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Abstract: There has been many recent studies on the use of microbial antagonists to control diseases 

incited by soilborne and airborne plant pathogenic bacteria and fungi, in an attempt to replace 

existing methods of chemical control and avoid extensive use of fungicides, which often lead to 

resistance in plant pathogens. In agriculture, plant growth-promoting and biocontrol 

microorganisms have emerged as safe alternatives to chemical pesticides. Streptomyces spp. and 

their metabolites may have great potential as excellent agents for controlling various fungal and 

bacterial phytopathogens. Streptomycetes belong to the rhizosoil microbial communities and are 

efficient colonizers of plant tissues, from roots to the aerial parts. They are active producers of 

antibiotics and volatile organic compounds, both in soil and in planta, and this feature is helpful for 

identifying active antagonists of plant pathogens and can be used in several cropping systems as 

biocontrol agents. Additionally, their ability to promote plant growth has been demonstrated in a 

number of crops, thus inspiring the wide application of streptomycetes as biofertilizers to increase 

plant productivity. The present review highlights Streptomyces spp.-mediated functional traits, such 

as enhancement of plant growth and biocontrol of phytopathogens. 

Keywords: actinobacteria; streptomycetes; plant growth promoting rhizobacteria; microbe–microbe 

interactions; microbial biocontrol agents 

 

1. Introduction 

Plants are extensively colonized by a range of beneficial microorganisms and acquire a variety 

of plant–microbe interactions. Some of these interactions are beneficial, whereas some are detrimental 

to the plant. The microorganisms grow on plants as a resource of nutrients or habitat niche. In one 

such symbiotic interaction, the roots of many plants are infected by specific fungi (mycorrhizal 

association), rhizobia, and actinobacteria (particularly streptomycetes) that help the plant to acquire 

nutrients from the soil [1,2]. 

Currently, microbial endophytic communities are the focus of several studies aimed at 

unraveling and clarifying their role as plant growth promoters and their involvement in plant health. 

Several different bacterial species have been identified colonizing plant tissues and vessels, from the 

root system up to the stem, leaves, and other plant organs. Most of them are described as producers 

of metabolites positively interfering with plant life, for example, by enhancing nutrient acquisition 

or by stimulating plant defense mechanisms towards pathogens [3]. Rhizobacteria and mycorrhizal 

fungi are among the microorganisms that have proved to be of highest efficacy in promoting plant 

growth and, therefore, crop productivity. Rhizosphere bacteria are able to enhance nutrient uptake 

from the rhizosoil by the plants that they colonize. For this reason, they might be considered efficient 

biofertilizers. In most cases, such growth-promoting rhizosphere bacteria belong to the following 
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species: Alcaligenes, Arthrobacter, Azospirillum, Azotobacter, Bacillus, Burkholderia, Enterobacter, 

Klebsiella, Pseudomonas, and Serratia [4,5]. Streptomyces spp. also belongs to the rhizospheric microbial 

communities but only very recently has their ability to act as plant growth promoters been 

emphasized [6]. Rhizobacteria are also frequently found endophytically in roots and other plant 

parts, showing their ability to colonize their hosts. In such cases, their plant-stimulating activity does 

not cease but can continue in the colonized plant tissues [7,8]. Mycorrhizal associations (ecto- and 

endomycorrhizae) are also pivotally important in ensuring plant growth and biomass through 

increasing nutrient and water uptake and enhancing plant resistance to abiotic and biotic stresses [9]. 

Mycorrhiza and rhizobia are, therefore, natural miniature fertilizer factories, an economical and 

safe source of plant nutrients compared to synthetic chemical fertilizers, which substantially 

contribute to environmental pollution. These microorganisms can increase agricultural production 

and improve soil fertility and, therefore, have great potential as a supplementary, renewable, and 

environmentally friendly source of plant nutrients. 

Streptomyces spp. include many saprophytes, some of them becoming beneficial plant 

endosymbionts, but also include a few plant pathogens. The filamentous and sporulating nature of 

Streptomyces allows them to survive during unfavorable environmental conditions. Therefore, they 

appear to compete more efficiently against many other microorganisms present in the rhizosoil. 

Streptomycetes produce various lytic enzymes during their metabolic processes. Such enzymes are 

able to degrade insoluble organic polymers, such as chitin and cellulose, breaking them to substituent 

sugars for binding and uptake by multiple ABC transporters [10–13]. 

Plant growth promotion and productivity stimulated by microbial endophytic communities are 

often associated with increased plant health, achieved through direct and/or plant-mediated control 

of plant pests and pathogens. A few studies have reported that root-associated microbes, particularly 

mycorrhizae and/or rhizobacteria, might influence and change plant physiology such that the 

aboveground parts are less prone to attack by phytophagous insects [14]. Plant defense is then 

achieved by priming for enhanced expression of sequences regulated by the production of jasmonic 

acid, ethylene, or salicylic acid. In other cases, beneficial microbes, such as root-colonizing 

pseudomonads, may directly act against plant-feeding insects by producing volatile organic 

compounds (VOCs) that have insecticidal properties [15]. In various studies, most of the antagonistic 

relationships between beneficial microbes and pathogens have been successful in explaining efficient 

biocontrol activity against many fungal diseases [16]. In a number of studies, researchers have found 

that endophytic microorganisms may have a symbiotic association with their host plants. According 

to Benhamou et al. [17], the endophytic Bacillus pumilus efficiently protected pea plants from Fusarium 

oxysporum f. sp. pisi, the causal agent of Fusarium root rot. Similarly, Varma et al. [18] demonstrated 

the growth-promoting activity in various plants elicited by the endophytic fungus Piriformospora 

indica. These endophytic microorganisms provide real advantages to the host plants, for example, by 

enhancing the physiological activity of the plant or facilitating the uptake of nutrients from the soil. 

Thus, they may serve as biocontrol agents or plant growth promoters [19]. Among other 

microorganisms, a variety of actinomycetes inhabit a wide range of plants as endophytes [20–25]; 

therefore, such actinobacteria may have both the potential to serve as effective biocontrol agents and 

to be considered as efficient plant growth promoters [26–28]. The genus Streptomyces has been 

extensively studied and used for biocontrol of soilborne fungal pathogens because of its intense 

antagonistic activity through the production of various antifungal metabolites [29–31]. 

2. Streptomyces spp. as Endophytes 

Streptomycetes are Gram-positive bacteria belonging to the order Actinomycetales and the family 

Streptomycetaceae; roughly, streptomycetes are represented by more than 570 different species [32]. 

Streptomycetes are aerobic and filamentous bacteria able to produce vegetative hyphae that 

eventually form a complex mycelium and are able to grow and colonize different substrates. They 

are spore-forming bacteria and their spores may aid the dispersion and dissemination of the 

microorganism [33]. The genus Streptomyces includes ten plant pathogenic species, most of which are 
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causal agents of the common scab of potatoes [34]. In nature, streptomycetes have a quite widespread 

distribution and are found in soils of very different structure and chemistry, in surface waters, and 

in plants as rhizosphere colonizers or true endophytes. As endophytic microorganisms, they colonize 

the internal part of plants, mainly the root system and the xylem tissues of the stem, causing no 

apparent change to their host’s morphology and physiology [35,36]. In different natural 

environments, they often play a major role in nutrient cycling. They may also have a strong influence 

in the population structure of environmental microbial communities due to their ability to produce a 

large set of secondary metabolites, many of which are of clinical and biotechnological importance 

[37,38]. 

