
 International Journal of 

Molecular Sciences

Review

Integrating Thyroid Hormone Signaling in
Hypothalamic Control of Metabolism:
Crosstalk Between Nuclear Receptors

Soumaya Kouidhi 1,2 and Marie-Stéphanie Clerget-Froidevaux 3,*
1 Laboratory BVBGR, LR11ES31, Higher Institute of Biotechnology of SidiThabet (ISBST),

Department of Biotechnology, University of Manouba, Sidi Thabet 2020, Tunisia;
soumayakouidhi@gmail.com

2 Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis,
Department of Biology, University Tunis El Manar, Tunis 2020, Tunisia

3 CNRS UMR 7221 “Evolution of Endocrine Regulations” Department of “Life Adaptations”
MuséumNational d’HistoireNaturelle 57, rue Cuvier CP 32, 75231 Paris, CEDEX 05, France

* Correspondence: clerget@mnhn.fr; Tel.: +33-1-40-79-36-20

Received: 7 June 2018; Accepted: 6 July 2018; Published: 11 July 2018
����������
�������

Abstract: The obesity epidemic is well recognized as a significant global health issue. A better
understanding of the energy homeostasis mechanisms could help to identify promising anti-obesity
therapeutic strategies. It is well established that the hypothalamus plays a pivotal role governing
energy balance. The hypothalamus consists of tightly interconnected and specialized neurons
that permit the sensing and integration of several peripheral inputs, including metabolic and
hormonal signals for an appropriate physiological response. Current evidence shows that thyroid
hormones (THs) constitute one of the key endocrine factors governing the regulation and the
integration of metabolic homeostasis at the hypothalamic level. THs modulate numerous genes
involved in the central control of metabolism, as TRH (Thyrotropin-Releasing Hormone) and MC4R
(Melanocortin 4 Receptor). THs act through their interaction with thyroid hormone receptors (TRs).
Interestingly, TH signaling, especially regarding metabolic regulations, involves TRs crosstalk with
other metabolically linked nuclear receptors (NRs) including PPAR (Peroxisome proliferator-activated
receptor) and LXR (Liver X receptor). In this review, we will summarize current knowledge
on the important role of THs integration of metabolic pathways in the central regulation of
metabolism. Particularly, we will shed light on the crosstalk between TRs and other NRs in
controlling energy homeostasis. This could be an important track for the development of attractive
therapeutic compounds.

Keywords: energy balance; hypothalamus; thyroid hormone signaling; nuclear receptors

1. Introduction

According to the World Health Organization (WHO, available online: http://www.who.int/gho/
ncd/risk_factors/obesity_text/en/), obesity is no longer viewed as simply a major health problem
giving rise to a global “obesity epidemic”. Indeed, obesity has increased worldwide over recent years
and represents a major contributor to morbidity and mortality [1,2], which increases healthcare costs.
The metabolic diseases associated with obesity, such as type 2 diabetes mellitus and cardiovascular
diseases, are closely linked to perturbations in lipid and glucose metabolism [3,4]. However, the
mechanisms controlling the major regulatory pathways are not yet fully understood. Thus, it is
interesting to further decrypt the processes that underlie energy homeostasis, as their dysregulations
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can promote the metabolic diseases described above by unbalancing energy intake and energy
expenditure could lead to overweight, and thus, to the comorbidities of obesity.

Obesity has long been considered the result of a long-term disproportion between energy
intake and energy expenditure. However, the regulation of metabolism is an intricate process
coordinated by the central nervous system (CNS) where specialized neurons control and integrate
peripheral signals including nutrient and hormone signals, such as insulin and leptin, to control
energy balance [5,6]. These complex biological programs could be also influenced by multiple
factors, including environmental, genetic, and epigenetic mechanisms. The hypothalamus is the
key brain center controlling feeding behavior, and whose dysfunction is thereby involved in the energy
imbalance and its subsequent metabolic disorders [7]. The hypothalamus resides in the medial basal
region of the brain. It encloses neurons of the arcuate nucleus (ARC), tightly interconnected with
other hypothalamic centers such as the paraventricular nucleus (PVN), the lateral hypothalamic area
(LHA), the dorsomedial nucleus (DMN), and the ventromedial nucleus (VMN). These specialized
hypothalamic nuclei are able to sense and to integrate diverse nutrients and hormone signals
resulting in a change in the expression, secretion and activity of specific neurotransmitters and
neuromodulators [8]. As a consequence, energy intake and expenditure are modulated [9].

As a key driver of metabolism, increasing evidence highlights the important role played by
thyroid hormones (THs) in the hypothalamus, acting centrally to regulate food intake and energy
expenditure [10]. Indeed, several studies have reported that thyroid dysfunction correlates with
alterations in energy balance and body weight [11,12], but the exact mechanisms and interactions
of the various TH signaling pathways by which the metabolism is integrated and modulated in the
brain are still not fully understood. In this review we will examine the current knowledge on the roles
played by THs on the regulation of energy balance at the central level, focusing on the interaction
among the related metabolic pathways and the nuclear receptor crosstalk.

