

The Expression of CARK1 or RCAR11 Driven by Synthetic Promoters Increases Drought Tolerance in Arabidopsis thaliana

Hu Ge, Xiaoyi Li, Shisi Chen, Mengru Zhang, Zhibin Liu, Jianmei Wang, Xufeng Li and Yi Yang *

Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; gehu1992@sina.com (H.G.); yiendeavor@gmail.com (X.L.); sschenn@163.com (S.C.); zmrwks@sina.com (M.Z.); lzb2003@163.com (Z.L.); wangjianmei@scu.edu.cn (J.W.); lixufeng0507@gmail.com (X.L.)

* Correspondence: yangyi528@scu.edu.cn

Figure S1. Construction of vectors for transgenic plants. Construction of vectors of Dp:*CARK1* and ANDp:*CARK1* transgenic plants were the same as Ap:*CARK1* transgenic plants.

Figure S2. Relative expression levels of effector genes of transgenic plants under normal conditions were determined by qRT-PCR analysis.

Figure S3. Expression levels of *CARK1* and *RCAR11* under the treatment of ABA or D-mannitol by qRT-PCR analysis. Twelve-day-old seedlings were incubated in MS liquid medium with or without 50 µM ABA for 3 h and 200 mM D-mannitol for 2 h. The total *CARK1* and *RCAR11* were amplified by primers F and R, respectively. The exogenous *CARK1* was amplified by primers F(HA) and R. The exogenous *RCAR11* was amplified by primers F and R(FLAG). *ACTIN2/8* was used as an internal control. The expression level of total *CARK1* or *RCAR11* was 1.

Figure S4. Expression levels of exogenous *CARK1* and *RCAR11* under the treatment of ABA or D-mannitol by qRT-PCR analysis. **(A) ABA** 12-day-old seedlings were incubated in MS liquid medium with or without 50 μ M ABA for 3 h. **(B) D-Mannitol** 12-day-old seedlings were incubated in MS liquid medium with or without 200 mM D-mannitol for 2 h. The exogenous *CARK1* was amplified by primers F(HA) and R(CARK1), and the exogenous *RCAR11* was amplified by primers F(RCAR11) and R(FLAG).

Figure S5. Cotyledon greening assay. Seeds were in MS medium supplemented with or without 0.1 μ M ABA, and cotyledon greening rates were recorded after 5 days. The ratio of cotyledon greening was determined for over 70 seeds from three independent experiments.

Figure S6. Cotyledon greening assay.

Figure S7. Relative expression levels of total *CARK1* by qRT-PCR analysis. Twelve-day-old seedlings were incubated in MS liquid medium with or without 50 μ M ABA for 3 h and 200 mM D-mannitol for 2 h.

Figure S8. Relative expression levels of exogenous *CARK1* by qRT-PCR analysis. Twelve-day-old seedlings were incubated in MS liquid medium with or without 50 μ M ABA for 3 h. The primers were F(CARK1) and R(NOS).

Figure S9. Phenotypic analysis of seeds. (A) Dry weight of seeds. Weighing 0.1 mL volume of dried seeds of all transgenic plants under normal growth conditions. (B) The size of seeds. The image was taken by the microscope.

Figure S10. The growth of plants under normal conditions. **(A)** and **(B)** Two-week-old *Arabidopsis thaliana* plants in soil. **(C)** The growth of *Arabidopsis thaliana* plants in MS medium.

Table S1. Survival rate of drought tolerance assay.

	WT 35S:C ARK1	Ap:CARK1				Dp:CARK1				ANDp:CARK1			Dp:RCAR11-Ap:CARK1						
		ARK1	#2	#6	#7	#8	#10	#10	#12	#1 4	#18	#3	#8	#13	#1	#4	#5	#7	#10
1	0	40%	-	-	-	-	-	0	51%	-	0	100 %	100 %	100 %	-	-	-	-	-
2	39%	36%	29%	0	18 %	100 %	32 %	100 %	17%	-	0	67 %	100 %	100 %	-	-	-	-	-
3	0	0	100 %	5%	0	100 %	0	100 %	0	50 %	100 %	100 %	96 %	95%	95 %	100 %	7%	95 %	70 %
4	0	6%	0	20 %	0	0	5%	2%	0	0	30%	85 %	100 %	100 %	100 %	100 %	90 %	100 %	96 %

Table S2. Primers for assays in this study.

