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Abstract: Melatonin (N-acetyl-5-methoxy-tryptamine) is a universal molecule that is present in
animals and plants. It has been detected in different kinds of plants and organs in different levels.
Melatonin in plants shares the same initial biosynthesis compound with auxin, and therefore
functions as indole-3-acetic acid like hormones. Moreover, melatonin is involved in regulating
plant growth and development, protecting plants against biotic and abiotic stresses, such as salt,
drought, cold, heat and heavy metal stresses. Melatonin improves the stress tolerance of plants
via a direct pathway, which scavenges reactive oxygen species directly, and indirect pathways,
such as increasing antioxidate enzymes activity, photosynthetic efficiency and metabolites content.
In addition, melatonin plays a role in regulating gene expression, and hence affects performance
of plants. In this review, the biosynthesis pathway, growth and development regulation, and the
environment stress response of melatonin in plants are summarized and future research directions
and priorities of melatonin in plants are speculated.
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1. Introduction

In the growth and development process of plants, numerous factors, especially environmental
stresses, are involved in molding the status of the plant. Biotic and abiotic stresses will induce yield
reduction, growth retardation, senescence and even death. Plants develop various strategies to alleviate
the damage induced by different stresses. Plenty of molecules such as ethylene [1], nitric oxide [2],
hydrogen sulfide [3], calcium [4] and phytohormones, such as jasmonic acid [5], gibberellin acid [6]
and abscisic acid [7], are involved in plant stress responses. Nowadays, another amazing molecule
named melatonin draws the attention of researchers. Plenty of investigations found that melatonin
plays an essential role in plant development and stress responses.

Melatonin (N-acetyl-5-methoxy-tryptamine) was so-named, when it was first identified in 1958,
because it could reverse the darkening effect of melanocyte stimulating hormone (MSH) [8]. In the first
four decades after melatonin was isolated, studies on melatonin focused on animals. It was shown
that melatonin played key roles in the regulation of antioxidant enzymes activity [9,10], circadian
rhythms [11], coronary heart disease [12], Alzheimer’s disease [13], physical condition and emotional
status [14]. In 1995, melatonin was discovered in plants as well [15,16]. Since then, melatonin has been
detected in different plant species (Table 1). Further investigations have found that melatonin is also a
widespread and multifunctional metabolite in the plant kingdom. It is distributed in the leaves, stems,
roots, fruits and seeds of various plants (Table 1). It is not only associated with plant stress response,

Int. J. Mol. Sci. 2018, 19, 1528; doi:10.3390/ijms19051528 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-8914-235X
http://www.mdpi.com/1422-0067/19/5/1528?type=check_update&version=1
http://dx.doi.org/10.3390/ijms19051528
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 1528 2 of 14

such as cold [17], salinity [18], drought [19], oxidative [20] and nutritional deficiency [21], but also
relative to development regulation, such as growth [22], senescence [23,24], root organogenesis [25]
and flowering [26].

Recently, the regulation and function of melatonin in plants has been extensively and deeply
investigated, and regulation mechanisms related to melatonin have increasingly been discovered.
In this review, the biosynthesis pathway, growth and development regulation, and environment stress
response of melatonin in plants are summarized and future research directions and priorities into
melatonin in plants are speculated. It will contribute to the understanding of the current situation and
consider the future direction of melatonin in plants research.