From the medical point of view, Streptomyces is the largest antibiotic-producing genus against 

clinical microorganisms (fungi and bacteria) and parasites. They also produce other clinically 

important bioactive compounds such as immunosuppressants [39]. Only very recently has 

streptomycetes been considered as a prospective biocontrol agent in agriculture. Indeed, their ability 

to produce antibiotics may be used to control plant pathogenic bacteria and fungi [40]. Interference 

competition, an important strategy in interspecific interactions, is the production of growth inhibitory 

secondary metabolites (for example, antibiotics, toxins, biosurfactants, volatiles, and others) that can 

suppress or kill microbial opponents [41,42]. This feature is particularly present in streptomycetes, 

thus suggesting their use in excluding plant pathogens from their crop plants. 

Interestingly, in a few cases, their interactions with plants may lead to suppression of the innate 

plant responses to phytopathogens. Therefore, it is of great importance to choose and characterize 

single Streptomyces strains for possible use as microbial antagonists. This is conveniently done 

through extensive in vitro and in planta studies on the roles of their antibiotics and possible 

production of VOCs [43]. One of the most common metabolites in streptomycetes communities is 

geosmin, a bicyclic alcohol derivative of decalin that confers the typical “earthy” flavor to the 

substrates they colonize [44]. Geosmin may be regarded as a volatile organic compound of microbial 

origin to which the human nose is extremely sensitive [45]. Although geosmin has no known 

antibiotic activity and its adaptive significance is not yet known, this metabolite might have an 

important role in the biology of streptomycetes [46]; indeed, it is a well-conserved trait and the gene 

responsible is highly conserved among Streptomyces spp. [47]. Geosmin enables bacteria to adapt to 

various environments, such as microbial communities or the host, ultimately influencing bacterial 

competition and cooperation [48]. It also has the ability to induce selective growth of geosmin-

utilizing bacteria [49]. 

Microbial endophytes that efficiently and stably colonize different plant tissues, from roots to all 

aerial parts, have been long known, although their pivotal importance in agriculture has become 

evident only in recent decades. The main roles of endophytic microorganisms were discussed around 

20 years ago when several authors focused on symbiotic microorganisms and their possible plant–

microbe interactions from a systematic, ecological, and physiological point of view [50–53]. Later 

discovery of the metabolic potential of such endophytes in planta, their ability to efficiently compete 

with other endophytes (included plant pathogens), and their role in stimulating the expression or 

overexpression of plant genomic sequences involved in tolerance/resistance to plant stresses (abiotic 

and biotic) indicated that selected endophytes may be considered as very promising agents to control 

plant pests and diseases.  

Actinobacteria and streptomycetes in particular are known to constitute a large part of the 

rhizosoil microbiota. They may live saprophytically and endophytically in both natural and 

agricultural environments where they may colonize the rhizosphere and different morphological 

parts of plant roots [54]. Therefore, considering their plant growth-promoting activity, 

streptomycetes represent an excellent alternative for improving nutrient availability to crop plants 

and promoting innovation and sustainability in agricultural systems [55]. Plant growth-promoting 

streptomycetes (PGPS) stimulate and enhance several direct and indirect biosynthetic pathways in 

plants, for example, inorganic phosphate solubilization, biosynthesis of chelating compounds, 

phytohormones production, inhibition of plant pathogens, and alleviation of various abiotic stresses 

(Figure 1) [56]. 



Int. J. Mol. Sci. 2018, 19, 952 4 of 26 

 

 

Figure 1. Representation of possible plant–microbe interactions favoring plant growth and/or 

biocontrol of phytopathogens by streptomycetes as rhizosphere competent microorganisms and/or 

endophytes (adapted from [57]). 

The isolation of actinomycetes in pure culture is an important step for screening the production 

of bioactive compounds. The most studied actinomycetes are species from the genus Frankia, a 

nitrogen-fixing bacterium of non-leguminous plants [58], and a few species of the genus Streptomyces 

that are phytopathogens [59]. Mundt and Hinckle [60] were able to isolate different species of 

Streptomyces and Nocardia from 27 different plant species, finding these actinobacteria present as 

endophytes in different plant tissues such as seeds and ovules. Sardi et al. [20] isolated and observed, 

through direct microscope examination, endophytic actinomycetes from the roots of 28 plant species 

from Northwestern Italy, finding actinomycetes belonging to the genus Streptomyces and other 

common genera, namely Streptoverticillium, Nocardia, Micromonospora, and Streptosporangium. 

3. Streptomyces spp. as Plant Growth Promoters and Improvement of Plant Nutrition 

Actinobacteria may have, in general, a positive role in plant mineral nutrition. This is correlated 

to both nitrogen fixation and metal mobilizing ability involving mineral nutrients such as Fe, Zn, and 

Se. Nonetheless, metagenomic analyses have not proven that streptomycetes are involved in such 

beneficial processes [61]. Metagenomic analyses of bacterial microbiota in plants have shown that the 

phylogenetic and taxonomic composition of such microbial communities is limited to few bacterial 

phyla, including actinobacteria. 

More recently, Viaene et al. [7] highlighted the contribution of streptomycetes to plant growth 

and health. The plant has an important role in shaping its root microbiome through root exudate 

composition (chemotaxis) and nutritional interactions [62–64]. Plant root exudates are a source of 

metabolic signals (such as flavonoids, strigolactones, and terpenoids) that have the ability to shape 

the microbial communities in the rhizosphere. The signals that attract streptomycetes into the 

rhizosphere are still unknown. From the rhizosphere, streptomycetes are able to enter roots and 

colonize root tissues and vessels from where they can be isolated [24] and purified to identify them 

and describe their physiology and their microbe–microbe interactions. 
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Actinobacteria, such as Streptomyces spp., influence soil fertility through the involvement of 

many components and serve as nutrient enhancers. Besides producing siderophores and solubilizing 

phosphate, they are known to produce various enzymes—including amylase, chitinase, cellulase, 

invertase, lipase, keratinase, peroxidase, pectinase, protease, phytase, and xylanase—which make the 

complex nutrients into simple mineral forms. This nutrient cycling capacity makes them ideal 

candidates for natural fertilizers [65]. The relationship between PGPS and their host plant and the 

biochemical processes involved deserve deeper investigation. This knowledge would allow 

manipulation of those interactions, particularly the biochemical mechanisms leading to a compatible 

relationship between the host plant and its endophytes. Most streptomycetes are free-living in the 

soil as saprophytes and are able to colonize the rhizosphere and rhizoplane of the host plant. For 

instance, some PGPS, initially known as soil-dwelling microorganisms, were found to efficiently 

colonize the inner tissues of selected host plants as endophytes, therefore proving their ability to fully 

or partly conduct their life cycle inside plant tissues [66]. Additionally, a wide variety of Streptomyces 

species may establish beneficial plant–microbe interactions [67–69]. Table 1 summarizes the plant 

growth-promoting activity of Streptomyces species—many of them not fully identified—that gain 

access to root tissues from the rhizosoil. These species thus acquire an endophytic status without 

causing any visible harm or symptoms in the host plant. Such streptomycetes, although not always 

identified at the species level, are reported to have marked plant growth-promoting activity in their 

host plants. These species are most likely present in the apoplast of different parts of the plant (that 

is, roots, stems, leaves, flowers, fruits, and seeds) [69]. Coombs and Franco [70] demonstrated the 

endophytic colonization of wheat embryos, endosperm, and emerging radicles by tagging 

Streptomyces spp. strain EN27 with green fluorescent protein. 

