may have been driven,
in part, by gene duplication events conferring increased tolerance to naturally-found compounds with
insecticidal properties.

The neonicotinoid, imidacloprid, was shown to reduce GABA-induced responses in cultured
honey bee Kenyon cells [36]. In line with this, more recent studies have shown that 100 µM imidacloprid
acted as an antagonist of An. gambiae and A. mellifera RDL expressed in Xenopus oocytes [12,31].
We show here that imidacloprid at 100 µM has no antagonistic actions on Apisum RDL1 or Apisum
RDL2, highlighting the fact that RDL can respond to neonicotinoids in a species-dependent manner.
In addition, no reduction in GABA response was observed with clothianidin. We found, however, that
thiacloprid was able to reduce GABA responses to a similar degree in Apisum RDL1bd and Apisum
RDL2b. Both imidacloprid and clothianidin are nitro-substituted neonicotinoids, whilst thiacloprid is
cyano-substituted [37]. Perhaps this structural difference may underlie the differential actions of the
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neonicotinoids on the aphid RDLs. The concentration of thiacloprid required to antagonise Apisum
RDLs is notably high, and it remains to be determined whether aphid RDL plays any role in the
insecticidal effects of neonicotinoids.

In conclusion, two RDL subunits in the aphid A. pisum, which appear to be the result of a recent
gene duplication event, were cloned and expressed in X. laevis oocytes. The heterologous expression
of both aphid RDLs may provide a useful screening tool for the discovery of novel insecticidal
compounds. This, in addition to screening against RDLs that have been cloned from other species
such as C. suppressalis (a crop pest) [20], C. lividipennis (a predator of crop pests) [33] and A. mellifera
(a pollinator) [31], may facilitate the identification of compounds which are selective for insect pests
but benign for beneficial species. Furthermore, using expressed RDL with the 2′ mutation [15,35] in
these screens can highlight novel compounds that are still active on insects with the TM2 mutation as
an important step in managing resistance.

4. Materials and Methods

4.1. Isolation of Rdl1 and Rdl2 from A. pisum

The sequence of Apisum RDL1 identified from the A. pisum genome has been previously reported
as a predicted gamma-aminobutyric acid receptor subunit beta isoform X1 (XP_001947125) [24].
A second potential RDL subunit was also reported (PREDICTED: similar to GABA receptor,
XP_001947277); however, this sequence lacks the highly variable N-terminal signal leader peptide.
In order to clone the full length of the second Rdl subunit, the tBLASTn program [38] was
used to search sequence data of the aphid Myzus persicae available at AphidBase (Available
online: https://bipaa.genouest.org/is/aphidbase/). This identified a M. persicae sequence
(MYZPE13164_G006_v1.0_000138140.1_pep) with a signal peptide, which was then used to identify
the equivalent N-terminus and signal peptide in the A. pisum genome using tBLASTn. The
sequences of Apisum RDL1 and Apisum RDL2 have been submitted to NCBI (Available online: https:
//www.ncbi.nlm.nih.gov/), and have the accession numbers MH357526 and MH357527, respectively.

Total RNA was extracted from 12 adult A. pisum (taken from a lab colony and provided
by Jim Goodchild at Syngenta) using Trizol (Fisher Scientific, Loughborough, UK) following
the manufacturer’s protocol. First-strand cDNA was synthesized using the GoScriptTM Reverse
Transcription System (Promega, Southampton, UK). The coding sequences of Apisum Rdl1 and
Apisum Rdl2 were amplified from this cDNA by a nested PCR approach using the Q5® High-Fidelity
PCR Kit (New England Biolabs, Ipswich, MA, USA), where the first PCR reaction was used at a final
dilution of 1 in 5000 as template for the second nested PCR reaction. For Apisum Rdl1, the first PCR
reaction used the following primers: N-terminal 5′- CGCCGCCACGCCCGAGC-3′ and C-terminal
5′-GGCGCAAAGTCTGCGAATAAG-3′. The second reaction used: N-terminal 5′-GTCTAGAATGACC
GGCCGCGCCGCG-3′ and C-terminal 5′ AGCGGCCGCCTACTTGTCCGCCTGGAGCA-3′. For
Apisum Rdl2, the first PCR reaction used the following primers: N-terminal 5′-CGCCGGC
ACTCTTCTTCTTC-3′ and C-terminal 5′-TATGTAACACTGTAACCGATGAG-3′. The second reaction
used: N-terminal 5′-GTCTAGAATGTCCGCGTGGCTGGTGG-3′ and C-terminal 5′-TGCGGCCGC
TCAGTCCGCTCCCAGCAGTA-3′. Underlined sequences are XbaI and NotI, respectively, which were
used to clone the aphid Rdl cloning sequences into the pCI vector (Promega). Apisum Rdl clones were
sequenced at SourceBioscience (Available online: https://www.sourcebioscience.com/).