2. Biosynthesis of Melatonin in Plant

In the animal system, melatonin is secreted in the pineal gland. However, there is no such organ in
plants, and this difference implies that the melatonin biosynthesis pathway in plants is slightly different
from that in animals. Contrary to the animal system, melatonin distributes in various organs, such as the
root, stem and leaf in plants. Multiple factors can stimulate melatonin biosynthesis in plants. Light is
one environment factor that regulates the biosynthesis of melatonin [27]. In addition, the development
process, such as fruit maturation [28], leaf development [29] and senescence [30], and environment
stresses, including ultraviolet-B (UV-B) radiation [31], drought, cold [32] and heat [33], are involved to
stimulate biosynthesis of melatonin. In a wide range of plant species, melatonin biosynthesis begins
from tryptophan. It is catalyzed by tryptophan decarboxylase (TDC) and converted to tryptamine,
and then tryptamine 5-hydroxylase (T5H) catalyzes tryptamine to serotonin, which will be converted
to melatonin via two steps [34]. In some other plants, such as Hypericum perforatum, tryptophan
is catalyzed into 5-hydroxytrytophan by tryptophan 5-hydroxylase (TPH), and then TDC/AADC
(aromatic-L-amino-acid decarboxylase) converts 5-hydroxytrytophan to serotonin [35]. This pathway
is the same as that in animals. In the next two steps, serotonin is converted to N-acetyl-serotonin
by serotonin N-acetyltransferase (SNAT)/arylalkylamine N-acetyltransferase (AANAT), and then
N-acetyl-serotonin methyltransferase (ASMT)/hydroxyindole-O-methyltransferase (HIOMT) catalyzes
N-acetyl-serotonin into melatonin. Additionally, tryptamine can be catalyzed by SNAT into
N-acetyl-tryptamine, which is not further converted into N-acetyl-serotonin by T5H [36]. It is difficult
to determine whether there is a pathway to converting N-acetyl-tryptamine into N-acetyl-serotonin.
The other pathway is to convert serotonin into 5-methoxy-tryptamine by HIOMT and, finally,
to catalyze 5-methoxy-tryptamine into melatonin by SNAT [37,38] (Figure 1). Meanwhile, the chemical
structures of the compounds are showed in Figure 2. Recently, a reverse melatonin pathway was
reported, in which N-acetyl-serotonin is converted into serotonin by N-acetyl-serotonin deacetylase [39].
Furthermore, tryptophan is not only the resource of melatonin, but also the precursor of indole-3-acetic
acid (IAA), maybe implying the multifunctional role of melatonin in plants.
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Figure 1. Proposed biosynthesis pathway of melatonin in plants. TDC, Tryptophan decarboxylase; 
T5H, tryptamine 5-hydroxylase; SNAT: serotonin-N-acetyltransferase; AANAT: arylalkylamine 
N-acetyltransferase; ASMT: N-aceylserotonin methyltransferase; HIOMT, 
hydroxyindole-O-methyltransferase; AADC, aromatic-L-amino-acid decarboxylase; TPH: 
tryptophan hydroxylase; ASDAC: N-acetylserotonin deacetylase. 

 
Figure 2. Chemical structures of all the compounds in melatonin biosynthesis pathway. 

Figure 1. Proposed biosynthesis pathway of melatonin in plants. TDC, Tryptophan decarboxylase;
T5H, tryptamine 5-hydroxylase; SNAT: serotonin-N-acetyltransferase; AANAT: arylalkylamine
N-acetyltransferase; ASMT: N-aceylserotonin methyltransferase; HIOMT, hydroxyindole-O-
methyltransferase; AADC, aromatic-L-amino-acid decarboxylase; TPH: tryptophan hydroxylase;
ASDAC: N-acetylserotonin deacetylase.
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3. Endogenous Melatonin in Plants

Since melatonin was identified in plants [15,16], the endogenous melatonin in plants was
investigated deeply. It was proved that melatonin widely existed in various plant species, including
medicinal herbs, crops and fruit, although melatonin content was found to vary in different plants
(see in Table 1). For example, the melatonin content was 1000 ng/g in several herbs, which was
15–100 fold higher than the average level in other plants [40–42]. In addition, the detection of lupin
(Lupinus albus L.) and barley (Hordeum Vulgare L.) showed that distributions of endogenous melatonin
were in conformity in different organs and development periods [43]. Similar results were also found
in morning glory (Pharbitis nil Choisy) and tomato (Lycopersicon esculentum Mill.) plants: melatonin
content generally increased during the ripening process [28]. Investigation into rice (Oryza sativa cv.
Asahi) leaves in the senescence process demonstrated that melatonin levels were higher in leaves
under constant light conditions than under constant darkness conditions. This result suggested that
melatonin biosynthesis during senescence development was regulated by light signals [27]. Recently,
data showed that endogenous melatonin in plants could be affected by environmental conditions.
Melatonin content in tomato plants cultured in open fields was higher than that of plants cultured
in chambers [44]. Coincidentally, another research found that the melatonin level of Vitis vinifera
decreased dramatically in the daytime and was highest in the darkness [45]. These results suggested
that light was a suppression factor of melatonin. However, after treated with chemical stress, melatonin
content in barley (Hordeum vulgare L.) increased significantly [46]. Similar results were detected in
lupin (Lupinus albus). The contents of endogenous melatonin increased under abiotic stresses [32].
Meanwhile, melatonin in rice seedlings was enhanced by high temperature [33]. All data above
suggested that the stress condition could induce the biosynthesis of endogenous melatonin in plants.
Additionally, it is proved that melatonin shared the same pathway with indole 3-acetic acid, which is
the auxin (Figure 1). OsIDO (Oryza sativa indoleamine 2,3-dioxygenase) transgenic tomato plant showed
lower melatonin content. This suggested that indoleamine 2, 3-dioxygenase (IDO) was involved in the
regulation of plant melatonin metabolism [47].

