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Abstract: The assembly mechanism for aggregation of amyloid fibril is important and fundamental
for any quantitative and physical descriptions because it needs to have a deep understanding of
both molecular and statistical physics. A theoretical model with three states including coil, helix and
sheet is presented to describe the amyloid formation. The corresponding general mathematical
expression of N molecule systems are derived, including the partition function and thermodynamic
quantities. We study the equilibrium properties of the system in the solution and find that three
molecules have the extreme value of free energy. The denaturant effect on molecular assemble is also
discussed. Furthermore, we apply the kinetic theories to take account of the nucleation and growth
of the amyloid in the solution. It has been shown that our theoretical results can be compared with
experimental results.
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1. Introduction

The aggregation of amyloid fibrils in biological processes is associated with neurodegenerative
diseases such as Alzheimer’s, Parkinson’s and Huntington’s or prion diseases [1–3]. Despite the
specificity of the proteins related with each individual neurodegenerative disease, these kinds of
diseases are a nucleation process [4–9]. Under experimental conditions in vitro, the aggregation
pathway can be obtained. However, it is not clear how to extrapolate these results to identify the
dominant pathway and timescales under physiological conditions.

The current computation technique is unable to access even the accelerated timescales of the in
vitro systems. Some computational techniques could be used to predict the assembly of amyloid in
solution and their secondary structure changes [10,11]. However, these computational simulations are
only feasible for millisecond time scale. The most simplistic physical description of proteins is analogy
with colloidal particles. The random-coil like proteins exist in an unfolded state and the helix is very
similar to folded state. These simple models have been used to explore the nucleation processes of
amyloid fibrils. There are two classes of nucleation theories, one is the mass action theories, the other
is nucleation models [12–21]. However, these methods missed the internal dynamics of the protein
molecules. In this paper, a microscopic model of the assembly process is developed to explore the
mechanism of amyloid fibrils and explain the transitions between the various assembly pathways as
well as how side chain interactions determine the sheet structure in the aggregate phase. Based on the
microscopic model, molecular equilibrium states and kinetic equations have been constructed to probe
the physical properties of amyloid formation. The paper is organized as follow. Firstly, a single peptide
molecule in the solution can be transited from a coil state to a helix state. Then two molecules will be
formed by concentration in the solution that supplies a driving force. The combining force is resulted
from the hydrogen bond. Based on the structure of two molecules, three molecules can be constructed
with the aid of solution concentration. Furthermore, N molecule systems are able to be constructed,
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which is called β-sheet. The corresponding general mathematical description of N molecule systems
are derived, including the partition function and thermodynamic quantities. Then we study the
equilibrium properties of the system in the solution. The phase diagrams of assembly structures are
depicted. Furthermore, we employ the kinetic theories to study the amyloid formation. Free energy
landscape and side chain effect can be illustrated. The theoretical predictions are in agreement with
the experimental results.

2. Results

2.1. Single Molecule

The conformations in single molecule have sequences of helix and coil units [22]. The coil state
is an ensemble of disordered conformations which often exists for higher temperature, otherwise,
the helix state exists for lower temperature [23]. Therefore, the temperature determines the transition
between coil and helix. The experimental temperature ranges from 10 to 60 ◦C [24]. This structural
transition is a cooperative behavior [25,26].

In order to provide a valuable intuition into the nucleation process, we use a similar lattice model
and suppose a single molecular chain has N units, each unit along the chain can be in either of the two
states, H (helix) or C (coil). According to the ZB model [27,28], only the nearest neighbor interaction
is considered, which is a modified one-dimensional Ising model. Therefore, there are four statistical
weights, their matrix elements are m11 = m(C|C), m12 = m(H|C), m21 = m(C|H), m22 = m(H|H).
A propagation parameter s can be defined by the free energy change,

s = exp[−β(Fhelix − Fcoil)] (1)

where s is slightly larger than 1, so the matrix element m(H|H) = s. The other parameter σ is
as a nucleation parameter. In general, σ << 1 and takes from 10−3 to 10−4, so σs is for helix
next to coil, i.e., m(H|C) = σs. On the other hand, one uses the statistical weight 1 for any coil,
and m(C|C) = m(C|H) = 1. Then a matrix form of statistical weight can be defined as

M =

(
1 σs
1 s

)
(2)

Furthermore, the partition function can be obtained by summing over all the possible sequences
in the one-dimensional chain with N monomers,

ZN =
(

1 0
)
·MN ·

(
1
1

)
(3)

Let T be a transformation matrix to get a diagonalize matrix Λ,

T−1MT = Λ =

(
λ1 0
0 λ2

)
(4)

where λ1, λ2 are the eigenvalues of M.