2. Overview of CNS Control of Energy Homeostasis

During the last decades, a significant number of review articles elegantly summarized the
knowledge on the mechanisms and signaling pathways underlying the regulation of energy balance.
Even a small dysregulation in one of these pathways can lead to obesity [9]. The hypothalamus is a
key brain area that plays a pivotal role integrating whole-body signals and controlling food intake
and energy expenditure [13,14]. The hypothalamus is organized into well-structured nuclei [15].
In particular, ARC is the best-characterized nucleus for the regulation of feeding. The ARC has a
privileged location in the brain that allows it to tightly sense several signals from the periphery [8,16].
Specifically, in the ARC, there are two well-characterized antagonistic neuronal subpopulations
with opposite effects. The NPY–AgRP neurons express orexigenic neuropeptides, agouti-related
peptide (AgRP), neuropeptide Y (NPY), and the inhibitory neurotransmitter γ-aminobutyric acid
(GABA) [17,18]. POMC neurons express the anorexigenic neuropeptides α-melanocyte-stimulating
hormone (α-MSH), a proteolytic product of pro-opiomelanocortin (POMC), and cocaine- and
amphetamine-regulated transcript (CART) [19]. Both NPY–AgRP and POMC neurons exert their
antagonistic effects by projection to second-order neurons mainly in the PVN (Figure 1), but also in
other hypothalamic nuclei (i.e., DMN, LHA, VMN) to modulate feeding behavior. It is well recognized
that upon nutrient ingestion α-MSH acts on second order neurons located in the PVN and activates
melanocortin 3 (MC3R) and melanocortin 4 (MC4R) receptors, which reduce energy intake and induce
energy expenditure [20]. Of note, the PVN neurons display the highest MC4R expression within
the hypothalamic area and ligand modulation of MC4R signaling in the PVN profoundly affects
feeding. Taken together, the melanocortin pathway is considered as a major anorexigenic circuit in
the brain [21,22]. Consistent with this idea, human and mice studies showed that deletion of POMC
neurons or their peptide product as well as MC4R deficiency results in obesity [23,24].

Both NPY–AgRP and POMC neurons are directly targeted by circulating hormones such as insulin
and leptin (Figure 1) [25,26]. It is well established that leptin, a satiety hormone, plays a key role
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in the central regulation of energy homeostasis. Leptin is an adipokine encoded by the LEP gene,
liberated in the circulation by the adipose tissue proportionally to the whole-body fat content and
acting as an afferent satiety signal [27]. A significant attention has been given to leptin signaling in
ARC, where NPY–AgRP and POMC neurons are the main targets of leptin action via their expression
of high levels of leptin receptors (LEPRs) [28,29]. Leptin directly stimulates POMC neurons and
activates melanocortin–receptors, while inhibiting the activity of AgRP neurons. Thus, the net effect of
leptin signaling within the hypothalamus is increased energy expenditure and reduced body weight.
Although it has been believed that melanocortin signaling is a distal mediator of the leptin pathway,
there is now evidence that leptin and melanocortin signaling are independent [30]. Emphasizing the
importance of leptin, it has been shown that chronic administration of leptin into the brain reduced
caloric intake, body weight, and improved glucose sensing in high fat-fed animals [31,32]. Conversely,
deficiency of leptin or the ablation of LEPR in the CNS induces a morbid obese phenotype [33,34].
Hence, over-reactivation of the LEPR in hypothalamic neurons, including POMC neurons, may induce
obesity in high-fat fed mice [35].
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Figure 1. Schematic illustration of hypothalamic regulation of energy homeostasis. Peripheral signals
such as leptin and insulin enter the CNS, and act on their specific receptors in key hypothalamic
regions that regulate food intake and energy expenditure. Leptin stimulates POMC neurons and
inhibits NPY/AgRP neurons in the ARC, resulting in the inhibition of food intake via the action of
MC4R-expressing neurons in the PVN, and other brain areas. TH also regulates a number of other
metabolic processes by acting on hypothalamic metabolic sensors. Central T3 regulates feeding through
mTOR signaling pathway targeting orexigenic and anorexigenic neurons in the ARC, and exerts a
negative feedback on TRH and MC4R expression in the PVN. αMSH: melanocyte stimulating hormone;
ARC: arcuate nucleus; MC4R: melanocortin 4 receptor; mTOR: mammalian target of rapamycin; Ob-Rb:
leptin receptor; NPY: neuropeptide Y; POMC: proopiomelanocortin; PVN: paraventricular nucleus;
T3: triiodothyronine; TRH: Thyrotropin-releasing hormone; CRH: corticotropin-releasing hormone;
green arrow: activation; red blind-ended arrow: inhibition; solid line: direct action; dashed line:
indirect action or other pathway intervention.
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3. Effects of TH on Central Metabolism

For more than a century, THs have been recognized through clinical observations and
experimental studies as a main regulator of the metabolic rate of the whole organism [12]. Actually,
THs profoundly affect key metabolic pathways that control energy [36,37]. Thus, it becomes evident
that dysregulation of TH levels markedly impacts body weight and metabolism homeostasis in
Human [38,39]. Reduced energy expenditure leading to weight gain is observed in hypothyroid
patients. Conversely, hyperthyroidism (excess of thyroid hormone), promotes a hypermetabolic state
characterized by increased energy expenditure and weight loss [40]. These beneficial effects of TH
have led to the development of selective thyroid hormone mimetics as powerful new tools against
atherosclerosis and obesity [41,42]. Moreover, the role of TH has been demonstrated particularly
in glucose homeostasis [43]. Indeed, hyperthyroid rats showed reduced glucose tolerance and
reduced insulin-secretory capacity of β cells, in addition to an increased hepatic insulin resistance [44].
Similarly, hypothyroidism promotes glucose intolerance in hypothyroid non-diabetic mice [45].
These observations are clinically relevant given the increased prevalence of diabetes mellitus in
both hypo- and hyperthyroidism [46].