Table 1. Distribution of melatonin in plants and organs.

Plant Species Organ Ref.

Lycopersicon pimpinellifolium fruit [16]
Lycopersicon esculentum Mill. fruit [16]

Musa nana Lour. fruit [16]
Cucumis sativus L. root [16]

Beta vulgaris L. leaf [16]
Nicotiana tabacum stem tuber [16]

Solanum tuberosum L. hypocotyl [22]
Lupinus albus L. stem [25]

Hypericum perforatum cv. Anthos seed [28]
Pharbitis nil Choisy fruit [28]
L. esculen-tum Mill. root, leaf, stem, seed [31]
Glycyrrhiza uralensis fruit [40]

Musa ensete fruit [40]
Fragaria magna root [40]
Raphnus sativus seed [40]
Punica granatum leaf [40]

Brassica oleraceae var. capitata leaf [40]
Brassica oleraceae var. botrytis leaf [40]

Brassica rapa corm [40]
Allium cepa corm [40]

Allium sativum seed [40]
Hordeum vulagare fruit [40]
Ananas comosus seed [40]
Oryza sativum seed [40]
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Table 1. Cont.

Plant Species Organ Ref.

Zea mays fruit [40]
Malus domestica tuber [40]

Zingiber officinale root [40]
Daucus carota fruit [40]

Lycopersicon esculentum fruit [40]
Cucumis sativus cortex [41]

Phellodendron amurense Rupr. cortex [41]
Mori Albae leaf [41]

Epimedium brevicornum Maxim whole leaf [41]
Coptis chinensis Franch root [41]

Rheum palmatum L. root [41]
Polygala tenuifolia Willd. fruit [41]

Coruns officinalis Sieb. root [41]
Gentiana scabra Bge whole plant [41]

Pirola decorata H. root [41]
Angelica sinensis Oliv. stem [41]
Taxillus chinensis DC fruit [41]
Lycium barbarum L. leaf [41]

Aloe vela L. shoot [41]
Andrographis paniculats Burm. cortex [41]

Eucommia ulmoides Oliv seed [41]
Raphanus sativus L. flower [41]

Syzygium aromaticum L. fruit [41]
Rubus chingii Hu root [41]

Scrophularia ningpoensis Hemsl. shoot [41]
Agastaches rugosa whole plant [41]

Lobelia chinesis Lour fruit, seed [41]
Ziziphus jujuba Mill. root [41]
Ophiopogon japonicus root [41]
Sophora flavescens Ait. root [41]
Salvia miltiorrhiza Bge. root [41]

Gentiana macrophylla Pall. root [41]
Scutellaria amoena C.H. Wright whole plant [41]
Desmodium styracifolium Merr. root [41]

Panax notoginsneg Burk whole plant [41]
Leonurus japonicus Houtt. flower [41]
Dendranthema morifolium root [41]

Arnebia euchroma root [41]
Pueraria lobata Willd stem [41]

Caulis Polygonam multiflorum Thunb flower [41]
Lonicera japonica Thunb rhizome [41]

Curcuma aeruginosa Roxb root [41]
Glycyrrhiza uralensis Fisch root [41]

Rehmannia glutinosa fruit [41]
Schisondra chinensis shoot [41]
Artemisia annua L. root [41]