λ1,2 =
1
2
[(1 + s)±

√
(1− s)2 + 4sσ] (5)

By employing MN = (TT−1MTT−1)N = TΛNT−1, the partition function can be rewritten as

ZN =
1

λ1 − λ2
[λN+1

1 (1− λ2)− λN+1
2 (1− λ1)] (6)
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Because of λ1 > λ2, we have λN+1
1 >> λN+1

2 for large N, then

ZN ≈ λN
1 (7)

Based on ln ZN = N ln λ1, the average number of helix states can be computed by

< h >=
∂ ln ZN
∂ ln s

= N
∂ ln λ1

∂ ln s
(8)

and the fraction of helix states θh is defined as

θh =
< h >

N
=

s
2λ1
{1 + [(s− 1) + 2σ]√

(1− s)2 + 4σs
} (9)

The free energy for the single molecule can approximately be expressed as

F(1) = −kBT ln ZN = −NkBT ln λ1 (10)

We plot θh as a function of s for different σ as shown in Figure 1. There are two limitation cases for
σ-value. For small σ, a sudden transition can occur for a narrow range of s, this is a helix-coil structural
transition. For large σ, there is a non-cooperative behavior because θh is equal to s/(1 + s) for σ = 1.
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Figure 1. Phase diagrams of structural transition from coil to helix for different interactions. The number
of helical state in the block is plotted against s, where s is an equilibrium constant for a coil state
converting into a helical state.

2.2. Two Molecules

There are two cases for two molecules, one is no interaction between two molecules, and the other
case is the interaction between two molecules. The partition function can be written as

Z(2) = ∑
{m1,m2}

Ω(2)(m1, m2)Z(2)(m1, m2) (11)

where Ω(2)(m1, m2) is the degeneracy factor,

Ω(2)(m1, m2) = (N −m1)(N −m2) (12)
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which represents that N − m1 hydrogen bonds in the first molecular chain and N − m2 hydrogen
bonds in the second molecular chain. The other factor in the above Z(2)(m1, m2) is

Z(2)(m1, m2) = Zn1 Zl1 gm2
2 Zn2 Zl2 (13)

where g2 is the interaction parameter between the first molecule and the second molecule, which results
from the hydrogen bond, m1 and m2 are the total number of hydrogen bond of molecule 1 and molecules
2 respectively. Zn1 , Zl1 , Zn2 and Zl2 are the partition functions for each segment as shown in Figure 2.

1m
1n 1l

2m
2n

2l

H-Bonds    

Figure 2. Schematic illustration of the monomer attachment. Two molecules through intermolecular
hydrogen bond form a simplistic helix-coil-sheet model. m1 and m2 are the total number of hydrogen
bonds for molecule 1 and molecule 2 respectively.

By defining the parameters θ1 and θ2 to demonstrate the ratio of non-interaction,

θ1 =
Zn1 Zl1

ZN

θ2 =
Zn2 Zl2

ZN

(14)

then the partition function of the two molecules can be rewritten as

Z(2) = ∑
{m1,m2}

(N −m1)(N −m2)Z2
Nθ1gm2

2 θ2 (15)

Actually, we are able to discuss how chain length influences the partition function. According to
the derivation for the single molecule, the partition function can be simplified as

Zn1 ≈ λn1
1 Zl1 ≈ λl1

1 (16)

then θ1 is
θ1 = λn1+l1−N

1 = λ−m1
1 (17)

Due to the same reason, θ2 is
θ2 = λ−m2

1 (18)

thus we have
Z(2)(m1, m2) = Z2

Nλ−m1−m2
1 gm2

2 (19)
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In terms of m1 = m2 = m, we obtain

