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Abstract: The DNA excision repair protein ERCC-1-DNA repair endonuclease XPF (ERCC1-XPF)
is a heterodimeric endonuclease essential for the nucleotide excision repair (NER) DNA repair
pathway. Although its activity is required to maintain genome integrity in healthy cells, ERCC1-XPF
can counteract the effect of DNA-damaging therapies such as platinum-based chemotherapy in
cancer cells. Therefore, a promising approach to enhance the effect of these therapies is to combine
their use with small molecules, which can inhibit the repair mechanisms in cancer cells. Currently,
there are no structures available for the catalytic site of the human ERCC1-XPF, which performs the
metal-mediated cleavage of a DNA damaged strand at 5′. We adopted a homology modeling strategy
to build a structural model of the human XPF nuclease domain which contained the active site and to
extract dominant conformations of the domain using molecular dynamics simulations followed by
clustering of the trajectory. We investigated the binding modes of known small molecule inhibitors
targeting the active site to build a pharmacophore model. We then performed a virtual screening of the
ZINC Is Not Commercial 15 (ZINC15) database to identify new ERCC1-XPF endonuclease inhibitors.
Our work provides structural insights regarding the binding mode of small molecules targeting the
ERCC1-XPF active site that can be used to rationally optimize such compounds. We also propose a set
of new potential DNA repair inhibitors to be considered for combination cancer therapy strategies.
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1. Introduction

The human genome is continuously exposed to damage caused by endogenous and exogenous
agents. The effects resulting from these lesions range from interfering with cellular processes to
inducing mutations which can lead to several pathological conditions. To maintain genome integrity,
cells have developed a series of DNA repair pathways, which are able to recognize and repair
specific DNA damages through the action of dedicated proteins [1]. In the context of cancer, DNA
repair pathways simultaneously can be considered as both friends and enemies. Indeed, although
the obvious role of these pathways is to maintain genome stability and remove mutation-causing
damages, they can interfere with cancer therapies, which aim to damage the cancer cell genome and
hence induce apoptosis. Examples of such therapies are platinum-based chemotherapy and ionizing
radiation therapy. Unsurprisingly, the success of these strategies highly depends on the DNA repair
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capability of the targeted cell population [2–4]. Accordingly, a relatively new direction to improve the
efficacy of these treatments is to use them in combination with drugs able to inhibit the DNA repair
mechanisms [5,6].

Among the five main repair pathways found in humans, the nucleotide excision repair (NER)
pathway is dedicated to the repair of bulky DNA lesions which distort the helix structure, interfering
with the replication cycle. Such lesions can be caused by ultraviolet light radiation (UV), environmental
chemical agents, or reactive oxygen species [1,7]. NER is also responsible for the removal of DNA
damages caused by platinum-based chemotherapy drugs such as cisplatin [5]. Over-expression of NER
proteins results in cisplatin resistance in cancer cells, whereas cell populations with low-expression
of NER proteins are hypersensitive to DNA damaging agents [2,3]. In addition, modulation of NER
results in sensitizing cancer cells to DNA-damaging chemotherapy [8].

The NER pathway involves about thirty proteins whose role is to recognize, remove, and replace
a damaged DNA strand. One of the essential agents of NER action is the DNA excision repair protein
ERCC-1-DNA repair endonuclease XPF (ERCC1-XPF) complex, a 5′-3′ structure-specific endonuclease,
which cuts the strand at 5′ of the damaged zone. ERCC1-XPF is also involved in inter-strand crosslink
(ICL) and double-strand break (DSB) repair pathways. ERCC1-XPF is a heterodimer composed of
two proteins. The first, ERCC1, contains 297 residues divided in a central domain and a double
helix-hairpin-helix (HhH2) domain. The second protein, XPF, comprises 916 residues divided in
a helicase-like domain; it lacks the helicase activity, a nuclease domain, which contains the catalytic
site, and, finally, also contains an HhH2 domain. Dimerization occurs mainly through the two HhH2
domains. An excellent review article about the structure and function of ERCC1-XPF can be found in
McNeil et al. [9].