The endophytic streptomycetes can also be a source of metabolites that promote or improve host 

plant fitness and growth, as well as reduce disease symptoms that are caused by plant pathogens or 

various environmental stresses [71]. 

Table 1. List of streptomycetes isolated from plants or the rhizosphere showing plant 

growth-promoting (PGP) activity. 

Species Host Plant PGP Traits/Observed Effects in Plants Reference 

Streptomyces sp. Clover Nutrient uptake [72] 

Streptomyces sp. Rice, chickpea Nutrient uptake and plant growth [73,74] 

Streptomyces sp. Pea Nodulation [75] 

Streptomyces sp. Mung bean Enhanced plant growth [68] 

Streptomyces sp. Wheat Nutrient uptake and plant growth [76] 

Streptomyces atrovirens,  

S. griseoviridis,  

S. lydicus,  

S. olivaceoviridis,  

S. rimosus,  

S. rochei, S. viridis 

Rhizosphere Auxin/IAA production [77–81] 

Streptomyces sp. - Gibberellin biosynthesis [82] 

Streptomyces 

igroscopicus 
- ACC deaminase [83] 

Streptomyces sp. Terfezia leonis Tul. 
Siderophore production, IAA, and gibberellic acid 

production 
[84] 

Streptomyces sp. 
Marine 

environments 

Gibberellic acid, IAA, abscisic acid, kinetin, and 

benzyladenine 
[85] 

Streptomyces 

aurantiogriseus 
Rice IAA production [86,87] 

Streptomyces sp. Soil Synthesis of IAA and siderophore production [88] 

Streptomyces sp. - Β-1,3-Glucanase, IAA, and HCN synthesis [73,89] 

Streptomyces sp. - Siderophore production [90] 

Streptomyces rochei, S. 

carpinensis,  

S. thermolilacinus 

- 
Production of siderophore, IAA synthesis, and 

phosphate solubilization 
[91] 
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Streptomyces sp. Soil 
Siderophore production, phosphate solubilization, 

and N2 fixation 
[72] 

Streptomyces sp. - Production of zeatin, gibberellic acid, and IAA [92] 

Streptomyces 

olivaceoviridis,  

S. rochei 

Wheat Auxin, gibberellin, and cytokinin synthesis [93] 

Streptomyces 

hygroscopicus 
Kidney beans Formation of adventitious roots in hypocotyls [94] 

Streptomyces sp. Rhododendron 
Accelerated emergence and elongation of 

adventitious roots in tissue-cultured seedlings 
[28] 

Streptomyces filipinensis,  

S. atrovirens 
Tomato Plant growth promotion [78] 

Streptomyces spiralis Cucumber Plant growth promotion [95] 

Streptomyces sp. 

Sorghum Enhanced agronomic traits of sorghum 

[96] 
Rice 

Enhanced stover yield, grain yield, total dry matter, 

and root biomass 

Note: IAA: Indole-3-acetic acid; ACC: 1-amino cyclopropane-1-carboxylic acid; HCN: Hydrogen 

cyanide. 

Plant Hormone Production by Streptomycetes  

Many scientific reports have explained the ability of endophytic actinobacteria to stimulate the 

secretion of plant growth hormones and enhance their growth-promoting activity. A study by 

Dochhil et al. [97] described the evidence of plant growth-promoting activity and a higher percentage 

of seed germination due to the synthesis of higher concentrations (71 g/mL and 197 g/mL) of the plant 

growth hormone indole acetic acid (IAA) by two Streptomyces spp. strains isolated from Centella 

asiatica. In field trials, increased growth promotion and yield of cucumber was achieved by the 

application of Streptomyces spiralis alone, or in combination with other microbial “activators” such as 

Actinoplanes campanulatus or Micromonospora chalcea. Such experiments highlight the role of multiple 

microbes (or a microbial consortium) in very productive crop systems [98,99]. 

In soil, most of the known actinomycetes belong to genus Streptomyces and have been used for 

various agricultural purposes, mainly due to their production of antifungal and antibacterial 

metabolites and a number of plant growth-promoting (PGP) traits [100,101]. Indeed, more than 60% 

of known compounds with antimicrobial or plant growth-promoting activity originate from this 

genus [102]. In agricultural environments, Streptomyces species are an important group of soil bacteria 

because of their ample capacity to produce PGP substances, secondary metabolites (such as 

antibiotics), and enzymes [77,103]. 

Indole-3-acetic acid (IAA) is a common plant hormone belonging to the class of auxins. It has an 

important role in plant growth and development since it induces cell elongation and division. 

Manulis et al. [50] studied the production of IAA and the pathways of its synthesis by various 

Streptomyces spp., including Streptomyces violaceus, Streptomyces griseus, Streptomyces exfoliates, 

Streptomyces coelicolor, and Streptomyces lividans. Reddy et al. [51] isolated Streptomyces atrovirens from 

groundnut roots. This bacteria has shown excellent growth-promoting activity not only on 

groundnut but also on a number of other crops. These results are particularly interesting since they 

show the ability of a single streptomycete to promote growth in multiple different plants. El-Sayed 

et al. [52] and El-Shanshoury [53] reported IAA production in plants stimulated by Streptomyces sp. 

in greenhouse experiments while El-Tarabily [54] was successful in comparing different Streptomyces 

spp. strains. In these experiments, remarkably efficient growth promotion was stimulated by 

Streptomyces filipinensis due to its production of IAA.  

1-aminocyclopropane-1-carboxylate (ACC) is a derived amino acid that is required for the 

endogenous biosynthesis of ethylene in plants. Comparing different streptomycetes, El-Tarabily [54] 

noted that the increased growth promoted by Streptomyces filipinensis, when compared to S. atrovirens, 

was due to the production of both IAA and ACC, whereas S. atrovirens produced only ACC 

deaminase. Therefore, a single streptomycetes was shown to produce more than one plant hormone. 
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These results are of great interest for the possible exploitation of streptomycetes as plant growth 

stimulants. 

The endophytic colonization of streptomycetes connected with their influence on plant nutrition 

is poorly studied so far. However, nitrogen-fixing actinobacteria and their correlation with plant 

nutrition and productivity have been recently described [104]. Among such actinobacterial 

communities, a few Streptomyces spp. with nitrogen-fixing capacity have been identified. Siderophore 

production has also been described. In particular, isolates of Streptomyces spp. were able to produce 

and excrete an enterobactin, an iron-chelating compound characteristic of some Enterobacteriaceae 

[90,105]. 