4.2. Sequence Analysis

The multiple protein sequence alignment was constructed with ClustalX [39] using the
slow-accurate mode with a gap-opening penalty of 10 and a gap-extension penalty of 0.1, and applying
the Gonnet 250 protein weight matrix. The protein alignments were viewed using GeneDoc (Available
online: http://www.nrbsc.org/gfx/genedoc/index.html). Identity and similarity values were
calculated using the GeneDoc program. Signal peptide cleavage sites were predicted using the SignalP

https://bipaa.genouest.org/is/aphidbase/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.sourcebioscience.com/
http://www.nrbsc.org/gfx/genedoc/index.html
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4.1 server [40], and membrane-spanning regions were identified using the TMpred program (Available
online: http://www.ch.embnet.org/software/TMPRED_form.html). The PROSITE database [41] was
used to identify potential phosphorylation sites. The phylogenetic trees were constructed using the
neighbor-joining method and bootstrap resampling, available with the ClustalX program, and then
displayed using the TreeView application [42].

4.3. Preparation and Expression of Apisum RDL1 and Apisum RDL2 in X. laevis Oocytes and Two-Electrode
Voltage-Clamp Electrophysiology

Functional studies of Apisum RDL1ad, Apisum RDL1bd and Apisum RDL2b variant 1 were
performed using the X. laevis expression system and two-electrode voltage-clamp electrophysiology.
Stage V and VI X. laevis oocytes were harvested and rinsed with Ca2+ free solution (82 mM NaCl, 2 mM
KCl, 2 mM MgCl2, 5 mM HEPES, pH 7.4), before defolliculating with 1 mg/mL type IA collagenase
(Sigma, St. Louis, MO, USA) in Ca2+ free solution. Defolliculated oocytes were injected with 2.3 ng
(23 nL) Apisum Rdl plasmid DNA into the nucleus of the oocyte and stored in standard Barth’s solution
(supplemented with 50 µg/mL neomycin and 10 µg/mL penicillin/streptomycin) at 17.5 ◦C.

Oocytes 1–7 days post-injection were placed in a recording chamber and clamped at −60 mV
with 3 M KCl filled borosilicate glass electrodes (resistance 0.5–5 MΩ) and an Oocyte Clamp OC-725C
amplifier (Warner Instruments, CT, USA). Responses were recorded on a flatbed chart recorder (Kipp
& Zonen BD-11E, Delft, The Netherlands). Oocytes were perfused with standard oocyte saline
(SOS; 100 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 5 mM HEPES, pH 7.6) at a flow
rate of 10 mL/min. Oocytes were selected for experiments if stable after three or more consecutive
challenges of GABA at EC50 concentration. The GABA EC50 concentration was determined using
GABA concentration response curves, which were generated by challenging oocytes to increasing
concentrations of GABA in SOS, with 3 min between challenges. Curves were calculated by normalising
the GABA current responses to maximal responses induced by GABA before and after application.

Insecticides were initially diluted in dimethylsulphoxide (DMSO), before diluting to final concentrations
in SOS. Final concentrations of 1% DMSO did not affect electrophysiological readings.

Fipronil inhibition curves were measured by pre-incubating the oocytes with fipronil in SOS for
3 min, immediately followed by a combination of fipronil and the respective EC50 GABA concentration
(20 µM for Apisum RDL1ad, 50 µM for Apisum RDL1bd and 30 µM for Apisum RDL2b variant 1),
until the maximum response was observed. This was followed by a wash step for 3 min in SOS and
incubating the oocyte with 250 µM GABA, before repeating with increasing concentrations of fipronil.
Inhibition curves were calculated by normalising the responses to the previous control response
induced by 250 µM GABA.

For measuring the antagonistic actions of neonicotinoids, oocytes were initially incubated with a
perfusion of the neonicotinoid in SOS for 6 min, before challenging with a combination of neonicotinoid
and either the respective EC50 GABA concentration or 1 mM GABA.

4.4. Data Analysis

Data are presented as mean ± SEM of individual oocytes from three or more separate frogs.
The concentration of GABA required to evoke 50% of the maximum response (EC50), the concentration
of fipronil required to inhibit 50% of the maximal GABA response (IC50), and the Hill coefficient (nH)
were determined by non-linear regression using Graphpad Prism 5 (Graphpad Software, CA, USA).
Statistical significance was determined as p < 0.05, performed using one-way ANOVA (Graphpad
Software, CA, USA).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/8/
2235/s1.
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