ERCC1-XPF is an attractive target for designing small molecule inhibitors of DNA repair. To inhibit
the activity of the ERCC1-XPF endonuclease, three major ways recently have been explored. The first
approach is to target the interaction between the central domain of ERCC1 and the DNA repair
protein complementing XP-A cells (XPA), through which the endonuclease is recruited to the damage
site in NER [10,11]. However, this approach would be effective solely in the inhibition of NER;
the ICL and DSB repair activity would be preserved as XPA is not involved in these pathways [9].
A second approach is to target the ERCC1-XPF protein-protein interaction. Our group and others
identified and targeted binding pockets at the interface of the dimerized HhH2 domains to inhibit
the dimerization of the ERCC1 and XPF, an essential component in the building of a functional
endonuclease [12,13]. Although this approach would result in stopping any activity of ERCC1-XPF,
it presents some difficulties due to the high-affinity, hydrophobic nature of the involved protein–protein
interaction [9]. Finally, the third approach is to target the XPF active site. Recently, McNeil et al. [13],
Chapman et al. [14,15], and Arora et al. [16] discovered several small molecule inhibitors targeting the
catalytic site of XPF with promising biological activities. The lack of an experimentally determined
crystal structure for the XPF nuclease domain as well as the similarity of the active site with related
nucleases are the two main drawbacks of this latter approach. Nevertheless, targeting the XPF active
site is a promising strategy to inhibit the endonuclease activity as a result of the presence of metal ions
in the catalytic site (ideal for metal chelators), the weak contacts established by the domain and the
DNA, and the number of successful drug discovery programs targeting DNA repair-related similar
enzymes [9].

In this work, we employed computational methods to accomplish the following: (1) build
a structural model of the human XPF nuclease domain, which can be used in structure-based
drug design and virtual screening (VS); (2) investigate the binding modes of known XPF active site
inhibitors, identifying key residues involved in small molecule binding; (3) perform a pharmacophore
and structure-based VS campaign against the ZINC Is Not Commercial 15 (ZINC15) compound
database [17] to propose potential novel inhibitors binding to the XPF catalytic site. The reported
results provide the first detailed investigation of the interactions between the XPF active site and
small molecules binding to it. Our findings should be of considerable interest to rationally modify
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these molecules to improve the binding affinities as well as their specificity to the target. Additionally,
we provided a set of commercially available compounds, which can potentially bind to the XPF
catalytic site and inhibit the endonuclease activity of ERCC1-XPF; therefore, they can be considered in
combination with DNA-damaging cancer therapies to amplify their effects.

2. Results and Discussion

2.1. Homology Modeling and Molecular Dynamics Simulation

The results obtained from the Molecular Operating Environment (MOE) MOE-SearchPDB protocol
are reported in Table 1. We identified top templates based on an expectation value (E-value) equal or
lower than 1 × 1012. Other potential templates with E-values between the accepted value and the cutoff
were retained only if the associated Z-scores were at least 6.

Table 1. Results from different substitution matrices available in MOE 2013 for the detection of
homologs of the human XPF nuclease domain. Proteins are reported with their PDB ID. See text for
more details.

Substitution Matrix Top Templates Others

BLOSUM50 2BGW, 2BHN 1J22, 2ZIU, 4P0P
BLOSUM62 2BGW, 2BHN, 1J22 2ZIU, 2ZIX, 4P0P

Gonnet 2BGW, 2BHN 1J22
PAM250 2BGW, 2BHN 1J22

All four of the tested matrixes identified XPF-related proteins from the Aeropyrum pernix (PDB ID
2BGW, 2BHN) [18] and Pyrococcus furiosus (PDB ID 1J22) [19] archaea. In addition to the hits identified
using the Gonnet and Point Accepted Mutation 250 (PAM250) methods, the BLOcks SUbstitution
Matrix (BLOSUM) matrices led to the identification of the Mus81 protein (PDB ID 2ZIU (human/Dario
rerio), 2ZIX (human), and 4P0P (human)) as template as well, which are known to be related to
XPF [20]. In contrast to the other three matrices, BLOSUM62 included the Hef protein (1J22) from
Pyrococcus furiosus within the top templates. Accordingly, we selected the BLOSUM62 results for the
successive steps as this matrix showed the best performances in detecting biological relationships,
even for distantly related proteins [21–23]. The nuclease motif is conserved among XPF family, putative
RNA helicases (SF2), and the Mus81 family, and it is represented in human XPF by residues D687, E690,
D715, E725, R726, K727, and D731 [24]. In addition to this motif, we observed seven other conserved
residues from the multiple sequence alignment, corresponding to V686, L711, G714, S733, G739, Q744,
and E760 in the human XPF sequence. The sequence alignments of the XPF nuclease domain and the
six templates are reported in Figure S1 in the Supplementary Materials.