Isatis indigotica Fort root [41]
Saposhmikovia divaricata whole plant [41]

Mahonia bealei (Fort.) leaf [41]
Forsythia suspensa (Thunb.) rhizome [41]
Polygonatum sibiricum Delar leaf [41]
Lophartherum gracile Brongn. fruit cluster [41]

Prunella vulgaris L. whole plant [41]
Herba Patriniae scabiosaefoliae root [41]

Angelica biserrata stem [41]
Cistanche desericola Y. pericarp [41]

Citrus reticulata Blanco fruit [41]
Galdenia jasminoides Ellis whole plant [41]
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Table 1. Cont.

Plant Species Organ Ref.

Viola philipica Cav. stem [41]
Uncaria rhynchophylla leaf [41]

Babreum coscluea leaf [41]
Morus alba L. leaf [48]

Portulaca oleracea fruit [49]
Vitis vinifera L. leaf [49]

Salvia officinalis L. leaf [49]

4. Functions of Exogenous Melatonin Treatment in Plants

4.1. Effect of Melatonin on Plant Drought/Water Tolerance

Drought is a severe stress to plants, especially in agricultural production. Therefore, it is
essential to find a phytohormone that could be applied to alleviate drought damages. According to
recent studies, melatonin could be used to improve the drought tolerance of plants. In apple plants
(Malus domestica Borkh.), positive results were detected in oxidative damage, photosynthesis efficiency
and senescence progress after 100 µM melatonin treatment under drought conditions [50]. Moreover,
in other Malus species, the drought tolerance was also improved by melatonin in both drought-tolerant
M. prunifolia and drought-sensitive M. hupehensis plants. Meanwhile, it has also been reported that the
abscisic acid (ABA) synthesis gene MdNCED3 was down-regulated and the catabolic genes, including
MdCYP707A1 and MdCYP707A2, were up-regulated. In addition, the plants could regulate the water
balance by regulating the expression of related genes. Melatonin was also involved in scavenging
H2O2 and increasing the activity of antioxidant enzymes under drought conditions [51]. Meanwhile,
the overexpression of the melatonin synthesis gene, MzASMT1, significantly increased the drought
tolerance of the transgenic Arabidopsis plants [36]. In grapes as well, injuries induced by drought stress,
including internal lamellar system of chloroplasts, photosystem efficiency and antioxidant enzyme
activity, were alleviated after melatonin treatment [52].

Melatonin not only plays an essential role in improving tolerance to drought, which is a water
deficiency stress, but also in increasing tolerance to water stress in plants. The investigation of cucumber
(Cucumis sativus) under water stress showed that melatonin could stimulate root generation, increase
antioxidant enzymes activity and photosynthesis efficiency, and hence the tolerance of water stress
was improved [53].

4.2. Effect of Melatonin on Plant Cold/Heat Tolerance

Temperature is an important environmental factor. Severe climates, including low and high
temperature, can inhibit the growth and development processes of plants. Finding an efficient
phytohormone which can be applied to increase the tolerance to extreme temperature of the plant
is important in crop breeding. Recently, melatonin was proved to be a candidate hormone that
could increase cold and heat stress of the plant. It was reported that, in carrot suspension cells
(Daucus carota L.), apoptosis induced by 3 ◦C cold stress was alleviated by melatonin. However,
melatonin did not scavenge the reactive oxygen species (ROS) directly. It induced the increase of
putrescine and spermidine levels. These interesting results implied that melatonin alleviated cold
damage in plants via the regulation of polyamines content [54]. In cucumber (Cucumis sativus) seeds,
the germination rate dramatically increased from 4% (control) to 83% at 10 ◦C after application
of melatonin [55]. For elite endangered germplasm preservation, cryopreservation method was
usually used. In the process of cryopreservation, the plant callus was treated with an extremely
low temperature, which induced severe injury to the callus. It was reported that the survival rate
of Rhodiola crenulata increased significantly in the callus that was pretreated with melatonin [56].
Meanwhile, the shoot tips and dormant winter buds of American elm produced almost 100% regrowth
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after melatonin pretreatment [57]. This discovery could provide a potential application in the
cryopreservation process. Melatonin-pretreated wheat seedlings exhibited higher antioxidant enzymes
activity and osmoprotectants levels, suggesting that melatonin can improve the cold resistance of
the plant by scavenging ROS and modulating redox balance [58]. Additionally, in bermudagrass
(Cynodon dactylon), various metabolite concentrations were changed and the photosystem II was
improved by exogenous melatonin. Therefore, the cold tolerance of the plant was significantly
improved [59–61].