Assays	Vectors/Genes	Primer sequences (5'-3')				
		F(HindIII):GCCTGTAAGCTTGCACACGA				
	Dp:CARK1	CGTAAACGT				
		R(Xba I):ATCTAGAGTCCCCGTGTTCT				
		CTCCAAATG				
	Ap:CARK1	F(HindIII):GCCTGTAAGCTTGCCACGTA				
		GAGAGCAACT				
		R(Xba I):ATCTAGAGTCCCCGTGTTCT				
Primers for transgenic		CTCCAAATG				
plant construction		F(HindIII):GCCTGTAAGCTTGCACACGA				
	ANDp:CARK1	CGTAAACGT				
		R(Xba I):ATCTAGAGTCCCCGTGTTCT				
		CTCCAAATG				
		F(HindIII):GACCATGATTACGCCAAGCT				
	Dp:RCA11-Ap:CARK1	TGCCACACGACGTAAA				
		R(HindIII):TGCTCTCTACGTGGCAAGCT				
		TGATCTAGTAA CATAG				
	Total CARK1	F:ACCTTCCAGTCATTCAGA				
		R:ACCATAGTTATCCGTTATATCC				
		F(HA):CCATACGACGTCCCAGACTACG				
	Exogenous CARK1	R(CARK1):TCGCAATCTCGAAACCATTG				
		ATACCT				
	Total PCAP11	F:ATCGTCATCAGTGGATTA				
	Total KCAKII	R:TAATTCGTCAGCCTATGT				
Primers for qRT-PCR	Everypour DCAD11	F(RCAR11):ATCGTCATCAGTGGATTA				
analysis	Exogenous KCAKII	R(FLAG):CTTATCGTCGTCATCCTTGTA				
	RD204	F:TCAACACACACCAGCAGCAC				
	KD29A	R:ATCGGAAGACACGACAGGAA				
	DDOOD	F:ATCGGAAGACACGACAGGAA				
	KD29D	R:TCTCTTTTCGCTTCCCAGT				
	ACTINI2/0	F:GGTAACATTGTGCTCAGTGGTGG				
	ACTIN2/8	R:AACGACCTTAATCTTCATGCTGC				

Assays	Vectors/Genes	Primer sequences (5'-3')			
	Dp:eGFP	F(HindIII):GCCTGTAAGCTTGCACACGACGTAAAC GT			
		R(XbaI):ATCTAGAGTCCCCCGTGTTCTCTCCAAATG			
	Ap:eGFP	F(HindIII):GCCTGTAAGCTTGCCACGTAGAGAGCA			
		ACT			
		R(XbaI):ATCTAGAGTCCCCCGTGTTCTCTCCAAATG			
	ANDp:eGFP	F(HindIII):GCCTGTAAGCTTGCACACGACGTAAAC			
		GT			
		R(XbaI):ATCTAGAGTCCCCGTGTTCTCTCCAAATG			
	Dp:FLUC	F(HindIII):GTCGACGGTATCGATAAGCTTGCCACA			
		CGACGTAAA			
Duine and for a still of its		R(BamHI):CGCTCTAGAACTAGTGGATCCGTCCCCC			
Primers for synthetic		GTGTTCTC			
promoter analysis	Ap:FLUC	F(HindIII):GTCGACGGTATCGATAAGCTTGCCACGT			
		AGAGAGCA			
		R(BamHI):CGCTCTAGAACTAGTGGATCCGTCCCCC			
		GTGTTCTC			
	ANDp:FLUC	F(HindIII):GTCGACGGTATCGATAAGCTTGCCACA			
		CGACGTAAA			
		R(BamHI):CGCTCTAGAACTAGTGGATCCGTCCCCC			
		GTGTTCTC			
		F(XbaI):GAGAACACGGGGGGACTCTAGAATGGCAG			
	35S:DREB2A	TTTATGATCAGAGTGGAGATA			
		R(SacI):CGATCGGGGGAAATTCGAGCTCTTAGTTCTC CAGATC			

Table S4. Dry weight of seeds of all transgenic plants under normal growth conditions.

Lines	Weight (g)
WT	0.0775 ± 0.0011
35S:CARK1	0.0735 ± 0.0070
Ap:CARK1 #2	0.0763 ± 0.0014
Ap:CARK1 #8	0.0763 ± 0.0049
Dp:CARK1 #10	0.0826 ± 0.0011
Dp:CARK1 #12	0.0751 ± 0.0013
ANDp:CARK1 #3	0.0758 ± 0.0014
ANDp:CARK1 #8	0.0841±0.0005
Dp:RCAR11-Ap:CARK1 #5	0.0798±0.0028
Dp:RCAR11-Ap:CARK1 #7	0.0748 ± 0.0009