4. Streptomycetes in Plant Protection against Biotic Stresses 

Microbial biocontrol agents have the ability to perform antibiosis, parasitism, or competition 

with the pathogen for nutrients and space. They may also induce disease resistance in the host plant 

that they colonize, acting along different steps of the infection process. Therefore, protection of plants 

from biotic stresses may be the result of one or more microbe–microbe or plant–microbe interactions 

[106]. Actinomycetes, and particularly Streptomyces species, are well known for their production of a 

wide spectrum of antibiotics. These are often species specific and allow them to develop symbiotic 

interactions with plants by protecting the them from various pathogens; at the same time, plant 

exudates promote Streptomyces growth [107]. In the last two decades, there has been an increasing 

interest in antibiosis by PGPB and such biocontrol mechanisms are now better understood [108]. 

Several metabolites with antibiotic nature produced by pseudomonads have been studied and 

characterized so far, e.g.,: the cyclic lipopeptide amphysin, 2,4-diacetylphloroglucinol (DAPG), 

oomycin A, the aromatic polyketide pyoluteorin, pyrrolnitrin, the antibacterial compound tropolone 

[109,110]. Other bacterial genera, such as Bacillus, Streptomyces, Stenotrophomonas spp., produce the 

macrolide oligomycin A, kanosamine, the linear aminopolyol zwittermicin A, and xanthobactin 

[111,112]. They also synthesize several enzymes that are able to disrupt fungal cell walls [39]. Early 

studies performed during the 1950s described the production by streptomycetes of a set of antibiotics 

suitable for controlling foliage diseases caused by phytopathogenic fungi [113,114]. Later, several 

other authors reported excellent biocontrol activity of some phytopathogenic soilborne fungi such as 

Pythium spp., Fusarium spp. [115], Rhizoctonia solani [116], and Phytophthora spp. [117] (Table 2).  

Table 2. Biocontrol activity of several Streptomyces spp. against different fungi. 

Species/Strain Plant Disease Target Pathogens References 

Streptomyces viridodiasticus Lettuce Basal drop disease Sclerotinia minor [118] 

S. violaceusniger G10 Banana Wilt Fusarium oxysporum f. sp. cubense race 4 [119] 

Streptomyces sp. KH-614 Rice Blast Pyricularia oryzae [120] 

Streptomyces sp. AP77 Porphyra Red rot Pythium porphyrae [121] 

Streptomyces sp. S30 Tomato Damping off Rhizoctonia solani [122] 

S. halstedii Red pepper Blight Phytophthora capsica [123] 

Streptomyces spp.  

47W08, 47W10 
Pepper Blight Phytophthora capsica [124] 

S. violaceusniger XL-2 Many Wood rot 

Phanerochaete chrysosporium, Postia 

placenta, Coriolus versicolor, Gloeophyllum 

trabeum 

[125] 

S. ambofaciens S2 
Red chili 

fruits 
Anthracnose Colletotrichum gloeosporioides [126] 

Streptomyces sp. Sugar beet Damping off Sclerotium rolfsii [127] 

S. hygroscopicus Many 
Anthracnose and leaf 

blight 

Colletotrichum gloeosporioides and 

Sclerotium rolfsii 
[128] 

Streptomyces sp. Sunflower Head and stem rot Sclerotinia sclerotiorum [129] 

Streptomyces sp. Sweet pea Powdery mildew Oidium sp. [130] 

S. vinaceusdrappus Rice Blast 
Curvularia oryzae, Pyricularia oryzae, 

Bipolaris oryzae, Fusarium oxysporum 
[131] 

Streptomyces sp. RO3 Lemon fruit 
Green mold and sour 

rot 

Penicillium digitatum, Geotrichum 

candidum 
[132] 
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S. spororaveus RDS28 Many 

Collar or root rot, 

stalk rot, leaf spots, 

and gray mold rot or 

botrytis blight 

Rhizoctonia solani, Fusarium solani, 

Fusarium verticillioides, Alternaria 

alternata, Botrytis cinerea 

[133] 

S. toxytricini vh6 Tomato Root rot Rhizoctonia solani [134] 

Streptomyces sp. Sugar beet Root rot Rhizoctonia solani, Phytophthora drechsleri [135] 

Streptomyces sp. Chili 
Root rot, blight, and 

fruit rot 

Alternaria brassicae, Colletotrichum 

gloeosporioides, Rhizoctonia solani, 

Phytophthora capsica 

[136] 

Streptomyces sp. Chili Wilt Fusarium oxysporum f. sp. capsici [137] 

Streptomyces sp. Ginger Rhizome rot Fusarium oxysporum f. sp. zingiberi [138] 

Streptomyces sp. CBE Groundnut Stem rot Sclerotium rolfsii [139] 

Streptomyces sp. Tomato Damping off Rhizoctonia solani [140] 

Streptomyces sp. Tobacco Brown spot Alternaria spp. [141] 

S. aurantiogriseus  

VSMGT1014 
Rice Sheath blight Rhizoctonia solani [87] 

S. felleus YJ1 Oilseed rape Stem rot Scleotinia sclerotiorum [142] 

S. vinaceusdrappus  

S5MW2 
Tomato Root rot Rhizoctonia solani [143] 

Streptomyces sp. CACIS-

1.16CA 
Many - 

Curvularia sp., Aspergillus niger,  

Helminthosporium sp.,  

Fusarium sp. Alternaria sp.,  

Phytophthora capsici, Colletotrichum sp., 

and Rhizoctonia sp. 

[144] 

S. griseus Tomato Wilt Fusarium sp. [145] 

Streptomyces sp. Potato Silver scurf Helminthosporium solani [146] 

S. rochei Pepper Root rot Phytophthora capsica [147] 

Streptomyces sp. Maize Seed fungi Aspergillus sp. [148] 

S. lydicus WYEC108 Many 
Foliar and root fungal 

diseases 
- 

[149,150] 

S. griseoviridis K61 Many 
Root rot and wilt 

pathogenic fungi 
- 

Streptomyces sp. YCED9 and 

WYEC108 
Lettuce Damping off 

Pythium ultimum, Sclerotinia homeocarpa, 

Rhizoctonia solani 
[149,151] 

Streptomyces. G10 Banana Wilt Fusarium oxysporum f. sp. cubense [152] 

S. violaceusniger YCED9 Turfgrass Crown/foliar disease Rhizoctonia solani [153] 

Streptomyces sp. Cucurbit Anthracnose Colletotrichum orbiculare [154] 

Streptomyces sp. A1022 
Pepper and 

cherry tomato 
Anthracnose Colletotrichum gloeosporioides [155] 

S. halstedii K122 Many - 
Aspergillus fumigatus, Mucor hiemalis, 

Penicillium roqueforti, Paecilomyces variotii 
[156] 

Streptomyces sp. MT17  Wood rotting Different fungi [157] 

S. lavendulae HHFA1 
Onion Bacterial rot 

Erwinia carotovora subsp. carotovora, 

Burkholderia cepacia 
[158] 

S. coelicolor HHFA2 

Streptomyces sp. S01, S02, 

S03, S04, S05, S06, S07, S08, 

S09, S10, S11, S12, S13, S14, 

S15 

Many - 

Rhizopus nigricans, Aspergillus niger, 

Fusarium oxysporum, Helminthosporium 

gramineum, Spodoptera littoralis 

[159] 