The top templates identified by MOE were 2BGW, 2BHN, and 1J22. The metal-binding site of
the XPF is likely to employ a two-metal-ion catalysis process to cleave the DNA [25]. However, the
available structures contained zero to one metal ion. The absence of a second ion may have been
a result of the requirement of a catalytic complex for its stable binding, as in the case of the related
Mus81-Eme complex [26]. Also, the majority of known XPF active site inhibitors contain at least one
metal-binding motif. For these reasons, we also included the Hef protein from Pyrococcus furiosus,
which is associated with the PDB ID 1J25; it has the same structure as 1J22 but contains one coordinated
metal ion. The four nuclease domains (from 2BGW, 2BHN, 1J22, and 1J25) shared a very similar and
superimposable structure (Figure 1). Finally, we selected the nuclease domain of the 1J25 structure as
a template with which to build the homology model of the human XPF nuclease domain, based on the
highest sequence identity (35.2%) and similarity (60.7%) scores observed among the four sequences
and the presence of one metal ion. The alignment of the sequences of the human XPF nuclease domain,
2BGW, and 1J25 is reported in Figure S2 in the Supplementary Materials.
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pernix), 1J22 (purple, HeF from Pyrococcus furiosus), and 1J25 (green, HeF from Pyrococcus furiosus). 
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cofactor for the ERCC1-XPF endonuclease [9]. The metal ion was stably coordinated by the negatively 
charged side chains of residues D715 and E725 and the backbone oxygen of R726. 

The best predicted structure derived from the 1J25 template was simulated with molecular 
dynamics (MD) for 170 ns. The root-mean-square deviation (RMSD) trend of the backbone atoms of 
the modeled domain reached a plateau after about 60 ns, with stable fluctuations around 3 Å for the 
remaining simulation time. The backbone atoms of the active site residues fluctuated steadily around 
1 Å for the duration of the simulated time, which followed the restrain release and the initial 
equilibration phase. The RMSD plots are reported in Figure 2. After visually inspecting the zone 
surrounding the metal ion during the simulation and considering the previously sequence 
alignments, we defined the active site as the residues D687, R689, E690, D715, E725, R726, K727, and 
D731. During the simulation, three stable water molecules completed the coordination of the Mg2+ 
ion (coordination number of six). 

 
Figure 2. Root-mean-square deviation (RMSD) trends for the backbone atoms of the human XPF 
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Figure 1. Structural superposition of the four top templates for the human DNA repair endonuclease XPF
(XPF) nuclease: 2BGW (blue, XPF from Aeropyrum pernix), 2BHN (yellow, XPF from Aeropyrum pernix),
1J22 (purple, HeF from Pyrococcus furiosus), and 1J25 (green, HeF from Pyrococcus furiosus).

Once the homology model of the human XPF nuclease domain was obtained, we manually
modified the Mn2+ ion deriving from the HeF structure to a Mg2+ ion, which is the biologically relevant
cofactor for the ERCC1-XPF endonuclease [9]. The metal ion was stably coordinated by the negatively
charged side chains of residues D715 and E725 and the backbone oxygen of R726.

The best predicted structure derived from the 1J25 template was simulated with molecular
dynamics (MD) for 170 ns. The root-mean-square deviation (RMSD) trend of the backbone atoms
of the modeled domain reached a plateau after about 60 ns, with stable fluctuations around 3 Å for
the remaining simulation time. The backbone atoms of the active site residues fluctuated steadily
around 1 Å for the duration of the simulated time, which followed the restrain release and the initial
equilibration phase. The RMSD plots are reported in Figure 2. After visually inspecting the zone
surrounding the metal ion during the simulation and considering the previously sequence alignments,
we defined the active site as the residues D687, R689, E690, D715, E725, R726, K727, and D731. During
the simulation, three stable water molecules completed the coordination of the Mg2+ ion (coordination
number of six).
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A clustering of active site conformations was performed over the last 106 ns of the MD simulation.
When cluster counting was equal to 10 clusters, we observed the highest peak of the pseudo-F statistic
(pSF) value, a kink in the curve of the ratio between the sum of square regression and the number of
total squares (SSR/SST), and a local minimum for the David-Bouldin (DBI) index, indicating optimal
cluster counting (see Figure S3 in the Supplementary Materials). Cluster compositions are reported
in Table S1 in Supplementary Materials. To exclude rarely occurring active site conformations from
the molecular docking simulations, we selected the representative structures from the top six most
populated clusters, including 99% of the total conformations, to be used as targets. We also included the
lowest potential energy structure (~−98.831 kcal/mol) of the XPF domain extracted by the equilibrated
part of the MD simulation.