At the peripheral level, TH has been characterized for a long time as directly affecting metabolic
tissues (such as liver, white and brown adipose tissue (WAT and BAT), heart, skeletal muscle, . . . )
and controlling the bulk of physiological processes implicated in the modulation of energy
expenditure [47,48]. However nowadays, it is well established that THs also promote whole body
metabolism and modulate food intake by acting at the central level, in the hypothalamus [49].

TH plasma levels are maintained at the appropriate level to preserve energy homeostasis.
This adjustment is due to the integration of a range of metabolic pathways at the hypothalamic
level. TH is secreted from the thyroid gland under a flexible and dynamic regulation of the
hypothalamic-pituitary axis (HPT) [50,51]. Under normal physiological conditions, the intact HPT
axis maintains stable serum TH levels, resulting in a steady TH contribution to energy homeostasis.
In the PVN, TRH-producing neurons are sensitively affected by changes in circulating TH. In turn,
they define the set point of thyroid gland function by regulating pituitary thyroid-stimulating hormone
(TSH) secretion and thus the circulating levels of TH [52–54]. Importantly, The TRH-TSH-TH feedback
loop is mainly mediated by a direct activation of TR isoform β-dependent signaling to decrease TRH
and TSH secretion [55].

Given its crucial role in metabolism regulation that affects all the tissues in the body, TH availability
and signaling are tightly controlled by several mechanisms [37,52]. Two THs are derived from the
thyroid gland: Thyroxine (T4), the most abundant form and Triiodothyronine (T3), the transcriptionally
active form. The TH cellular availability is modulated by enzymes known as deiodinases.
Local activation of T4 to the active form T3 by the type 2 5-deiodinase (D2), constitutes a key mechanism
of the TH regulation of metabolism. D2 is both expressed at the peripheral and central levels [56,57].
Alongside D2, trans-membrane transporters and TH receptors also control TH signaling pathways,
by regulating respectively the TH entrance to the cells and its transcriptional action [58]. Nevertheless,
integration of TH signaling occurs both peripherally, in liver, white fat, and BAT, and centrally, in the
hypothalamus [11,47].

In addition to mediating the feedback mechanisms regulating THs levels, hypothalamic TH
signaling also regulates energy homeostasis by influencing appetite [10,59]. Recent evidence indicates
that both orexigenic and anorexigenic neurons are targets of the TH feedback loop in the ARC
(Figure 1) [60,61]. It has been shown that centrally-mediated actions of T3 dampens anorexigenic
signals by inhibiting POMC mRNA expression. In the fasted state, T3 signaling increases uncoupling
protein 2 (UCP2) levels in the hypothalamus thereby stimulating orexigenic pathways by increasing
NPY and AgRP levels [62,63]. In the PVN, the T3-induced AgRP release suppresses TRH mRNA
expression by inhibiting MC4R, a key relay in leptin signaling [64]. This mechanism alters the setpoint
of the HPT axis and severely disrupts feeding circuit homeostasis. Recent data have elucidated this link
between TH and energy balance, reporting a particular TH-modulation of melanocortin pathway in
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the hypothalamus [65,66]. Decherf et al. have demonstrated in mice that thyroid status was associated
with change of Mc4r expression in the hypothalamus. Both qPCR and in situ hybridization showed
hypothyroidism to increase endogenous Mc4r expression in the PVN, whereas hyperthyroidism
repressed Mc4r expression in the ARC [65]. Clear evidence from mutagenesis and ChIP assays
suggests that T3 can mediate repression of Mc4r levels by direct binding of TR to its responsive
elements (TREs) on the Mc4r promoter. Interestingly, in vivo knockdown or over-expression assays
and use of TR isoform-specific knock-in mouse models showed that both TRα and TRβ isoforms play a
key role in the Mc4r regulation. Thus, the thyroid may be regulated through another negative feedback
loop, where MC4R stimulates TH release, which in turn down-regulates MC4R expression [65,67,68].
A first physiological relevance of MC4R repression caused by T3-negative feedback is an induced
weight gain in hypothyroid mice treated with T4. Altogether, these results consolidate the important
role of thyroid hormone to tightly drive metabolism in a key energy-related brain area.

It is important to highlight the fact that the central effects of THs are interrelated with master
energy sensors in the brain such as AMP-activated protein kinase (AMPK) and mammalian target
of rapamycin (mTOR) [69,70]. Over the past few years many studies have focused on AMPK
and mTOR pathways that act as global regulators of cellular metabolism in both central nervous
system and peripheral organs [71,72]. Specifically, both AMPK and mTOR coexist and interact
in the same specific hypothalamic nuclei to respond to nutrient availability and hormonal milieu,
regulating energy homeostasis. Cross-regulation between these two signaling pathways is thought to
be modulated by TH. It has been shown that hyperthyroidism or central administration of T3 reduces
hypothalamic AMPK phosphorylation [73]. In turn, this may upregulate the thermogenic program
in BAT and increase weight-gain. In contrast, the hyperthyroid state activates the hypothalamic
mTOR signaling pathway associated with upregulation of orexigenic peptides AgRP and NPY in the
ARC and increases feeding (Figure1). Interestingly, specific treatment with mTOR inhibitor reversed
hyperthyroidism-induced increase in food intake. Notably, it has been suggested that THs directly
regulate mTOR in the ARC since it is highly co-expressed with thyroid hormone receptor-α (TRα) in
this brain region [74].