Streptomyces sp. 5406 Cotton - Plant pathogens [160] 

S. albidoflavus Tomato Many 

Alternaria solani, A. alternata, 

Colletotrichum gloeosporioides, Fusarium 

oxysporum, Fusarium solani, Rhizoctonia 

solani, Botrytis cinerea 

[161] 

Streptomyces sp. Soybean Bacterial blight Xanthomonas campestris pv. glycines [162] 

Streptomyces sp. BSA25 and 

WRAI 
Chickpea - Phytophthora medicaginis [163] 

Streptomyces sp. Chickpea Fusarium wilt Fusarium oxysporum f. sp. ciceri [164] 

Streptomyces sp. Chickpea Basal rot Macrophomina phaseolina [73] 

Streptomyces sp. Cucumber Fusarium wilt Fusarium oxysporum [165] 

As shown in Table 2, streptomycetes are promising microbial biocontrol organisms that are able 

to antagonize and/or kill fungal and bacterial plant pathogens. Their biocontrol activity is often 

performed before the pathogens completely infect their respective host. Recently, these organisms 

have been the focus of different approaches toward the development of biocontrol strategies against 

soilborne pathogens [116,166]. For instance, by treating seeds with endophytic Streptomyces spp. and 
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Micromonospora spp. prior to sowing, Arabidopsis thaliana was protected from infection by Erwinia 

carotovora and F. oxysporum. Streptomycetes were observed antagonizing pathogens by inducing the 

expression of defense pathways in the plant [167]. This observation implies that the microbial 

antagonists penetrated the seeds during their germination and colonized the seedlings. Bacon and 

Hinton [168] reported that varying levels of disease suppression in the field were positively 

correlated with similar results obtained from in vitro experiments. In other experiments, a significant 

pathogen inhibition in vitro was not always correlated with disease protection in planta. Growth 

inhibition of plant pathogens by endophytic bacteria indicates the presence of antagonistic activities 

between them, which may act directly (by mechanisms of antibiosis, competition, and lysis) or 

indirectly (by inducing plant defense or by growth-promoting substances) [31,169] (Figure 2a,b). 

  

Figure 2. In vitro biocontrol activity of Streptomyces spp.: (a) antimicrobial activity against Clavibacter 

michiganensis subsp. michiganensis, the causal agent of the tomato bacterial canker and (b) antifungal 

activity against Monilinia laxa, the causal agent of the brown rot of stone fruits. 

Production of chitinolytic enzymes and siderophores (iron-chelating compounds) is a known 

additional mode of action for fungal growth inhibition by endophytic actinobacteria. Endophytic 

actinobacteria can produce enzymes that degrade fungal cell walls, especially by the production of 

chitinases. Over 90% of chitinolytic microorganisms are actinomycetes. These have been extensively 

studied during the last two decades, starting in the mid-1990s [170]. The production of chitinases by 

actinomycetes and by streptomycetes in particular makes these organisms very promising microbial 

biocontrol agents. In Streptomyces plicatus, chitinases are encoded in a region of chi65, the expression 

of which is induced by N,N′-diacetylchitobiose and activated by allosamidin [171]. In fungi, chitinase 

is necessary for fungal development, such as hyphal growth and branching [172]. Several bacteria, 

and streptomycetes in particular, also produce a set of chitinases to obtain nutrients through 

degradation of environmental chitin, including the cell wall of soil fungi. Therefore, this ability 

may be exploited in the selection and exploitation of chitinolytic microbial agents for the 

biocontrol of phytopathogenic fungi [173,174]. Allosamidin is an important secondary metabolite 

of streptomycetes and was initially reported as a chitinase inhibitor [175]. Later, they further 

investigated the role of allosamidin in its producing Streptomyces and showed that allosamidin 

inhibits all family 18 chitinases, but can dramatically promote chitinase production and growth of its 

producer Streptomyces [171,176]. This appears particularly important for the bacterial growth in soil 

where chitin, mainly originating from insect cuticle and fungal cell walls, is a major nutrient source. 

Therefore, allosamidin is listed as a potent secondary metabolite with antifungal activity [177]. 

Although both crude and purified chitinases have great potential for cell wall lysis of fungal 

pathogens, in common agricultural systems the use of selected streptomycetes as microbial biocontrol 

agents targeting important phytopathogens appears to be a more effective strategy. This is due to the 

high cost of purified antimicrobial molecules, making them more suitable as pharmaceuticals against 

clinical and animal pathogens. The ability of siderophores to promote plant growth and enhance 

antagonism to phytopathogens has gained more significance [69,178,179]. El-Shatoury et al. [180] 

reported actinobacteria from Achillea fragrantissima that were capable of producing both chitinases 

and siderophores; they also showed remarkable inhibitory activity against phytopathogenic fungi. 

These reports were strongly supported and further explained by Gangwar et al. [181] studying 

actinobacteria from Aloe vera, Mentha arvensis, and Ocimum sanctum. The latter authors provided 
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quantitative data for different types of siderophore compounds: the hydroxamate-type of 

siderophore ranged between 5.9 and 64.9 μg·mL−1 and the catechol-type of siderophore occurred in a 

range of 11.2–23.1 μg·mL−1. In another investigation, El-Tarabily et al. [182] applied endophytic 

Streptomyces spiralis together with Actinoplanes campanulatus and Micromonospora chalcea to cucumber 

seedlings. Since this group of microorganisms, applied as a microbial consortium, showed more 

effectiveness in the reduction of seedling damping off and root- and crown-rot diseases by Pythium 

aphanidermatum than the single actinobacterium, this study recommended their use as very effective 

biocontrol agents. Therefore, as for other PGPR, several streptomycetes produce siderophores to 

sequester iron in the rhizosphere, making iron unavailable to certain rhizoplane microorganisms, in 

particular to some phytopathogens. These pathogenic microorganisms are often unable to obtain 

essential quantities of iron for their growth because they do not produce siderophores, produce 

comparatively less siderophores than PGPR, and/or produce siderophores that have less affinity for 

iron than those of PGPR [183]. 

Igarashi studied the new bioactive compound 6-prenylindole produced by a Streptomyces spp. 

[184]. In the beginning, it was reported as a component of liverwort (Hepaticae) and it showed 

significant antifungal activity against Alternaria brassicicola. Interestingly, this molecule was isolated 

from both plants and microorganisms [184]. Similar reports by Zhang et al. [185] explained the 

inhibition of the phytopathogenic fungi Colletotrichum orbiculare, Phytophthora capsici, Corynespora 

cassiicola, and Fusarium oxysporum by a new prenylated compound and three known hybrid 

isoprenoids with IC50 in the range 30.55–89.62. Another study by Lu and Shen [186,187] reported 

inhibition of Penicillium avellaneum UC-4376 by naphthomycins A and K produced by Streptomyces 

spp. The synthesis of fistupyrone, a metabolite produced by Streptomyces spp. isolated from leaves of 

spring onion (Allium fistulosum), was found by Igarashi [184] to inhibit Alternaria brassicicola, the 

causal agent of the black leaf spot in Brassica plant. This study reported that fistupyrone was able to 

inhibit the fungal infection process by pre-treating the seedlings with such compound at a 

concentration of 100 ppm. In support of this statement, experiments by Igarashi et al. [188] evidenced 

that fistupyrone did not inhibit the growing hyphae but suppressed spore germination of fungi at 0.1 

ppm concentration.  