Z(2)(m) = Z2
N(

g2

λ2
1
)m (20)

Therefore, the partition function of two molecules can be rewritten as

Z(2) = Z2
N

M

∑
m=1

(N −m)2(
g2

λ2
1
)m (21)

where M is the total number of the hydrogen bond, its maximum value is Mmax = N.
A function can be defined as

G2(m, x2) = xm
2 (22)

where x2 = g2/λ2
1. The other function can be defined as

f (2)(M, x2) =
Z(2)

Z2
N

=
M

∑
m=1

(N −m)2G2(m, x2) (23)

The free energy of two molecules is obtained by

F(2) = −kBT ln Z(2) = 2F(1) − kBTln f (2)(M, x2) (24)

2.3. Three Molecules

Now we add the third molecule to the dimer to form a trimer. The partition function for this
system can be represented as

Z(3) = ∑
m3≤m2

∑
m2

Ω(3)(m2, m3)Z(3)(m2, m3) (25)

where the degeneracy factor for three molecules

Ω(3)(m2, m3) = 2(m2 −m3)(N −m2)
2 (26)

and
Z(3)(m2, m3) = Z(2)(m2)gm3

3 Zn3 Zl3

= Z3
N [

Z(2)(m2)

Z2
N

gm3
3

Zn3 Zl3
ZN

]
(27)

where Zn3 and Zl3 are the partition function for the segments of n3 and l3 respectively.
Furthermore, we can define θ3 = Zn3 Zl3 /ZN . In a similar manner, θ3 ≈ λ−m3

1 , we have

Z(3)(m, m3) = Z3
NG2(m, x2)(

g3

λ1
)m3 (28)

We define a new function

G3(m3, m, x3, x2) = G2(m, x2)x3
m3 (29)

where x3 = g3/λ1. Then the partition function of three molecules can be rewritten as

Z(3) = 2Z3
N ∑

m3≤m
∑
m
(m−m3)(N −m)2G3(m3, m, x3, x2) (30)
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The free energy of three molecules can be obtained by

F(3) = −kBT ln Z(3) = 3F(1) − kBT ln f (3)(M3, M, x3, x2) (31)

2.4. General Expression of n Molecules

Now we extend the expressions of n molecules with β-strand, the first expression is the partition
function of n molecules,

Z(n) = ∑
mn≤mn−1

∑
mn−1≤mn−2

· · · ∑
m3≤m2

∑
m2

Ω(n)(m2, m3, · · · , mn−1, mn)

×Z(n)(m2, m3, · · · , mn−1, mn)
(32)

where the degeneracy factor of n molecules is

Ω(n)(m2, m3, · · · , mn−1, mn) = 2
n

∏
i=3

(mi−1 −mi)(N −m2)
2 (33)

and
Z(n)(m2, m3, · · · , mn−1, mn) = Z(n−1)(m2, m3, · · · , mn−2, mn−1)gmn

n ZnnZnl (34)

then Gn function can be defined as

Gn(m2, m3, · · · , mn−1, mn, x2, · · · , xn) = Gn−1(m2, m3, · · · , mn−2, mn−1, x2, · · · , xn−1)xmn
n (35)

Let us define the function of f (n) as

f (n)(Mn, Mn−1, · · · , M, xn, xn−1, · · · , x2) = 2
Mn

∑
mn=1

· · ·
M

∑
m2=1

n

∏
i=3

(mi−1 −mi)(N −m2)
2

×Gn(m2, m3, · · · , mn−1, mn, x2, · · · , xn)

(36)

where xn = gn/λ1, and used θn ≈ λ−mn
1 , so the partition function of n molecules can be rewritten as

Z(n) = Zn
N f (n)(Mn, Mn−1, · · · , M, xn, xn−1, · · · , x2) (37)

The expression of free energy is

F(n) = −kBT ln Z(n)

= nF(1) − kBT ln f (n)(Mn, Mn−1, · · · , M, xn, xn−1, · · · , x2)
(38)