4. Nuclear Receptors, Integrators of Metabolic Regulation

NRs constitute a major target for hormones and metabolites, which makes them fundamental
players in the most important biological process, as metabolism regulation. Indeed, NRs are key
metabolic sensors that properly integrate environment changes and energy homeostasis [75–77].
Ultimately, a dysfunction of that intricate machinery leads to obesity and type 2-diabetes. Given this
important role of NRs, they become increasingly interesting therapeutic targets for various metabolic
diseases. In this context, we will particularly focus on: Thyroid hormone receptors (TRs),
Nuclear receptors partners (RXR), and nuclear receptor coregulators (PPAR and LXR).

4.1. Thyroid Hormone Receptors

At the cellular level, TH transcriptional regulation of metabolic target genes is achieved through
hormone-responsive nuclear transcription factors, TRs. NR1A1 and NR1A2 are two different genes
coding for TRs, which are alternatively spliced to generate four main isoforms: respectively TRα1,
TRα2 (which is unable to bind T3) for NR1A1 and TRβ1and TRβ2 for NR1A2. The TR isoforms exhibit
varying expression levels both developmentally and spatially within TH target tissues, suggesting a
specific tissue-dependent role for each TR isoform. TR transcriptional regulation is modulated by ligand
interactions [36,78]. Indeed, a series of highly controlled intracellular processes occurs to ultimately
allow for TH binding to its receptors and lead to TH induced target gene transcriptional regulations.
These processes include TH transport into the cells, activation or inactivation by deiodinases,
and differential expression levels of TR isoforms, nuclear corepressors and coactivators [36,79].
TRs bind to target genes on TREs mainly as functional heterodimeric complexes notably with retinoid
X receptors (RXRs) [36,78]. Many studies analyzing TREs sequences in the promoters of T3 target
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genes have shown that such DNA response elements consist of a core consensus sequence of the
hexanucleotide “half-site” (A/G)GGT(C/A/G)A, existing generally in pairs. Such TREs are qualified
as positive TREs (pTRE) or negative TREs (nTRE) [79].

At the brain level, all TR isoforms are highly coexpressed throughout the brain, especially in areas
related to energy balance such as the ARC, the PVN and the VMN hypothalamic nuclei. TH is the
master of HPT axis control by regulating hypothalamic TRH gene expression and production in a
classical negative feedback loop [80,81]. All the functional TRs are colocalized in the T3-responsive
TRH neurons in the PVN [82,83]. Indeed, TRs play isoform-specific roles in T3-dependent repression
of Trh gene [84]. Specifically, TRβ isoforms play important differential roles in the regulation of Trh
gene. Both TRβ isoforms bind to the Trh promoter at an unusual TRE as a functional heterodimer
complex with RXR [85,86], but they induce isoform-specific differential transcriptional regulations.

Three separate nTRE half-sites were characterized in the Trh proximal promoter (site 4 from −55
to −60 base pairs (bp); site 5 from +14 to +19 bp; and site 6 from +37 to +42 bp), all of them acting
in combination to allow T3-dependent negative regulations [87,88]. Among these nTREs, the Trh
promoter site 4 appears to be the most important for TH-induced regulation, as it transduces both
T3-independent transcriptional activation and T3-dependent repression [89]. Moreover, unlike the
other sites, the Trh site 4 preferentially binds TR/RXR heterodimers [90].

Likewise, TH directly represses Mc4r in the hypothalamus. The T3-induced Mc4r repression is
achieved via a putative nTRE (half-site), the TRE1, a non-classical sequence identified in the Mc4r
promoter, different to Trh site 4, and thought to bind monomeric nuclear receptors to mediate their
transcriptional activities [65]. According to Chip results, Mc4r TRE1 recruited high levels of TRβ
in presence of T3, whereas low levels were recruited in absence of T3. Indeed, overexpression of
TRβ1 or TRβ2 enhanced the repressive effects of T3 on Mc4r transcription, independently of the
isoforms. Furthermore, the same inhibitory TRβ mediated effect was observed in newborn and adult
mice. Besides, TRα isoform is also involved in Mc4r regulation. Overexpression of TRα reduced
T3-independent transcription. This result was confirmed in TRα knockout mice TRα ◦/◦, where Mc4r
expression was increased [65].

Collectively, extensive studies demonstrate that TRs are major physiological regulators of food
intake and energy homeostasis, not only peripherally, but also centrally through their action regulating
HPT axis. It is well documented that mice and humans with negative mutations of TRα and TRβ
display a variety of metabolic phenotypes of induced weight gain and reduced energy expenditure.
Consistent with these observations, recent data showed that selective TRβ knockdown specifically in
the VMN, a key brain region for the control of energy homeostasis, results in marked obesity similarly
to murine models with the most extreme forms of monogenic obesity [91]. Furthermore, in vivo
studies showed that activation of the TRβ isoform with selective agonists increased the metabolic rate
and prevents glucose intolerance, hyper-triglyceridaemia and body weight gain in obese or high-fat
diet fed rats [92]. Moreover, mutant mice with specific TRα mutation developed visceral adiposity
and insulin resistance [93]. Finally, it has been advanced that targeting TR subtypes improve global
metabolic outcomes [94].