Streptomyces spp. have the capacity to produce cellulolytic enzymes and various secondary 

metabolites, which directly act on herbivorous insects and show toxic activity on phytopathogens 

and/or insect pests [189,190]. A set of different molecules from Streptomyces spp. that act against insect 

pests have been found and characterized; these are, for instance, flavensomycin [191], antimycin A 

[192], piericidins [193], macrotetralides [194] and prasinons [195]. Streptomyces avermitilis, a common 

soil inhabitant, was shown to produce avermectins, molecules with potent activity against arthropods 

and nematodes [196]. These compounds derive from lactones and are macrocyclic in nature; they 

mainly act on the insect peripheral nervous system by targeting the γ-aminobutyric acid (GABA) 

receptors, leading to paralysis of the neuromuscular system [197]. Commercial insecticides based on 

avermectin mixtures are known as abamectin and they act on phytophagous arthropods directly by 

contact and ingestion. They are not systemic in plants, showing just a limited translaminar activity. 

Similar molecules produced by Streptomyces spp. are emamectin—particularly toxic to Lepidoptera, 

and milbemectin—and are specifically isolated from S. hygroscopicus. 

5. Commercialization, Environmental Effects, and Biosafety of Streptomyces Products 

Streptomycete producing antimicrobial secondary metabolites present an attractive alternative 

to chemical fertilizers, pesticides, and supplements, which may result in a significant increase in 

agricultural plant growth and pest and disease control [198]. While increasing our knowledge of the 

mechanisms triggered by actinomycetes for suppressing plant diseases, improving nutrient uptake 

by plants, and stimulating and/or increasing the production of phytohormones in planta, a great deal 

of research is being carried out worldwide for the development of correct formulations containing 

actinomycete inoculants as their active ingredients. Nevertheless, very few actinomycete-based 

products are currently commercialized. Although biocontrol with PGPR is an acceptable green 
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approach, the proportion of registration of Streptomyces spp. as biocontrol agents for commercial 

availability is very low. Mycostop (Verdera Oy, Finland) is the only Streptomyces-based plant 

protection product registered in the EU; it is also registered in Canada and the USA. Actofit and 

Astur, based on Streptomyces avermitilis, are registered as insecticides in the Ukraine. Table 3 lists the 

microbial pesticides that are registered in particular countries worldwide. In most cases, metabolites 

produced by Streptomyces spp. are registered as active substances in plant-protection products, as 

shown in Table 4.  

Table 3. List of Streptomyces spp.-based products available in the market worldwide (data 

collected and modified into a table from [199]). 

Commercial 

Product Name 

Organism as 

Active Substance 

Registered as 

Microbial Pesticide 
Targeted Pest/Pathogen/Disease 

Actinovate, 

Novozymes 

BioAg Inc., USA 

S. lydicus WYEC 

108 
Canada, USA 

Soilborne diseases, viz. Pythium, Fusarium, 

Phytophthora, Rhizoctonia, and Verticillium; foliar 

diseases such as powdery and downy mildew, 

Botrytis and Alternaria, Postia, Geotrichum, and 

Sclerotinia 

Mycostop, 

Verdera Oy, 

Finland 

Streptomyces K61 EU, Canada, USA 

Damping off caused by Alternaria and R. solani and 

Fusarium, Phytophthora, and Pythium wilt and root 

diseases 

Mykocide KIBC 

Co. Ltd. South 

Korea 

S. colombiensis South Korea Powdery mildews, grey mold, brown patch 

Safegrow KIBC 

Co. Ltd. South 

Korea 

S. kasugaensis South Korea Sheath blight, large patch 

Actofit, Astur S. avermitilis Ukraine Colorado potato beetle, web mites, other phytophags 

Bactophil Streptomyces albus Ukraine Seed germination diseases 

Bialaphos, Toku-

E, USA 

S. hygroscopicus,  

S. 

viridochromogenes 

USA Herbicide 

Incide SP, Sri 

Biotech 

Laboratories India 

Ltd., India 

S. atrovirens India Insecticide 

Actin, Sri Biotech 

Laboratories India 

Ltd., India 

S. atrovirens India Fungicide 

Table 4. List of active substances derived from Streptomyces spp. (in bold) and registered as 

commercial products in different geographical areas (data collected and modified into a 

table from [190,200–202]). 

Biocontrol Metabolite (Bold) 

and Commercial Names 
Organism Country Targeted Pathogen/Disease 

Blasticidin-SBLA-S S. griseochromogenes USA Rice blast (Pyricularia oryzae) 

Kasugamycin Kasumin, 

Kasurab-valida-sumi 
S. kasugaensis Ukraine 

Leaf spot in sugar beet and celery  

(Cercospora spp.) and scab in pears and 

apples (Venturia spp.),  

soybean root rot (Phytophthora sojae) 

Streptomycin 

Agrimycin, Paushak, 

Cuprimicin 17, AAstrepto 17, 

AS-50, Dustret, Cuprimic 100 

and 500 

S. griseus 

India, USA, 

New 

Zealand, 

China, 

Ukraine, 

Canada 

Bacterial rots, canker, and other bacterial 

diseases, Xanthomonas oryzae, Xanthomonas 

citri, and Pseudomonas tabaci of pome fruit, 

stone fruit, citrus, olives, vegetables, 

potatoes, tobacco, cotton, and ornamentals 
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Phytomycin Mycoshield, 

Cuprimic 100 and 500, 

Mycoject 

S. rimosus - 

Fire blight (Erwinia amylovora) and diseases 

caused by Pseudomonas and Xanthomonas sp. 

and mycoplasma-like organisms 

Validamycin Validacin, 

Valimun, 

Dantotsupadanvalida, Mycin 

Hustler, Valida, Sheathmar 

S. hygroscopicus - 

Rhizoctonia solani and other Rhizoctonia in 

rice, potatoes, vegetables, strawberries, 

tobacco, ginger, cotton, rice, sugar beet, etc. 

Polyoxorim Endorse, 

PolyoxinZ, Stopit, Polyoxin 

AL and Z, Polybelin 

S. cacaoi var. asoensis - 

Plant pathogenic fungi, Sphaerotheca spp. 

and other powdery mildews, Botrytis cinerea, 

Sclerotinia sclerotiorum, Corynespora melonis, 

Cochliobolus miyabeanus, Alternaria alternate 

and other species in vines, apples, pears, 

vegetables, and ornamentals. Rice sheath 

blight (R. solani), apple, pear canker, and 

Helminthosporium in rice; also inhibits cell 

wall biosynthesis and causes abnormal germ 

tube swelling of spores and hyphal tips, 

rendering fungus nonpathogenic 

Natamycin Delvolan 
S. natalensis and  

S. chattanoogensis 
- 

Basal rots on daffodils and ornamentals 

caused by Fusarium oxysporum 

Abamectin (Avermectins) 