As we mentioned, the reference state is the coil state which has a statistical weight of 1
(free energy = 0). The helix state is favorable s > 1 and the nucleation parameter is unfavorable
0 < σ < 1. A single β-sheet is probably not stable in solution [29,30], so g ≈ 1 or slightly bigger than 1.
However, a β-sheet bilayer is more stable than a helix, thus we need to introduce a new parameter,
z, to describe side chain interactions, then gz > s. The free energy of β-sheet includes the conformation
entropy (which supplies the repulsive force) and the interaction of hydrogen bond and the side-chain
interactions (that is attractive force). Therefore, xi can be replaced by xi,j = xiz

j−1
i , the corresponding

general expression of physics quantities for fibril structure with jβ-sheet can be written as

Z(n)
j = Zn

N f (n)j (zn, Mn, Mn−1, · · · , M, xn,j, xn−1,j, · · · , x2,j)

F(n)
j = nF(1) − kBT ln f (n)j (Mn, Mn−1, · · · , M, xn,j, xn−1,j, · · · , x2,j)

(39)

where j = 1, 2 and
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f (n)j (Mn, Mn−1, · · · , M, xn,j, xn−1,j, · · · , x2,j) = 2
Mn

∑
mn=1

· · ·
M

∑
m2=1

n

∏
i=3

(mi−1 −mi)(N −m2)
2

×Gj
n(m2, m3, · · · , mn−1, mn, x2,j, · · · , xn,j)

(40)

3. Discussion

3.1. Molecular Interaction with Denaturant

The influence of denaturant on amyloid fibril is investigated by the interaction parameter x2.
When the denaturant urea is added in the system, the free energy is dependent on the denaturant
concentration, and can be expanded as the first order approximation,

∆Fi = ∆Fi(Curea = 0) + δiCurea (41)

where δi > 0.
The parameters s and g2 are expressed as

s = exp[−∆Fs(0)− δsCurea] = s(0) exp(−δsCurea]

g2 = exp[−∆Fg(0)− δgCurea] = g2(0) exp[−δgCurea]
(42)

where s(0) = exp[−∆Fs(0)], g2(0) = exp[−∆Fg(0)]. s(0) > 1 is for the helix state (folded state),
and s(0) < 1 is for the coil state (unfolded state).

We make an approximation δs ≈ δg = δ, the expression of x2 is

x2 =
g2

λ2
1
=

4g2(0) exp(δCurea)/s2(0)

{[exp(δCurea)

s(0)
+ 1] +

√
[
exp(δCurea)

s(0)
− 1]2 + 4

σ

s(0)
exp(δCurea)}2

(43)

When σ/s(0) << 1,

x2 =
4g2(0) exp(δCurea)/s2(0)

{[exp(δCurea)

s(0)
+ 1] + |exp(δCurea)

s(0)
− 1|}2

(44)

If exp(δCurea)/s(0) < 1, it is that the strong folded state

x2(s f ) =
g2(0)
s2(0)

exp(δCurea) (45)

If exp(δCurea)/s(0) > 1, it is that the strong unfolded state

x2(su f ) = g2(0) exp(−δCurea) (46)

Based on Equations (45) and (46), we can see how the denaturant affects the aggregation process.
For strong folded state, the denaturant can strengthen the hydrophobic and hydrogen binding
interactions. Otherwise, adding denaturant can weaken the interactions for strong unfolded state.

3.2. Free Energy

As shown in Figure 3, ∆F(2) is a function of x2 that represents the effect of g2, σ and s. Here we
choose N = 20, M = 18, s is from 0 to 2, θ is from 0.001 to 1 and g2 is from 0 to 2. When g2 is zero,
there is not any interaction between two molecular chains. Thus g2 is chosen as a smaller quantity,
the interaction is a repulsive force, otherwise, the attractive force for larger g2, so the range of x2 is
from 10−5 to 2.
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Figure 3. The free energy is dependent on the interaction between the first molecule and the second
molecule. x2 = g2/λ2

1, where the free energy for each bond is −kBTlng2 that illustrates the loss of
conformational entropy from both chains, and λ1 indicates the contribution form the peptide tails not
participating in the hydrogen bonds. ∆F(2) = F(2) − 2F(1) accounts for the free energy difference from
both chains. The free energy will be decreased when the number of the hydrogen bond increases from
6 to 18.