4.2. Retinoid X Receptor (RXR)

Molecular endocrinology has known great progress after the characterization of orphan receptors,
in particular, the RXR. Indeed, the discovery of RXR and its ligand led to stupendous concepts in
the nuclear receptor research area [95,96]. Mainly, this important finding reveals a not yet defined
signaling pathway, which can be modulated by specific ligands. Furthermore, it led to define the
interconnection of multiple signaling pathways, especially by the discovery of RXR heterodimerization
with different nuclear receptors [97,98]. Three RXR subtypes were identified: RXRα, RXRβ and RXRγ,
each encoded by different genes [99]. The three isoforms are highly conserved and share the same
mechanisms of heterodimerization with partners. To mediate transcriptional regulation, RXR binds
as homodimer, to a direct repeat of half-sites separated by one nucleotide (i.e., a DR1 element) in
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response to RXR ligands, which might be 9-cis retinoic acid (9cRA). Because of the unique nucleotide
in the spacer between the twoDR1 half-sites, it seems that the DR1 sequence underwent Evolution to
generate novel binding motifs (DR2, DR3, DR4, etc.). This flexibility of RXR allows it to adopt multiple
conformations and thereby dimerize with different nuclear receptors [97,99]. Thus, RXR could play
dual roles in NR signaling.

Interestingly, RXRs are involved in several metabolic pathways because of their
heterodimerization with nuclear receptor partners, where they can modulate transcription through
ligand activation. Hence, the modulation of transcription could be achieved either by the RXR ligand
or the partner receptor ligand. This kind of dual-ligand regulation resulted into two categories
of heterodimers: permissive and non-permissive [100]. Permissive receptor partners like PPARs,
LXRs and FXR are those that can be activated either by ligands of RXR or its partner, and the presence
of both ligands results in a cooperative response [101,102]. Non-permissive partners like TRs, VDRs and
RARs, are those that can be only activated by the partner’s ligand and function primarily as hormone
receptors, while RXR is silent [103,104].

An example of RXR in regulating metabolic pathway is its strong heterodimerization with TR,
increasing thereby TR binding to the TRE and amplifying its transcriptional activity [105]. Indeed,
it has been shown that RXR increases stimulatory TR responses of TH target genes [106,107]. Moreover,
RXR/TR heterodimers play roles in both basal transactivation and T3 suppression of negatively
regulated genes. Nevertheless, the role of RXRs in T3-dependent repression showed more complexity
than T3-dependent activation. In a context of T3 negative regulation, in vitro results showed that
RXR subtypes improve T3 dependent Trh regulation, independently of their DNA-binding properties.
Likewise, RXRs increase the dominant negative effect of some mutant TRs on specific nTREs [108].
The activation of endogenous RXR by specific ligands increased Tsh mRNA levels [109] but did not
show any effect on Trh expression or preproTRH levels [110]. A functional study demonstrates that
knockdown and overexpression of RXRα and RXRβ change hypothalamic Trh levels, suggesting
differential roles of both RXR subtypes to modulate T3-dependent Trh transcription [111].

4.3. Peroxisome Proliferator-Activated Receptors (PPARs)

PPARs are nuclear transcription factors belonging to the steroid receptor superfamily.
They regulate target genes by binding to peroxisome proliferator hormone response elements (PPREs),
generally as a heterodimer with RXR [112]. There are three known PPAR isoforms, PPARα, PPARγ and
PPARδ, differentially expressed among tissues. PPARα is abundant in the liver, brown adipose tissue,
heart, and kidney; PPARγ is mainly enriched in the adipose tissue and PPARβ/δis ubiquitously
expressed throughout the body [113]. PPARs act as fundamental players in various physiological and
pathological processes, especially in energy metabolism. Particularly, PPARα and PPARγ isoforms have
been extensively documented mainly because they are activated by clinically-used molecules [114].
PPARα is described as a master regulator of lipid metabolism as it controls genes involved in
hepatic fatty acid oxidation. PPARα is increasingly described as a potential molecular target of
the hypolipidemic drugs for the treatment of dyslipidemia and fibrates. Its exogenous activation
decreases both circulating triglyceride levels and reduces lipid stores in liver, muscle, and adipose
tissue [115,116]. PPARγ is highly expressed in adipose tissue and plays key roles in adipogenesis,
promoting the expression of specific adipocyte markers such as adipocyte lipid binding protein (aP2),
phosphoenolpyruvate carboxylase (PEPCK) or lipoprotein lipase (LPL) [117,118]. Moreover, PPARγ is
also involved in fatty acid uptake and storage and in glucose metabolism in many other peripheral
tissues [119]. Interestingly, PPARγ is the target of thiazolidinedione (TZD), the only current class
of insulin-sensitizing drugs in patients with type 2 diabetes [120]. However, several side effects are
caused by long-term use of these drugs (mainly an increase of weight gain in both patients and rodent
models). Finally, the less-described PPAR isotype, PPARδ, appears as an attractive therapeutic target in
metabolic syndrome. PPARδ is ubiquitously expressed and is involved in fatty acid catabolism, energy
uncoupling in adipose tissue and muscle, insulin sensitizing, and the reduction of inflammation [121].
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Recent evidence supports a new potential role for PPARs in central energy homeostasis regulation.
In the CNS, all PPAR subtypes, PPARα, PPARδ and PPARγ, have been involved in the regulation of
energy homeostasis. Particularly, PPARγ seems to play a key role in the regulation of energy balance.
New studies suggest that exogenous activation of central PPARγ by its ligand TZD leads to weight
gain which may contribute to obesity [122–124].

