Supplementary material

The perturbation of pulmonary surfactant by bacterial lipopolysaccharide and its reversal by polymyxin B: function and structure

Kolomaznik Maros^{a,b}, Liskayova Gilda^c, Kanjakova Nina^c, Hubcik Lukas^c, Uhrikova Daniela*^c, Calkovska Andrea^{a,b}

^aMartin Biomedical Center and ^bDepartment of Physiology, Jessenius Faculty of Medicine in Martin; Comenius University in Bratislava, Slovakia; ^cDepartment of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia

postal address of affiliation

^{a,b}Department of Physiology and BioMed, Jessenius Faculty of Medicine, Comenius University, Mala Hora 4C, SK-036 01 Martin, Slovakia

^cDepartment of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University, Odbojarov 10, SK-832 32 Bratislava 3, Slovakia

e-mail addresses

Kolomaznik Maros - maros.kolomaznik@uniba.sk Liskayova Gilda - liskayova@fpharm.uniba.sk Kanjakova Nina— kanjakova2@uniba.sk Hubcik Lukas - hubcik@fpharm.uniba.sk Uhrikova Daniela - daniela.uhrikova@fpharm.uniba.sk Calkovska Andrea - andrea.calkovska@jfmed.uniba.sk

Corresponding author

*Daniela Uhrikova, prof.

Department of Physical Chemistry of Drugs
Faculty of Pharmacy
Comenius University
Odbojarov 10
SK-832 32 Bratislava 3
Slovakia
daniela.uhrikova@fpharm.uniba.sk

Figure S1. Structure of polymyxin B (PxB).

Figure S2. Minimum surface tension (*γmin*) of modified porcine surfactant (PSUR) at phospholipid concentration 1.75 mg/ml with lipopolysaccharide (LPS) 1 % and polymyxin B (PxB) 1, 2, 3 % (A), LPS 5 % and PxB 1, 2, 3 % (B), LPS 10 % and PxB 1, 2, 3 % (C) and LPS 20 % and PxB 1, 2, 3 % (D) during the whole period of pulsation 5 minutes. Values are given as mean±SEM.

Figure S3. Maximum surface tension (*γmax*) of modified porcine surfactant (PSUR) at phospholipid concentration 1.75 mg/ml with lipopolysaccharide (LPS) 1 % and polymyxin B (PxB) 1, 2, 3 % (A), LPS 5 % and PxB 1, 2, 3 % (B), LPS 10 % and PxB 1, 2, 3 % (C) and LPS 20 % and PxB 1, 2, 3 % (D) during the whole period of pulsation 5 minutes. Values are given as mean±SEM.

Figure S4. Microscopy photos recorded in normal and polarized light for aqueous dispersion of modified porcine surfactant (PSUR) (A and B); PSUR and 10 % LPS incubated for 30 min at 37 °C (C and D); PSUR and 10 % LPS incubated for 2 hours at 37 °C (E and F); PSUR/ 10 % LPS and 3 % PxB (G and H).

Figure S5. SAXS patterns of modified porcine surfactant (PSUR); PSUR and 5 % LPS; PSUR and 10 % LPS incubated for 2 hours; PSUR/10 % LPS and 2 % PxB; PSUR/10 % LPS and 3 % PxB at 37 °C. An arrow indicates the first order peak of a lamellar phase with $d \sim 12$ -13 nm. WAXS patterns of PSUR, PSUR/10% LPS, PSUR/10 % LPS and 3 % PxB (37°C).

Figure S6. SAXS/WAXS patterns of fully hydrated DPPC: tilted gel L_{β} phase at 20 °C (repeat distance $d \sim 6.3$ nm); rippled gel P_{β} phase at 37 °C (repeat distance $d \sim 7.3$ nm); liquid-crystalline L_{α} phase at 60 °C (repeat distance $d \sim 6.6$ nm). Dashed red lines represent patterns of PSUR at 37 °C.