In Figure 4, we take M3 = M − 3 and g2 = g3. This figure demonstrates the free energy and
the function of f (3) are a function of x2 and x3. Due to x3 = λ1x2, we choose a few of values for
x3 = x2, 1.5x2, 2x2, 2.5x2 that are resulted from the range of λ1 from 1 to 3.

By using the above equations, we can obtain the landscape of free energy. The parameters such as
g, σ, s, even z stand for the different peptide states, and corresponding to coil, helix, β-strand, β-sheet
and fibrils. Mn = M− 3n is used to describe the number of hydrogen bond in the n-th chain. With the
change of these parameters, the free energy will be a function as n. We have calculated the free energy
for n ≤ 6.

For counting the side chain effect, the interaction coefficients gn have been demonstrated
in Figure 5,

g2 = g
g3 = gz
g4 = g2(z + z2)

g5 = g3(z + z2 + z3)

(47)

The energy landscape can be obtained as shown in Figure 6, where the parameters are σ = 0.01,
g = 1.2, z = 1.6, s = 1.77. The nucleation can occur because the condition g < s < gz is satisfied.
We find that the free energy has a peak value when n is equal to 3. In other words, three molecules
have higher free energy and four molecules have lower free energy. This is an important result about
the assemble mechanism for aggregation of amyloid fibril. Based on this result, we develop the kinetic
formulas to study the nucleation processes of amyloid fibrils.
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Figure 4. Variation of three molecules’ free energy as a function of the molecular interactions. x2 denotes
the interactions between molecule 1 and molecule 2. x3 is the interaction between the third molecule
and dimer. ∆F(3) is defined as F(3) − 3F(1). The competition between molecules results in the variation
of the free energy.
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Figure 5. The assembly process is dependent on the molecular interactions.
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Figure 6. Free energy landscape for different molecules gives a nonmonotonic function that has a peak
at three molecules. F(n) is the free energy of an oligomer containing n molecules.

3.3. Peak Location in the 2D Nucleation Rate

A model of three molecules was presented for the dynamics of a nucleating trimer, the nucleation
rate in 2D can be written as [31]

knuc =
L

∑
x=1

kdi f f ε+(x, 1)C2(x)

= kdi f f C2
1

L

∑
x=1

ε+(x, 1) exp(− x f
kT

)

(48)

The analytic solution of ε+(x, y) is

ε+(x, y) = e0 exp[−(αx + βy)]B̃(x, y) (49)

where

B̃(x, y) = ∑∞
m=2 Bm sin[m arctan(y/x)]Im(v

√
x2 + y2/2D)

∑∞
m=2 Bm sin(mπ/4)Im(v

√
2L/2D)

(50)

The peak location is determined by the extremum of the nucleation rate,

∂knuc

∂x
= kdi f f C2

1

L

∑
x=1

[
∂ε+(x, 1)

∂x
− f

kT
ε+(x, 1)] exp(− x f

kT
) = 0 (51)

then
∂ ln ε+(x, 1)

∂x
=

f
kT

(52)

By using the above equation,

ε+(x, 1) = e
′
0 exp(−αx)B̃(x, 1) (53)
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where e
′
0 = e0 exp(−β), α =

vx

2D
, β =

vy

2D
.

∂B̃(x, 1)
∂x

= (ε2 + α)B̃(x, 1) (54)

where ε2 =
f

kT
.

Because denominator of B̃(x, 1) is a constant,

∂B̃num(x, 1)
∂x

= (ε2 + α)B̃num(x, 1) (55)

where B̃num is a numerator of B̃.
B̃num(x, y) can be rewritten as

B̃num(x, y) =
∞

∑
m=2

Bm sin(mθ)Im(ar) (56)

where r =
√

x2 + y2, a =
vx

2D
, v =

√
v2

x + v2
y and

B2 = 1

B3 = 2
vx − vy

v
B4 = 2(

vx − vy

v
)2

B5 = 2
vx − vy

v
Im(x) =

∞

∑
k=0

1
Γ(k + 1)Γ(m + k + 1)

(
x
2
)m+2k

(57)