Consistently, hypothalamic activation of central PPARγ by either specific agonists or
overexpression, leads to enhance positive energy balance. However, inhibition of PPARγ activity in
the brain with antagonists or by shRNA-mediated knockdown results in negative energy balance [123].
Interestingly, specific inhibition of PPARγ in the CNS improves the sensitivity of the leptin pathway in
the hypothalamus of high-fat diet-(HFD)-fed animals. Recently, a model of transgenic mice lacking
PPARγ in POMC neurons showed increased energy expenditure, while body weight and food intake
were reduced. Furthermore, these models showed improved glucose metabolism when exposed
to HFD [124]. Besides, peripheral administration of either a PPARγ activator or inhibitor failed to
affect food intake of mice with POMC-specific Pparγ ablation. Taken together, PPARγ signaling in
the brain seems to profoundly impact energy balance and to promote the obesity phenotype [125].
The same obesogenic effects have been demonstrated for activation of PPARα in the brain. Conversely,
PPARδ seems to play inverse role than PPARγ. In mutant mice lacking Pparδ via genetic deletion,
Pparγ and Pparα are highly expressed in the hypothalamus which would potentiate diet induced
obesity [126].

4.4. Liver X Receptors (LXRs)

Dysregulated cholesterol levels and metabolism represent hallmarks of diseases such as diabetes
and atherosclerosis. The LXRs are members of the nuclear receptor family and are considered as
major sensors of cholesterol and lipid homeostasis in mammals [127]. Two related LXRs isoforms
have been identified: LXRα (encoded by NR1H3) and LXRβ (encoded by NR1H2), which are a part
of the emerging significant newer drug targets within the NR family [128]. Both LXRs isoforms
are structurally similar and are activated by the same ligands, however, their tissue expression
differs. LXRα is highly expressed in metabolically active tissues and cell types such as liver,
intestine, adipose and macrophages, whereas LXRβ is expressed ubiquitously. These transcription
factors, activated by cholesterol metabolites, control the expression of a panel of genes involved in
cellular cholesterol traffic in a tissue-dependent manner, thereby protecting the cell from cholesterol
overload [129,130]. In addition to their central role in cholesterol metabolism, LXRs are key regulators
of lipogenesis and have an impact on systemic glucose homeostasis [128]. Thus, inhibiting hepatic
LXR seems unlikely to be a successful therapeutic strategy for type 2 diabetes.

Both LXR isoforms are expressed in the brain [131]. However, their central functions are not
as well understood as their roles in peripheral organs such as the liver. Neurons need a tightly
controlled cholesterol rate regulation for an appropriate synaptic functioning. There is evidence to
support that LXRs in the brain regulate pathways that maintain cholesterol balance and activate
anti-inflammatory pathways [132]. In fact, studies in isolated murine neurons and glial cells have
generally confirmed the ability of LXRs to regulate the expression of genes linked to cholesterol
transport, including ABCA1 and APOE24. Thus, the brain LXRs signaling exhibits neuroprotective
mechanisms and anti-inflammatory effects [133]. However, a perturbation of such pathway increased
both cellular cholesterol and amyloid-β levels in the brain. Such deregulation constitutes a fundamental
mechanism in the development of Alzheimer’s disease. Thereby, a particular link between LXR
signaling and Alzheimer’s disease has been established [134].

Recent data indicate that LXR could modulate set-points of the HPT axis andMC4R pathways in
the hypothalamus [135]. Thus, activated LXR represses TRH levels and induces the orexigenic peptides,
which may promote weight gain and obesity. In contrast, specific inactivation of LXRs enhances Trh
expression in the hypothalamus [135] and induces the browning of WAT, thereby ameliorating obesity
outcomes [136,137].
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5. TR Crosstalk with PPAR and LXR to Regulate Metabolism

It is well established that the thyroid hormone is a key factor regulating basal metabolic rate,
thermogenesis, glucose metabolism, lipolysis, and HPT axis. Increasing data have focused on specific
actions of TH in metabolic regulations. These include the molecular mechanisms of TRs actions on
cholesterol and carbohydrate metabolism, through direct actions on gene expression, as monomers,
homodimers or heterodimers with RXR. TRs could also mediate indirect actions by interfering with
other NRs signaling pathways to regulate common target genes [138]. Indeed, TH signaling, especially
in metabolic regulation, involves TR crosstalk with other nuclear hormone receptors including
PPARα, PPARγ and LXR [138]. Such crosstalk has not only been demonstrated in vitro but also
in vivo, using mouse models. They could impact different molecular levels of gene regulation
(Figure 2) [139,140].
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5.1. TR Peripheral Crosstalk in Regulating Metabolism