Agri-Meck Avid, Clinch, 

Dynamec, Vertimec, Abacide, 

Abamex, Vapcomic, Vibamec, 

Agromec, Belpromec, 

Vamectin 1.8 EC, Vivid and 

many others 

S. avermitilis 

European 

Union, 

Worldwide 

Mites, leaf miners, suckers, beetles, fire ants, 

and other insects in ornamentals, cotton, 

citrus, pome and nut fruit, vegetables 

Polynactin Mitecidin S. aureus Japan 

Spider mites (Tetranychus cinnabarinus), two-

spotted mite (Tetranychus urticae), European 

red mite (Panonychus ulmi) in orchard fruit 

trees 

Milbemycine Milbeknock, 

Koromite, Mesa, Ultiflora and 

Matsuguard 

S. hygroscopicus 

subsp. 

aureolacrimosus 

- 
Citrus red mites, Kanzawa spider mites, and 

leaf miners in citrus, tea, eggplant 

Any formulation with an increased shelf life and a broad spectrum of actions, such as plant 

growth promotion and/or disease suppression under field conditions, could open the way for 

technological exploitation and marketing. Many reports suggest that commercial biocontrol agents 

are easy to deliver, induce plant growth and stress resistance, and eventually increase plant biomass 

and yield. As very promising and rich sources of agro-active compounds and biocontrol tools, 

actinomycetes have gained increasing interest in several agricultural sectors [203,204]. In fact, in the 

last 30 years, about 60% of new insecticides and herbicides reported have originated from 

Streptomyces [203]; this is because three-quarters of all Streptomyces spp. are able to produce some 

class of antibiotics [205]. As a single example among many, we mention the production of polyoxin 

B and D by Streptomyces cacaoi var. asoensis as a new class of natural fungicides [206]. Kasugamycin, 

registered in several countries as a bactericidal and fungicidal agrochemical, was discovered in 

Streptomyces kasugaensis [207]. More recently, Siddique et al. [208] reported that avermectin B1b, a 

component of commercially available abamectin, was obtained as a fermentation product of 

Streptomyces avermitilis, which has frequently been used as an insecticidal agent. Very few 

Streptomyces-based commercial formulations are available in the worldwide market, compared with 

products based on Streptomyces metabolites; the former are mainly indicated for pest and disease 

control. Additionally, few products have been specifically commercialized for plant growth 

promotion, although significant research has been carried out on actinomycete production of growth-
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promoting substances [209]. One reason for this gap may reside in the difficulty of preparing a 

commercial product formulation with one or more streptomycetes as an active substance. Ideally, the 

industrial process used should not affect the bioproduct’s plant growth-promoting activity and/or 

antimicrobial characteristics for 18–24 months.  

In keeping with current quality and safety standards, ideal microbial biocontrol agents should 

be univocally identified as a taxonomical unit; be effective against target plant pathogens or pests; 

show no clinical or animal toxicity; should not persist in the agro-environment (included surface 

water), having a short growing period, a level-off, and a final lining to the background 

microorganisms; and should not transfer genetic material to other taxonomically related 

microorganisms. Therefore, the antagonistic potential, environmental fate, and behavioral features of 

a putative microbial biocontrol agent must be thoroughly addressed by the industry to allow its 

registration as a bio-pesticide and approval for use in plant protection. All this may hinder the 

transfer of an effective biocontrol agent from the research lab into a commercially available product. 

Indeed, the BCB Manual of Biocontrol Agents, 5th Edition, lists over 120 microorganisms with 

potential use in agriculture, 54 of which have been approved in the EU for use in plant protection; 

however, only a few are commercially available. A complex regulatory landscape must be navigated 

by applicants applying for authorization to release a biocontrol agent. This is particularly true if the 

biocontrol agent is not indigenous [210,211]. 

Environmental risks associated with the inoculation of streptomycetes in agricultural 

environments as organisms beneficial to plants are associated with the lack of available data 

concerning the use of genetically modified organisms and their impact on the natural microbial 

communities [212]. In addition, the release of not genetically modified microbials may pose a risk 

related to the possible horizontal transfer of entire or partial gene clusters; this might be particularly 

risky in the case of antibiotic resistance. This was initially reported by Egan et al. [213] and later 

confirmed by Egan et al. [214]. This risk might be minimized during the search and study of 

prospective microbial inoculants, which should be accurately tested and characterized prior to their 

registration for the lack of known antibiotic-resistant genes or gene clusters. 

To ensure food security for an increasing worldwide human population, most agricultural 

systems presently depend on the use of chemical fertilizers and pesticides [215]. Industrially 

produced chemical fertilizers are rich in nitrogen, phosphorous, and potassium, the repeated use of 

which leads to pollution of the soil, air, and groundwater [216]. Given these known problems, 

beneficial agricultural microorganisms used as microbial inoculants will be an important focus in 

pursuing sustainable agriculture and the provision of safe food without depleting natural resources 

in the coming decades [217]. The application of these naturally occurring beneficial microorganisms 

to soil ecosystems improves the soil’s physical–chemical properties, fitness and stability, and 

microbial development along with promoting plant growth promotion and crop yield [218]. 

The microbial agents with the greatest agricultural prospects are rhizobacteria (as plant growth 

promoters), nitrogen-fixing cyanobacteria, mycorrhizal fungi, bacterial antagonists to plant 

pathogens, different biotic and abiotic stress-tolerance endophytes, and biodegrading bacteria 

[219,220]. Current registration and authorization procedures for microbe-based products to be used 

in agriculture as “fertilizers” are much less demanding; several microbe-based products or microbial 

consortia are, therefore, commercially available to farmers worldwide. Among them, a few contain 

streptomycetes and other Actinomycetales. Examples include Micosat F® (CCS Aosta srl, Aosta, Italy), 

containing three different Streptomyces spp.; Forge SP® (Blacksmith Bioscience, Spring, TX, USA), 

containing Streptomyces nigrescens; and Mykorrhyza soluble 30G (Glückspilze, Innsbruck, Austria), 

containing Streptomyces griseus and S. lydicus. 

6. Formulations and Inoculation Methods 

For any agro-pharma industry, the major challenge for the success or failure of a commercial 

product developed from an experimentally efficient biocontrol agent is its “formulation.” 

Formulations should include the novel microorganism(s) in a calibrated quantity as an active 
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ingredient and a set of other inert ingredients (frequently not specified in detail by the manufacturer) 

to produce a commercial product suitable for use in field conditions. Commercial formulations 

should comply with local and national legislation on agrochemicals (specifically legislation on 

microbial inoculants, where applicable), as well as with growers’ requirements: repeated positive 

results, reasonable pricing, and easy handling. With regard to these considerations, microbial 

inoculants have a major problem specific to microorganisms: loss of viability during storage 

complicates the need for a long shelf life and stability over a range of −5 to 30 °C, which are typical 

growers’ storage conditions [221]. Commercial microbial formulations can be prepared and made 

available on the market in four types: powder, liquid suspension, granules, and slurry [222,223]. The 

physical formulation of Streptomyces-based products also indicates how these microbials should be 

inoculated in agricultural systems, prior or during cropping (Table 5). Different types of low-cost raw 

materials are used to prepare different types of commercial formulations: peat, perlite, charcoal, 

vermicompost, inorganic soil fractions, and many others [224]. 

Moreover, biocontrol agents may not show the same results in both in vitro and in vivo 

experiments; this is regarded as the crucial challenge in the industrial development of bio-inoculants. 