We take the earlier terms including k = 0, 1, 2,

B̃num(x, y) = ∑
m=2

Bmsin(mθ)
∞

∑
k=0

(ar)2k+m

k!Γ(k + m + 1)

= ∑
m

Bmsin(mθ)[
(ar)m

Γ(m + 1)
+

(ar)m+2

Γ(m + 2)
+

(ar)m+4

2!Γ(m + 3)
]

(58)

By using Γ(n) = (n− 1)!, we have

B̃num(x, y) =
a2

2!
{r2 sin(2θ) + B3

a
3

r3 sin(3θ) + [B4
a2

3× 4
r4 sin(4θ) +

a2

3
r4 sin(2θ)]+

[B5
a3

3× 4× 5
r5 sin(5θ) + B3

a3

3× 4
r5 sin(3θ)]}

(59)

By using sin(2θ) = 2 sin θ cos θ, sin(3θ) = 3 sin θ − 4sin3θ, sin(4θ) = 4 sin θ cos θ − 8 cos θ sin3 θ,
sin(5θ) = 5 sin θ − 20 sin3 θ + 16 sin5 θ, x = r sin θ, y = r cos θ, we get

B̃num(x, y) =
a2

2!
[(B5

a3

12
+ B3

a3

4
)x4y + (B4

a2

3
+

2a2

3
)x3y

+aB3x2y + (−B5
a3

6
+ B3

a3

6
)x2y3 + 2xy + (−B4

a2

3
+

2a2

3
)xy3

−B3
a
3

y3 + (B5
a3

60
− B3

a3

12
)y5]

(60)
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The coefficients can be defined as

f41 = (B5 + 3B3)
a3

12
= (α− β)

a2

3

f31 = (B4 + 2)
a2

3
=

1
3
(4a2 − αβ)

f21 = aB3 = α− β

f23 = (−B5 + B3)
a3

6
f11 = 2

f13 = (−B4 + 2)
a2

3
=

αβ

3
f03 = −B3

a
3
= −α− β

3

f05 = (B5 − 5B3)
a3

60
= − a2

15
(α− β)

(61)

thus
B̃(x, y) = f41x4y + f31x3y + f21x2y
+ f23x2y3 + f11xy + f13xy3 + f03y3 + f05y5 (62)

When y = 1, the above expression can be written as

B̃num(x, 1) = b4x4 + b3x3 + b2x2 + b1x + b0 (63)

where

b4 = f41 = (α− β)
a2

3
b3 = f31 =

1
3
(4a2 − αβ)

b2 = f21 + f23 = α− β

b1 = f11 + f13 = 2 +
αβ

3

b0 = f03 + f05 = −α− β

3
− a2

15
(α− β) = − 1

15
(α− β)(a2 + 5)

(64)

The expressions of vx and vy are employed by

vx = 2
[exp(−Eweak)− 1]
exp(−Eweak) + 1

vy = 2
[exp(−Estrong)− 1]
exp(−Estrong) + 1

(65)

where Eweak = ε2.
We will discuss three cases for taking different ε2 to calculate the coefficients of polynomial,
Case I: ε2 = 0.2, Estrong = −0.5

b4 = −0.00200776
b3 = 0.0314431
b2 = −0.344587
b1 = 1.99186
b0 = 0.115264

(66)

then inserting these coefficients and obtain the peak value of x,

xε2=0.2
m = 3.5 (67)

which is in agreement with the numerical result xε2=0.2
m = 4 [31].
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Case II: ε2 = 0.3, Estrong = −0.5

b4 = −0.00269598
b3 = 0.0395389
b2 = −0.393804
b1 = 1.98785
b0 = 0.131807

(68)

then inserting these coefficients and obtain the peak value of x,

xε2=0.3
m = 2.8 (69)

which is in agreement with the numerical result xε2=0.2
m = 3 [31].

Case III: ε2 = 0.4, Estrong = −0.5

b4 = −0.00364679
b3 = 0.0490944
b2 = −0.442294
b1 = 1.98389
b0 = 0.148161

(70)

then inserting these coefficients and obtain the peak value of x,

xε2=0.3
m = 2.2 (71)

which is in agreement with the numerical result xε2=0.2
m = 2 [31].