Although, NRs interaction remains a complex mechanism that requires further investigation,
it could be explained at least by the structural similarity in the DNA and ligand binding domains
among NRs. All TR, PPAR and LXR are ligand-activated NRs that share similar structure and mode
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of action by binding to DNA response elements to form heterodimers with RXR [96]. First, the DNA
binding domains are highly conserved among these NRs, containing two zinc fingers and arranged as
direct repeats of hexameric half-sites, although the spacing of the hexamers varies among the different
receptors. Second, NRs also share a very conserved leucine zipper, which is the interface for RXR
heterodimerization [96]. Thus, NRs may compete for limiting amounts of RXR. Such a competition
for RXR influences gene expression [141]. Moreover, TRs bind to TH with a higher affinity than
PPAR and LXR bind to their natural ligands, conferring to TR a dominance in its interaction with
RXR, and reflected by a greater effect on coregulated genes [138]. Third, this competition could be
extended to common coactivators and corepressors. Indeed, the ligand binding domain (LBD), apart its
ligand sequences specific for each receptor, contains regions interacting with other receptors as well as
coactivators and corepressors [138].

Crosstalk between TR, PPAR and LXR has been reported, especially on cholesterol, lipid and
glucose metabolism-related genes. Previous in vitro studies have underlined interactions between
PPAR signaling and TR-dependent pathways [142]. Crosstalk between TR and PPAR signals could
involve competition for their common heterodimeric-partner (RXR) [143], as well as for their respective
responsive elements in target gene promoters. Indeed, TR has been shown to bind PPRE [144,145].
Nevertheless, the response to PPAR agonists may depend on the interactions between PPARs and TRs.
In most cases, non-ligand binding TR mutant represses PPAR transcriptional activity [139].

Both TR and PPAR regulate expression of key enzymes of the fatty acid oxidation carnitine
palmitoyl transferase Ia (CPT-Ia) and acyl–CoA oxidase (ACO). Crosstalk between TR and PPARα
has been observed in regulation of CPT-Ia and ACO, especially in a mouse model of TRα (P398H)
mutant [139]. This TRα mutant isoform is still able to bind to PPRE, thereby inhibiting PPARα-induced
enzyme expression and, causing fatty acid accumulation in the livers of these mice [139]. Furthermore,
lipoprotein lipase is regulated by both PPARγ. It was demonstrated that the mutant TRβ PV
represses the PPARγ induced lipoprotein lipase gene expression, by binding to PPRE and by recruiting
corepressors [137].

The role of LXR as a coordinator of both lipid and carbohydrate metabolism suggests the potential
for interactions with TR. ATP-binding cassette transporter A1 (ABCA1) is a transporter of cellular
non-esterified cholesterol and phospholipids in the liver, mainly regulated by LXR. TR competes
with LXR for binding to the LXRE and inhibiting LXR-mediated Abca1 gene expression [146,147].
Such examples of crosstalk and interaction are also observed in carbohydrate metabolism. A recent
study describes that carbohydrate-response element-binding protein (ChREBP), a major transcription
factor controlling the activation of glucose-induced lipogenesis in the liver, was characterized as a direct
target of TRβ and LXR regulated in a tissue-selective manner. Both in vivo and in vitro assays showed
a crosstalk between LXR and TRβ signaling on the ChREBP promoter, especially in the liver [148,149].

Furthermore, recent investigations support a complex interaction between LXR and PPARα in
the regulation of glucose and lipid metabolism. The two NRs may either cooperate or have opposite
effects on gene expression [150,151]. Yet the exact mechanisms underlying such crosstalk remain to
be determined.

5.2. TR Crosstalk in the Regulation of Central Metabolism

Recent studies have demonstrated the expression of NRs within different brain regions, in
particular at the hypothalamic level, the integrator of whole body energy homeostasis [77]. However,
little is known about their role in the central control of energy homeostasis. Increasing data show
interactions between TR and PPAR or LXR in the peripheral tissues (described above). Besides,
such crosstalk at the central level remains less investigated. In this context, several studies focused on
hypothalamic interactions between the different signaling pathways controlling metabolism.

Recent evidence supports a potential role for PPARs in the central energy homeostasis
regulation [152]. In the CNS, all PPAR subtypes are expressed at different levels, however their function
in the brain is not well elucidated. Of the three, PPARγ signaling pathway is the best characterized in
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the brain. Indeed, PPARγ and its cognate agonists appear to be attractive therapeutic targets for various
disorders of the central nervous system [153,154]. PPARγ agonists have shown promising results in
animal models of Alzheimer’s disease, stroke, multiple sclerosis, Parkinson’s disease, amyotrophic
lateral sclerosis, and pituitary adenoma [155]. Further, it was confirmed that PPARγ isoform is
expressed in key neuronal subsets regulating energy homeostasis [156]. More importantly, a recent
study has demonstrated that mice lacking PPARγ in POMC neurons displayed increased energy
expenditure and decreased fat mass and food intake. The absence of PPARγ was also associated
with improved glucose metabolism and increased insulin sensitivity. Peripheral administration of
either a PPARγ activator or inhibitor failed to affect food intake of mice with POMC-specific PPARγ

ablation [124]. Besides, PPARα showed also an important effect on the brain. Intra-cerebroventricular
(icv) and Intra-hypothalamic administration of the PPARα activator Wy14643 reduced glucose
utilization and increased food intake in wild-type but not in PPARα-deficient mice [157]. Importantly,
a previous report showed that the peripheral activation of PPARγ by rosiglitazone treatment affects
hypothalamic-pituitary-thyroid axis and thyroid hormone release [143]. Taken together, these results
suggest a pivotal role of hypothalamic PPARγ signaling pathway on central metabolic homeostasis,
particularly on TH-dependent gene regulations.