Like that of cold stress, melatonin can also be applied to alleviate the heat stress damage of
plants. When the plant was exposed to heat stress, the level of melatonin in plant cells increased
dramatically [33,62]. In addition, melatonin application could increase heat stress tolerance of the
plant. Germination percentages of Phacelia tanacetifolia and Arabidopsis thaliana seeds were significantly
increased by exogenous melatonin [63,64].

4.3. Effect of Melatonin on Plant Salt Tolerance

Salt stress is one of the greatest challenges that limits the growth and development of plants across
the world. Salt stress induces water deficit and physiological damages to the plant. Meanwhile, plants
develop several strategies, such as increasing activity of related enzymes, improving photosynthetic
efficiency and regulating gene expressions to tolerate the stress [65]. In recent years, melatonin was
reported to play a role in increasing the salt tolerance of plants. In Malus hupehensis, growth inhabitation
and photosynthetic capacity were improved by application of 0.1 µM melatonin. In addition, exogenous
melatonin significantly suppressed the H2O2 content, and activities of oxidate enzymes, such as
ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD), were enhanced. The results
suggested that exogenous melatonin was involved in alleviation of salinity-induced stress in plants [18].
A clearly recognizable effect in the root system of cucumber (Cucumis sativus L.) under the salinity
condition was detected after melatonin treatment. The density of lateral roots was higher than that
of the control, suggesting the positive effect of melatonin on formation of lateral roots under salinity
stress [66]. Moreover, exogenous melatonin could increase the salt tolerance and regulate related genes
expressions in soybean [67]. Previous studies revealed that phytohormones, such as gibberellic
(GA) and abscisic acids (ABA), were involved in improving the salt tolerance of plants [68,69].
Additionally, melatonin was reported to be involved in regulating expressions of the genes that
related to biosynthesis and catabolism of GA and ABA, and hence the salt tolerance of cucumber
(Cucumis sativus) was increased [70].

4.4. Effect of Melatonin on Plant Heavy Metal Tolerance

Heavy metal contaminant is a serious environmental problem to all kinds of creatures and
especially to plants. However, plants that were treated with melatonin had stronger tolerance
to heavy metal stresses according to recent reports. Pea plants (Pisum sativum) pretreated with
melatonin survived after 100 µM copper treatment, but control plants died. This result suggested
that melatonin could enhance the copper tolerance of plants. Since melatonin is safe to animals and
humans, as well as inexpensive, it may be a feasible and cost-effective approach to clean environmental
contaminations [71]. In algae, the dosage of heavy metals, such as Cd, Pb and Zn, had a positive
effect on melatonin levels, and Cd stress tolerance of algae was increased by exogenous melatonin [62].
Seed germination and seedling growth under copper stress were improved after 1 and 10 µM melatonin
treatment, while a relatively high concentration of melatonin (100 µM) had a negative effect, which
means that it enhanced the toxic effect of copper [72]. Melatonin enhanced the tolerance of Cd stress
in Solanum lycopersicum by improving the plant growth, photosynthesis and antioxidant enzymes.
In addition, the oxidative damage was alleviated after melatonin application. These results suggested
that melatonin played multiple roles in protecting plants against Cd stress [73].
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5. Regulatory Genes Involved in Melatonin Reaction Pathway