It is reasonable to neglect the higher terms from the above data, i.e., b4 = 0 and b3 = 0, so the
polynomial is changed to

B̃num(x, 1) = b2x2 + b1x + b0 (72)

Due to b2
1 >> 4b0b2, b2

2, and consider x is a positive number, so the root of equation is simplified as

xm ≈
1

ε2 + α
(73)

The nucleation flux is a nonmonotonic function of the number of the hydrogen bonds in dimer
when the third molecule is added to form trimer. The peak values are a significant result of the
deviation of the lowest free energy pathway.

3.4. Scaling Behavior of Nucleation Rate in 3D

The system of three molecules is unstable, so we have developed a stable 3D model. The nucleation
rate in 3D model can be written as [32]

knuc =
L

∑
x=1

kdi f f εmol(x)C2(x) (74)

where

εmol(x) =
( 1

p+mol
− 1)x − 1

( 1
p+mol

− 1)n? − 1
(75)

and
C2(x) = C2

1exp(−x f /kT) (76)
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p+mol can be defined as

p+mol =
kdi f f

kdi f f + kloss
(77)

Inserting the above equation into knuc, we have

knuc =
L

∑
x=1

kdi f f

( kloss
kdi f f

)x − 1

( kloss
kdi f f

)n? − 1
C2

1 exp(−x f /kT) (78)

furthermore,

knuc =
kdi f f C2

1

( kloss
kdi f f

)n? − 1

L

∑
x=1
{[ kloss

kdi f f
exp(− f

kT
)]x − [exp(− f

kT
)]x} (79)

With the help of
L

∑
x=1

yx =
yL+1 − y

y− 1
(80)

then

knuc =
kdi f f C2

1

( kloss
kdi f f

)n? − 1
exp(− f

kT
){ kloss

kdi f f

( kloss
kdi f f

)L exp(− f L
kT )− 1

kloss
kdi f f

exp(− f
kT )− 1

−
exp(− f

kT )
L − 1

exp(− f
kT )− 1

}

(81)

Based on the numerical result [32], we will discuss f > 0.
When f > 0, 1 > exp(− f

kT ) >> exp(− f L
kT ). In this case, the first approximation is exp(− f L

kT )→ 0

knuc =
kdi f f C2

1

( kloss
kdi f f

)n? − 1
{ 1

1− exp( f
kT )
−

kloss/kdi f f

kloss/kdi f f − exp( f
kT )
} (82)

In the condition of
kloss
kdi f f

> 1

knuc ≈
kn?

di f f C2
1

kn?−1
loss

exp(− f
kT

) (83)

Due to kdi f f ∝ C1, so the scaling behavior in this case is

knuc ∝ Cn?+2
1 (84)

This condition matches the numerical result, so the analytic result can be written as

Logknuc = (n? + 2)LogC0 + const (85)

where C1 = C0 and const is a constant including f and other terms.
In the experimental measurement of the nucleation process [33–35], kinetics were monitored by

ThT fluorescence. The solution conditions for fibril formation were 100 mM KCl, 50 mM potassium
phosphate, PH 7.4, 25 ◦C. Fiber sample were prepared as for transmission electron microscopy.
The experimental result is knuc ∝ 4. When we take n? = 2 in the analytic result, the theoretical
result is in agreement with the experimental result.
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4. Conclusions

In summary, a microscopic model with three states including coil, helix and sheet is constructed
to explore the mechanism of amyloid formation. The partition function and thermodynamic quantities
of many molecule systems are obtained by considering the repulsive and attractive interactions.
The equilibrium properties of the system in the solution have been investigated. Free energy landscape
and side chain effect are illustrated. It is found that the system of three molecules has higher free
energy. The kinetic properties of molecules related with amyloid formation are also studied. By using
the random walk model in 2D and 3D, the nucleation processes of amyloid fibrils are quantitatively
demonstrated. The microscopic theoretical model and results can be in agreement with numerical and
experimental results. These theoretical approaches of the microscopic model could be used to improve
the computational simulations in new timescale.

Conflicts of Interest: The author declares no conflict of interest.
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