2.2. Modeling of Small Molecules Binding to the Human XPF Active Site

To account for the flexibility of both the side chains and the backbone of the active site,
we considered the seven XPF structures described previously as single targets for our docking protocol.
A detailed view of these conformations is reported in Figure 3.
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Figure 3. Superposition of the seven conformations of the human XPF active site obtained by clustering
the molecular dynamics (MD) trajectory and including the lowest potential energy conformation.
The set of conformations was then used as a target for the molecular docking simulations. Carbon,
nitrogen and oxygen atoms are represented in cyan, blue and light red, respectively. Dark red spheres
indicate the positions of the Mg2+ ion present in the active site and coordinated by D715, E725, and R726.

From the resulting binding poses, we identified a pattern of conserved interactions between the
small molecules and specific parts of the XPF active site. As expected, the metal-binding motifs present
in the ligand structures carried a negative charge and were close to the Mg2+ ion. Also, we observed two
hydrogen bonds being consistently established between the hydrogen bond donor and acceptor groups
of the ligands and E712 and K727, respectively. Therefore, the resulting three-point pharmacophore
model included three features: one anionic (Ani) with radius of 2 Å, one donor projection (Don2) with
radius of 3.2 Å, and one acceptor projection (Acc2) with radius of 2.7 Å, as represented in Figure 4. It is
noteworthy that this pharmacophore model accounted for multiple conformations of the active site,
as its design took into consideration that ligands bound to different XPF structures.
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Figure 4. Pharmacophore model designed in consideration of the predicted binding poses of the known
XPF inhibitors. Three features were present for all ligand-protein complexes: the anionic one (Ani,
green sphere) which was in proximity to the Mg2+ ion (dark red spheres), the donor projection (Don2,
blue sphere) which was close to E712, and the acceptor projection (Acc2, gold sphere) which was close
to K727. Carbon, nitrogen and oxygen atoms of the active site are represented in cyan, blue and light
red, respectively. Two docked ligands satisfying the pharmacophore model are also reported, namely
13 [15] (carbon, chlorine, nitrogen and oxygen atoms represented in dark grey, green, blue and light
red, respectively), and 33 [14] (carbon, nitrogen and oxygen atoms represented in light grey, blue and
light red, respectively). All the conformations of the active site extracted from the clustering of the MD
trajectory are represented.

2.3. Virtual Screening

Approximately 80,600,000 structures from ZINC15 were downloaded. After the filtering step
and the pharmacophore-based screening, we reduced the number of compounds to undergo the
structure-based VS step to 2,013,120. We then performed VS of the compounds against the set of
structures of the XPF nuclease domain and retained only the resulting binding modes which satisfied
the pharmacophore features, resulting in retaining only 104,714 unique compounds for consideration.
The highest-ranked XPF inhibitor was compound 15, with a London dG score of −29.543 kcal/mol.
285 hits from the ZINC15 resultant set showed a better score than compound 15. Visual analysis of the
binding modes was then performed to further refine the hit set. Additional details about the resulting
top fifty hits, including chemical structures, ZINC IDs, and London dG binding energies are reported
in Set S1 in the Supplementary Materials.