Byeon et al. discovered that serotonin N-acetyltransferase (SNAT) and N-acetylserotonin
methyltransferase (ASMT), which are the final two enzymes of the endogenous melatonin biosynthesis
pathway in plants, achieved the highest catalytic efficiency values at 55 ◦C. These results can perhaps
explain the dramatic increase of melatonin content in plants after high temperature treatment [33].
The assay of SNAT activity in rice showed that it was inhibited by high serotonin concentration, and,
unlike ASMT, SNAT was expressed constitutively, suggesting that ASMT was the rate-limiting enzyme
in plant melatonin biosynthesis [74]. In Arabidopsis thaliana, expression of cold- and drought-responsive
genes, COR15a, CAMTA1, ZAT6, ZAT10 and ZAT12, were up-regulated by melatonin, and hence
cold tolerance was increased [17,75]. In Malus domestica, the transcript levels of a key chlorophyll
degradation gene, pheide a oxygenase (PAO) and, moreover, the senescence-associated gene 12 (SAG12) and
AUXIN RESISTANT 3 (AXR3)/INDOLE-3-ACETIC ACID INDUCIBLE 17 (IAA17) were suppressed by
melatonin. Therefore, the leaf senescence was delayed [23,30]. Hence, the leaf senescence of the plant
was regulated via a melatonin-mediated pathway. In Malus hupehensis, ion-channel genes, including
MdNHX1 and MdAKT1, and vacuolar Na+/H+ antiporter, which were critical for promoting the
accumulation of Na+ or K+ inside the vacuoles, were significantly up-regulated under the salinity
condition, thereby alleviating salinity-induced damage [18]. The results of RNA-seq in cucumber
(Cucumis sativus) roots under NaCl stress showed that 77 differentially-expressed genes were regulated
by melatonin, and transcription factors, including MYB, WRKY, NAC, ERF, were identified [66,76].
Heat stress response regulator class A1 heat-shock factors (HSFA1s) were significantly up-regulated by
exogenous melatonin, and hence heat tolerance of Arabidopsis was improved [77].

6. Effect of Melatonin on Plant Growth and Development

In the growth and development process of plants, various phytohormones were involved,
especially the auxin. As a kind of indoleamine, melatonin shared the same initial compound,
which is tryptophan with IAA, so melatonin should play a role in the regulation of growth and
development in plants. Melatonin is regarded as a growth-promoting molecule, just as auxin, in lupin
hypocotyls, as well as in monocot species, such as canary grass, wheat, barley and oat [78,79], and dicot
species, such as Arabidopsis [80], and so it is an auxinic hormone in plants. It was reported that the
concentration of melatonin in Chenopodium rubrum changed regularly during 12 h light/12 h day cycle,
suggesting that melatonin plays a role in circadian rhythms regulation in plants [81]. Flowering of
Chenopodium rubrum L. seedlings exposed to a single inductive 12 h darkness reduced significantly after
the application of 100 and 500 µM melatonin, while no significant change was detected in photoperiodic
time. This discovery implied that exogenous melatonin could affect flower development in the early
stage of the photoperiod [26]. The leaf size, plant height, pod and seed numbers of soybean plants
increased significantly after melatonin treatment, suggesting that exogenous melatonin could improve
the growth and seed production of soybean plants [67]. Chlorophyll degradation of barley leaves was
slowed down when they were treated with melatonin, revealing the protective role of melatonin in the
senescence process of plants [24]. In detached apple (Malus domestica) leaves, reduction of chlorophyll
content and photosystem efficiency (Fv/Fm) were delayed after melatonin treatment, suggesting
that the dark-induced senescence process was delayed by 10 mM melatonin solution [23]. It was
shown that H2O2 accumulation was inhibited and ascorbate peroxidase (APX) activity was enhanced.
Simultaneously, melatonin led to higher ascorbic acid (AsA) and glutathione (GSH) contents, but lower
dehydroascorbate (DHA) and oxidized glutathione (GSSG), than the control, suggesting that melatonin
regulated the plant senescence via an ascorbate-glutathione cycle [23]. Zhang et al. reported that
melatonin showed a positive effect on lateral root formation in cucumber plants (Cucumis sativus) [66].
Similar to the function of IAA, melatonin could stimulate the expansion of etiolated cotyledons of
lupin (Lupinus albus L.) [82], suggestive of a possible involvement of melatonin.

In addition, different concentrations of melatonin showed different effects in plants. In Arabidopsis
seedlings, low melatonin content (10–20 µM) had no significant effect on root length. On the contrary,
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high melatonin content (200–400 µM) fresh weight was significantly inhibited, and the moderate
condition (40 µM) was the optimal condition for the promoted growth and development of the
plant [17].