The efficacy of biocontrol agents, among them streptomycetes, is affected by soil organic matter, pH, 

nutrient levels, and moisture level. Variations in agri-environmental conditions tend to affect the 

results of biocontrol agents that perform well in vitro: an experimentally excellent biocontrol agent 

might fail in greenhouse or field experiments. Thus, environmental variables should always be taken 

into proper consideration when selecting an appropriate biocontrol agent for a precise location. 

Ideally, the most active and prospective microbes should be isolated from the same agricultural area 

[225]. 

Additionally, any physical formulation, method, or procedure of inoculation (for example, soil, 

seed, seedling, or vegetative part) should be thoroughly screened since each method may play an 

important role in obtaining satisfactory results during field experiments [225,226]. For instance, in 

inoculating soil with a biocontrol agent, microbes are mixed with soil or sowing furrows or are spread 

in the field by dripping systems [227]. Seed inoculation methods commonly involve soaking seeds in 

a suspension containing the selected biocontrol agent(s); alternatively, they are mixed with suitable 

wetting agents [225–229]. The inoculation of vegetative parts is done by spraying a suspension of the 

biocontrol agent to aerial parts of the plant or dipping the roots of seedlings into a microbial 

suspension prior to transplantation [227,229]. Each method of microbial application may contribute 

to achieving effective results in commercial agriculture (open field, nurseries, glasshouse production, 

etc.) [225,230]. (Table 5). 

Table 5. Technical formulations of a set of Streptomyces-based products available on 

international markets, their indications of use, and their inoculation methods. The table has 

been prepared according to the information given on the labels of the respective products. 

Technical 

Formulation 

Commercial 

Example 

Microbial 

Biocontrol 

Agent(s) 

Indications Inoculation Method 

Granules (G) 
Micosat F UNO, 

CCS Aosta Srl 

Streptomyces sp. 

strain SB14 

Transplants mortality, 

plant growth promoter 

Soil application as dry 

granules 

Wettable 

Granules 

(WG) 

Micosat F MO, 

CCS Aosta Srl 

Streptomyces spp. 

strains SA51; SB14 

and SL81 

Soil bioremediation in 

viticulture and 

vegetable production 

Soil application as 

microbial suspension 

in water 

Wettable 

Powder (WP) 

Mykostop, 

Verdera Oy 

Streptomyces 

griseoviridis strain 

K61 

Damping-off fungi, 

Phytophthora spp. 

Drip irrigation, 

cutting/bulb soaking. 

Soluble 

Powder (SP) 

Actinovate, 

Novozymes 

BioAg Inc. 

Streptomyces 

lydicus WYEC 108 

Soilborne fungi, 

powdery mildews, gray 

molds 

Soil drench, 

transplants root 

dipping, foliar sprays, 

bulb soaking. 
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Slurry (SE) - 
Streptomyces spp. 

consortium 

Bioremediation of 

organic and inorganic 

soil pollutants 

Soil application as 

diluted slurry 

As described in previous chapters, most streptomycetes are soil inhabitants, commonly 

colonizing the rhizosphere and frequently showing the ability to enter plants, thus efficiently 

colonizing plant tissues as endophytes. Since pathogens necessarily require an endophytic state to 

initiate an infection, a successful endophytic biocontrol agent, such as a selected Streptomyces sp., 

should be able to rapidly move from the rhizosphere into the roots and/or other plant parts. 

Therefore, its antagonistic activity may be both preventive (competitive exclusion of plant pathogens 

in the rhizosphere and in planta) and curative (killing plant pathogens post-infection). From the 

industrial point of view, the selection and choice of prospective Streptomyces spp. as candidates for 

development and implementation of innovative and sustainable biopesticides should necessarily 

consider that goal. 

Industrial exploitation of research results is not necessarily easy. Most papers published 

worldwide demonstrate the excellent biocontrol activity of streptomycetes during experiments in 

vitro or, when in planta, under strictly standardized conditions. Frequently, no field research results 

are presented to support the applicability of experimental data in commercial fields/greenhouses. 

Clearly this is a weak point, hindering the commercial development of successful biopesticides. 

Development is also hindered because the production of antimicrobial molecules by actinobacteria, 

and particularly by streptomycetes, is strictly dependent on the substrate where they grow [231] and 

on the natural microbial community around them. 

7. Future Aspects and Challenges 

Streptomyces spp. have great potential to become an essential constituent of modern agricultural 

practice as biofertilizers and biocontrol agents, with the capacity to dominate agrimarkets in coming 

decades. Actinomycetes, particularly abundant Streptomyces as filamentous spore-forming bacteria 

with superior biocontrol and nutrient-cycling activity, are among the most promising PGPR to 

increase overall soil health and boost agricultural productivity. Nevertheless, some unresolved 

problems need to be addressed in order to reproduce results from the controlled laboratory 

environment into large-scale field trials and commercial marketing. More focus is still needed to 

develop novel formulations that could increase the shelf life of streptomycetes, thus ensuring their 

long-term viability, their sporulation activity, and their efficacy as microbial-based agrochemicals. 

Additionally, the potential of streptomycetes to control post-harvest bacterial and fungal diseases of 

fruits and vegetables is totally unexplored. Further extensive studies on the complex Streptomyces–

rhizosphere environment and the mechanisms of PGP action are needed. Shedding light on the 

symbiotic association of Streptomyces with other PGPR might lead to developing highly effective and 

efficient bioinoculants across different soil types and environmental conditions. The knowledge of 

various aspects such as interactions between rhizosphere PGPS and native microbiota and infection 

processes by endophytic PGPS are still not sufficiently explained, even though many reports have 

indicated that PGPS can promote plant growth by colonizing their host plants epiphytically and/or 

endophytically. Metagenomics and molecular biology studies, such as tagging green fluorescent 

protein (GFP) markers to microorganisms, will be necessary to understand the fate of PGPS microbial 

populations in plants, their endophytic distribution, and their pattern of colonization. Much more 

focus is still needed to design and implement industrial processes that are able to produce effective 

formulations with one or more microbial agents, using different additives, carriers, and with various 

methods of field inoculations. 

8. Conclusions 

Many studies have been conducted on actinomycetes, highlighting the ability of these 

microorganisms to promote plant growth and their additive/synergistic effects on plant growth and 
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protection. As the above discussion makes clear, actinomycetes, and especially Streptomyces as helper 

bacteria, are truly prospective for use as plant coinoculants: this to improve plant–microbe symbiosis 

in a way that could lead to an increased sustainable production of agriculture products under diverse 

conditions. This promise is mainly based on the use of eco-friendly microorganisms that control pests 

and improve plant growth. The use of biofertilizers, biopesticides, or consortiums of plant beneficial 

microbes in correct formulations provides a potential solution for a more sustainable agricultural 

future. The studies mentioned in this review support the belief that designing new formulations with 

cooperative microbes might contribute to growth improvement and plant protection of several crops. 

However, these studies also highlight the importance of continuing research on this subject, 

especially focusing on actinomycetes, which up to now have been little used as inoculants to enhance 

agricultural production and ensuring food security, despite the excellent potential shown in a large 

number of scientific publications so far. 
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