Among the resulting binding modes of the top hits, we observed the dominant interactions
were charge-assisted hydrogen bonds between charged groups of the compounds and the charged
residues of the XPF active site. The predicted binding modes of two VS-derived hits and examples of
non-bonded interactions are reported in Figure 5. Hit #5 (Figure 5A) showed hydrogen bonds between
the guanidine group and the side chains of E712 and D715, in addition to a hydrogen bond between
the same group and the backbone oxygen of L711. The Mg2+ ion interacted with one of the oxygens
of the compound, while the other was involved in a hydrogen bond with K727. Hit #13 (Figure 5B),
a smaller and less flexible compound, interacted with the Mg2+ ion and K727 via one of its carboxyl
groups as well as with E712 through a hydrogen bond with the imidazole ring.

On the basis of the binding poses of our predicted hits, we were able to identify in detail the
electrostatic features of the active site which are important for ligand binding. The active site of
the human XPF is divided between two zones with different electrostatic properties. The first is
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a negatively charged part constituted by acidic residues such as E712, D715, and E725 (in red in
Figure 5), favorable in the establishment of interactions with electropositive moieties of the ligands.
The second is a positively charged part constituted by the metal ion and K727, favorable for interactions
with electronegative moieties of the ligands.
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Figure 5. Binding modes of two promising hits derived from the virtual screening (VS).
(A) ZINC000049131978, hit #5 (carbon, nitrogen and oxygen atoms represented in dark green, blue and
light red, respectively). (B) ZINC000038550857, hit #13 (carbon, nitrogen and oxygen atoms represented
in light green, blue and light red, respectively). Carbon, nitrogen and oxygen atoms of the active site
are represented in cyan, blue and light red, respectively. The Mg2+ ion is represented as a dark red
sphere. Hydrogen bonds are represented in purple dotted lines. The surface of the active site is colored
depending on the electrostatic potential, ranging from −40 kcal/mol (intense red) to +40 kcal/mol
(intense blue). See text for a detailed description of the electrostatic interactions.

3. Materials and Methods

3.1. Homology Modeling of the Human XPF Nuclease Domain

The amino acid sequence of the human XPF nuclease domain was defined as residue 658 to
813 according to the entry Q92889 in the UniProt database [27]. We used the MOE 2013 (Chemical
Computing Group, Montreal, QC, Canada) package for the entire homology modeling process [28].
Initially, we used the MOE-SearchPDB module [29] to align the target sequence with a database of
pre-clustered families of proteins [30] for which experimental structures are available in the Protein
Data Bank (PDB) [31]. In this way, potential template structures could be identified for use in homology
modeling. The parameters for the homology search were chosen as follows: a gap start penalty of −12,
a gap extend penalty of −2, an E-value cutoff of 10, an E-value acceptance of 1 × 1012, 100 Z-iterations
and a Z-score cutoff of 6. As a substitution matrix, we tested the BLOSUM62, BLOSUM50 [32],
Gonnet [33], and PAM250 [34], all of which are available in MOE 2013. MOE-Align [29], using sequence
and structural alignment, was used for multiple alignment in the following ways. First, the entire XPF
sequence was aligned to the identified templates. Second, the XPF nuclease sequence was aligned
to the first multiple alignment to obtain a better alignment of the nuclease domains of the templates.
Just the nuclease domain sequences were used in successive steps, a trim of the templates’ sequences to
the residues aligned within residues 658 and 813 of the human XPF nuclease domain. Accordingly, the
best template obtained from this step was used for the homology model building. The parameters were
set at 10 intermediate models, one side chain model for each intermediate at 300 K, medium refinement
for intermediates, and the Generalized Born/volume integral (GB/VI) [35] scoring for the selection
of the final model. The final refinement was set to “Fine” with a root-mean square (RMS) gradient
of 0.1 kcal/mol, and the protonation states of the final model were assigned using Protonate3D [36].
Amber ff12SB force field [37] was selected for the entire process. Coordinated metal ions present in the
template were included in the process as the environment for the induced fit.
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3.2. Molecular Dynamics Simulation and Clustering of the Trajectory