Accordingly, an in vivo study tested the hypothesis of crosstalk between hypothalamic PPARγ
and TRβ on T3-dependent regulation of the Trh promoter [158]. Our results showed first, that icv
administration of PPARγ agonists leads to increased T3-independent Trh transcription and increased
circulating T4 levels. In contrast, PPARγ antagonist did not affect Trh transcriptional activity in
the absence of T3, but interfered with T3-dependent Trh repression. Then, silencing PPARγ protein
levels by using small hairpin RNA (shRNA) increased T3-independent Trh transcription, whilst
PPARγ overexpression abrogated T3-dependent Trh repression. Interestingly, the effect of PPARγ
overexpression was reversed by co-expression of either TRβ1 or RXR [158]. These results suggest that
PPARγ may interfere with TR signaling at the hypothalamic level, through a competition for limiting
amounts of RXR.

LXRs are one class of nuclear receptors which are believed to be master integrators of cholesterol
metabolism in the periphery [159]. Recently, their activation with a specific agonist has been shown
to enhance cholesterol metabolism also in the CNS [160]. Furthermore, LXRs are expressed in the
CNS, especially in the hypothalamus [161]. Thus, it suggests that LXR could play physiological and
metabolic functions in the brain. Indeed, several arguments are in favor of this hypothesis, particularly
via a crosstalk between the LXR and TR signaling pathways.

A recent study has revealed a crosstalk between TR and LXR in the regulation of Selective
Alzheimer’s disease (AD) indicator-1 (Seladin-1) gene expression in an AD mouse model.
Overexpressing Seladin-1 in the neurons increases the amount of cholesterol and avoids β-amyloid
accumulation, oxidative stress and neurons apoptosis [162]. Both NRs have been shown to be involved
in Seladin-1 gene expression, TR-β and LXR-α competitively up-regulating the human Seladin-1
promoter [140]. These results suggest that TR and LXR would co-regulate lipid metabolism in CNS.
Interestingly LXR could be an attractive therapeutic target for neurodegenerative diseases [163,164].

Also, a crosstalk between TR and LXR has been recently reported, in the context of the
hypothalamic TH negative feedback loop regulation: key target genes involved in the central control
of metabolism, Trh and Mc4r, were impacted by this crosstalk between TR and LXR [135]. Indeed,
using in vivo gene transfer, we explored the involvement of LXR in the hypothalamic metabolic
pathways, analyzing the interference of LXR with the transcriptional regulation induced by TRs.
Our results showed that activation of LXR by its specific agonist GW3965 repressed the transcriptional
activity of both Trh and Mc4r promoters, and this only occurred in euthyroid mice. This repression
was restored by TH treatment in hypothyroid mice, yet only in the Trh promoter [135]. Conversely,
LXR knocked-down abrogated this repression, leading to a relative activation of the Trh promoter in the
PVN. Further, in vivo ChIP results, showed that LXR was recruited to the Trh promoter region only in
the presence of T3. Yet, no simultaneous recruitment of RXR and LXR on the Trh promoter region were
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observed [135]. Nevertheless, LXR KO mice showed enhanced secretion of TSH, thereby stimulating
THs levels. Collectively, these results provide evidence that depletion of LXRs would abrogate the TH
negative feedback loop in the hypothalamus and cause a loss of TRs in the PVN area [136,137].

Furthermore, the T3 signaling pathway could affect LXR transcriptional regulation. Indeed,
qPCR results showed that T3 treatment of newborn mice induced the hypothalamic regulation of a
number of LXR target genes implicated in metabolism and inflammation. Interestingly, key genes of
inflammation, Pparα, Tnfα and Il1 showed significant hypothalamic mRNA levels increase afterT3
treatment [135]. Thus, as in the periphery, the later genes would be LXR/TR targets in the
hypothalamus. These results suggest that crosstalk between LXR and TR may be involved in the central
regulation of inflammation. Since LXR activation by its specific ligand showed anti-inflammatory
effects [165–167], this property could be exploited also in the CNS.

6. Conclusions

It is well demonstrated that TH are endocrine messengers with a profound impact on energy
expenditure and appetite regulation. Accumulating evidences obtained from genetic mouse models
and pharmacologic approaches pinpoint the TH signaling pathway as a master driver of metabolism
regulation by acting, to a large extent, at the central level. Several studies have elegantly elucidated
molecular mechanisms of action of TH in the brain. A continuous interaction between TH and key
regulatory mechanisms coexist in the hypothalamus for a tightly controlled body weight and optimal
energy balance. Remarkably, effects of THs are interrelated with key energy sensors in the brain.
In addition, TH-mediated action is absolutely dependent upon its cognate receptors TRs that directly
bind to target genes. Interestingly, TRs isoforms interact with other nuclear receptors that play a key
role in metabolic regulation such as PPAR and LXR. Thus a deeper understanding of the mechanisms
and interactions of TH signaling pathways in the hypothalamic control of metabolism will lead to
identifying biomarkers and effective and selective targets that will improve the therapy of energy
balance disorders, such as obesity.
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