7. Effect of Melatonin on Disease Resistance

Plant diseases induced by virus, fungus and bacteria are usually infectious, and even lethal, so it
is a severe threat for plants. Therefore, finding a strategy to improve the disease resistance of plants is
a key focus in plant breeding. Recently, many positive functions were reported in melatonin-treated
plants. Yin et al. reported that resistance of apple plants (Malus prunifolia) to Marssonina apple blotch
(Diplocarpon mali) was improved when pretreated with melatonin. It is shown that the photosystem
efficiency, antioxidant and plant defense-related enzymes activity were increased after melatonin
treatment [83]. Considering that melatonin is an environmentally-friendly compound, melatonin
could be an economical strategy to protect plants against pathogen infections. Melatonin may also be
a defense-signaling molecule that plays a role in defense against Pseudomonas syringae (Pst) DC3000,
which is a virulent bacterium in Arabidopsis [84]. Further research revealed that both melatonin and
nitric oxide (NO) levels were significantly induced by Pst DC3000, and there was no significant
effect of innate immunity in NO-deficient mutants after melatonin treatment. These results indicated
that melatonin improved disease resistance against bacterial pathogen infection via inducing NO
production [85]. It was reported that exogenous melatonin could improve the Fusarium wilt resistance
of banana plants via regulating the expression of MaHSP90s [86].

8. Conclusions and Future Perspectives

In the last several years, remarkable development on melatonin research in plants has been
made. The progress extends the knowledge of melatonin presence, metabolism and functions
in plants. As summarized above, melatonin presents in many kinds of plants and organs, while
the precise concentrations in different plants and organs are not stable. Since there is no pineal
gland in plants, the biosynthesis pathway of melatonin is different in plants from that in animals.
Coincidently, the melatonin biosynthesis pathway is homologous with that of auxin in plants, despite
some distinguishing enzymes. To date, a mass of studies showed that melatonin played essential
roles in improving abiotic and biotic stress tolerance of plants. Concentrations of endogenous
melatonin increased in plants under different stress conditions, implying that melatonin was involved
in regulating the stress tolerance of plant species. However, some aspects of melatonin in plants,
including the metabolism and regulation pathway under stressful conditions, are still unclear.

To understand the metabolism pathway in plants, measuring the concentrations of melatonin in
different plants and organs is necessary. Nevertheless, melatonin concentration changes dramatically
in the detected plants and organs. Even in the same plant, melatonin content is shifty in different
development periods [48]. Yet, how does the melatonin content change from an extremely low level to
a high level? Which receptor or protein is related to melatonin content change? These questions are still
confusing; molecules or enzymes involved in melatonin regulation are not sufficiently documented.
Hence, the signaling mechanisms that regulate the change of melatonin content are still unknown.
Generally, melatonin content is very low in leaves and is relatively high in roots and seeds [28,87].
As reported, melatonin is a growth regulator at a low concentration and it preserves the viability of
the seed at a high concentration in Arabidopsis thaliana [64]. However, the mechanisms of different
melatonin distribution in shoots and roots, as well as the functions of melatonin in the organs, still
need to be investigated.

Melatonin is a multifunctional factor in plant stress resistance, growth and development process.
It is not only a scavenger to reduce reactive oxygen species (ROS), including hydrogen peroxide
(H2O2), superoxide anion (O2

−) and hydroxyl radical (•OH) directly, but also a regulation factor
to increase activities of antioxidant enzymes [88,89], metabolite contents [59] and photosynthetic
efficiency [60]. In addition, melatonin is involved in NO and ABA pathways [68,82,90], and the related
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genes expression regulation [91]. Further research should focus on clarifying how melatonin functions
as an integrated factor.

Signaling pathways of phytohormones, such as ABA, IAA and GA were investigated well.
Therefore, the second messengers and signal transduction involved in modulation reaction and gene
expression regulation were clarified. The biosynthesis pathway of melatonin in plants was discovered,
and some melatonin-related genes expressions were reported by transcriptomic analysis [59], although
the distinct signaling pathway of melatonin still remained unknown. Hence, the signaling pathway of
melatonin should be clearly elucidated in further research.
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