Amber ff14SB force field parameters were assigned to the protein [38], whereas the Li, Song,
and Merz’s 12-6-4 parameters for mono and divalent ions in TIP3P water were assigned to the
ions [39,40]. The protein was solvated with an octahedral box of TIP3P explicit water molecules with
15 Å of minimal distance between the protein atoms and the box edges. Na+ and Cl− ions were added
to neutralize the system and to simulate a physiological ionic concentration of 0.15 M. The system
was simulated in Amber pmemd.cuda [41,42] using the following protocol: relaxation of the NaCl
ions and water molecules using 1000 steps of steepest descent and 1000 steps of conjugate gradients
minimization, which kept the entire protein and the metal co-factor harmonically restrained (force
constant of 500 kcal/mol/Å2). 2000 steps of steepest descent were followed by 3000 of conjugate
gradients method for the whole system. Subsequently, we performed gradual heating of the system
from 0 to 300 K in 100 ps using the Langevin thermostat, keeping the backbone atoms and the co-factor
restrained (force constant of 2 kcal/mol/Å2) and using an integration time step of 0.5 fs and periodic
volume conditions. Gradual release of the restraints followed from 2 to 0 kcal/mol/Å2 in four phases
of 50 ps each at constant pressure (1 atm), using an integration time step of 2 fs. We then ran 170 ns of
production simulation in isothermal-isobaric conditions (NPT), recording the atomic coordinates every
2 ps. The SHAKE algorithm was used to keep the bonds involving hydrogens frozen [43]. The cutoff for
long-range interactions was set to 9 Å. To assess the equilibration of the system, we evaluated the time
evolution of the mass-weighted RMSD, which was calculated over the backbone atoms of the protein
and the active site using cpptraj from AmberTools12 [37]. In addition, the trajectory was visually
analyzed using Visual Molecular Dynamics (VMD) program [44]. To extract a set of representative
and diverse conformations of the active site to be used as a relaxed complex scheme (RCS) docking
protocol [45], we performed RMSD-based clustering of the last 106 ns of the simulation, using the
conformations extracted every 10 ps. Firstly, all the translation and rotation motions were eliminated
by RMS-fitting the backbone atoms’ positions of the trajectory to the first frame. The average linkage
clustering algorithm, as implemented in cpptraj, was then used to divide the frames into clusters and
to extract the centroid or representative conformation of each one on the basis of the positions of all the
atoms of the active site. In general, the optimal number of clusters is not known a priori. To identify
the optimal number of clusters in which the trajectory should be divided, we varied it from 1 to 200
and evaluated three metrics each time, namely the DBI, pSF, and the SSR/SST. A local minimum of
the DBI, a maximum of the pSF, and a kink in the SSR/SST plot are expected at the optimal cluster
counting [10,46,47].

3.3. Molecular Docking of Known Inhibitors and Pharmacophore Modeling

Molecular docking simulations were run for ERCC1-XPF endonuclease small molecule inhibitors
which were likely to bind to the XPF active site: compounds E-X AS7 from McNeil et al. [13], 3, 14, 15,
21, 27, 33 and 34 from Chapman et al. [14], 4, 13, 25, 29, 36, 37 from Chapman et al. [15], and NSC16168
and NSC143099 from Arora et al. [16]. The selection criteria used to select these compounds were the
high potencies as ERCC1-XPF activity inhibitors and the specificities to the target. Specifically, we
aimed to identify the intramolecular interactions which were essential for a strong and specific binding
to the XPF active site. Different accessible protonation states and tautomeric forms of the compounds
were obtained using the MOE Database Wash tool. The chemical structures of the small molecules are
reported in Figure 6.

We extracted the centroid conformations of the top six clusters found by clustering the MD
trajectory to use them as target structures for the docking. In this set, we also included the
lowest potential energy protein conformation found in the equilibrated fraction of the MD trajectory.
Because all the selected active site inhibitors contained a metal-binding motif in their structure, we used
MOE Site Finder to identify a potential binding zone in each structure. This was accomplished by
selecting each time the highest ranked site was close to the metal ion. For the docking simulations,
we used the Triangle Matcher placement algorithm [48], which returned thirty poses; we also used
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the Rigid Receptor refinement method which returned one final pose, as implemented in MOE Dock.
The London dG method [35,49] was used to score the poses in both steps. The binding energy of
a ligand-receptor complex was calculated with the London dG method as

∆GLdG = c + E f lex + ∑
hbonds

chb fhb + ∑
metal−lig

cm fm +∑
i

∆Di (1)

where c is an empirically derived term modeling the change in rotational/translational entropy
upon binding; chb and cm are the energies of ideal hydrogen bonds and metal ligations, respectively;
fhb and fm range between 0 and 1 and measure the geometric imperfections of hydrogen bonds and
metal ligations, respectively; and ∆Di is the desolvation contribution modeled by using a volume
integral London dispersion [35]. Pharmacophore features common to all the docked compounds were
automatically generated using the Consensus method in the Pharmacophore Editor in MOE and the
Unified pharmacophore scheme [50].
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3.4. Virtual Screening of the ZINC15 Database

To identify potential novel ERCC1-XPF inhibitors acting by binding to the XPF active site,
we performed a VS campaign against the ZINC1 database, containing ~120 millions of compounds.
Prior to performing the VS, the database needed to undergo several filtering and preparation steps to
reduce the enormous number of compounds and, at the same time, to consider different states of the
retained small molecules. Hence, we downloaded all the compounds which satisfied the following
ZINC15 filters: availability of 3D conformers, standard reactivity, commercial purchasability as wait-ok,
standard protonation state at pH of 7.4, and charges ranging from −2 to +2. We then used the MOE
Database Wash tool again to calculate other accessible protonation states and tautomers. We filtered the
resulting database to retain just the compounds satisfying the Oprea’s lead-like filter [51]. The Oprea’s
rules are (a) the number of N or O atoms that are hydrogen bond donors must be maximum 5; (b) the
number of N and O atoms must be maximum 8; (c) the molecular weight must be maximum 450;
(d) the logP must be between −3.5 and 4.5; (e) the number of rings of size three through eight must be
maximum 4; and, (f) the number of rotatable bonds must be maximum 10. A compound is considered
lead-like if its structure violates, at most, one of Oprea’s rules. Our goal was to screen only lead-like
compounds which could be optimized in drug-like compounds once the activities were assessed.
As the last preparation step, we generated up to five 3D conformations for each compound in MOE,
imposing a strain limit of 4 kcal/mol. The pharmacophore obtained previously was then used to
screen the resulting multi-conformational database, retaining only those compounds with at least
one conformation satisfying the pharmacophore. We then performed a structure-based VS of the
resulting ZINC15 subset of small molecules, using the same docking parameters described previously.
The resulting top-scored poses were filtered again using the same pharmacophore model to retain only
the binding modes which satisfied the pharmacophore features. Duplicates of the same compound
scoring worse than the top pose were removed.

4. Conclusions

The ERCC1-XPF endonuclease plays a primary role in several DNA repair pathways, including
NER, ICL, and DSB. Because these pathways in cancer cells are involved in the repair of damages
caused by DNA-damaging cancer therapies, blocking their activity was expected to result in the
enhancement of the effect of such therapies. An inhibition of endonuclease activity through the use of
small molecules binding to the catalytic site of XPF is a relatively new strategy, which has not yet been
fully explored. Indeed, despite the recent discovery of several XPF active site inhibitors, structural
information is lacking regarding the mode of binding of these compounds, largely a result of the
unavailability of experimental structures of the human XPF nuclease domain. Here, we generated
a homology model for such a domain, based on templates that were carefully selected among all the
structures of protein domains related to that of the human XPF. Consequently, we used MD simulations
and iterative clustering of the MD trajectory to identify dominant conformations of the active site and
used the resulting set of structures as targets in molecular docking simulations of the most potent and
selectively known XPF inhibitors. As a result, we built a pharmacophore model elucidating the key
interactions required for an effective ligand binding to the site, involving E712 and K727 as well as the
coordinated Mg2+ ion. A multi-step VS campaign was then performed to identify potential novel XPF
inhibitors by sequentially filtering the ZINC15 database.

This work provides a detailed picture of the binding modes of small molecules to the human XPF
active site. The results presented here can be effectively used in the rational design of XPF inhibitors,
which are potent and specific to the target. In addition, we identified a set of commercially available
chemical compounds which can potentially show improved binding compared to the set of known
inhibitors. To validate our model of ligand binding, mutation studies regarding the residues identified
as essential for binding would be ideal. On the basis of previous studies, residue E712 would be the
best candidate for a mutation study, as it is not conserved among other XPF-related proteins and its
mutation does not affect the endonuclease activity. On the other hand, K727 would stop the activity
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when mutated [24]. Additionally, the top hits we reported in this study represent a good starting point
to rationally develop optimized analogues following their experimental validation as XPF binders and
DNA repair inhibitors.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/5/
1328/s1.
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