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Abstract: Apoptosis proteins (APs) control normal tissue homeostasis by regulating the balance
between cell proliferation and death. The function of APs is strongly related to their subcellular
location. To date, computational methods have been reported that reliably identify the subcellular
location of APs, however, there is still room for improvement of the prediction accuracy. In this
study, we developed a novel method named iAPSL-IF (identification of apoptosis protein subcellular
location—integrative features), which is based on integrative features captured from Markov chains,
physicochemical property matrices, and position-specific score matrices (PSSMs) of amino acid
sequences. The matrices with different lengths were transformed into fixed-length feature vectors
using an auto cross-covariance (ACC) method. An optimal subset of the features was chosen using
a recursive feature elimination (RFE) algorithm method, and the sequences with these features
were trained by a support vector machine (SVM) classifier. Based on three datasets ZD98, CL317,
and ZW225, the iAPSL-IF was examined using a jackknife cross-validation test. The resulting data
showed that the iAPSL-IF outperformed the known predictors reported in the literature: its overall
accuracy on the three datasets was 98.98% (ZD98), 94.95% (CL317), and 97.33% (ZW225), respectively;
the Matthews correlation coefficient, sensitivity, and specificity for several classes of subcellular
location proteins (e.g., membrane proteins, cytoplasmic proteins, endoplasmic reticulum proteins,
nuclear proteins, and secreted proteins) in the datasets were 0.92–1.0, 94.23–100%, and 97.07–100%,
respectively. Overall, the results of this study provide a high throughput and sequence-based method
for better identification of the subcellular location of APs, and facilitates further understanding of
programmed cell death in organisms.

Keywords: apoptosis proteins; Markov chains; physicochemical properties; position specific scoring
matrix; support vector machine; recursive feature elimination

1. Introduction

Apoptosis, or programmed cell death, is a fundamental process controlling normal tissue
homeostasis by regulating the balance between cell proliferation and death [1]. Blocking apoptosis is
associated with cancer and autoimmune diseases (e.g., autoimmune lymphoproliferative syndrome
(types I and II) and systemic lupus erythematosus), whereas unwanted and increased apoptosis can
lead to ischemic damage or neurodegenerative diseases (e.g., Alzheimer’s disease, Parkinson’s disease,
amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease) [2–4]. The subcellular location (e.g.,
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membrane, cytoplasm, nuclear, endoplasmic reticulum, and mitochondria) of APs is strongly related
to their function [2]. Subcellular location can be identified using conventional experimental methods,
such as electronic microscopy, cell separation, and fluorescence microscopy [5]. Nevertheless, these
experimental methods are time-consuming and expensive [5]. Facing the explosion of new protein
sequences generated in the post-genomic and big data age [6], there exists a clear need for developing
high-throughput, and sequence-based methods to identify the subcellular location of APs.

To date, computational methods have been reported to efficiently identify the subcellular location of
APs [7]. These methods were developed based on; (1) the design of the protein encoding scheme of the
feature extraction; (2) the selection of the classifier [7]. Some sequence features are used for the first task,
e.g., amino acid composition [8], dipeptide composition, which represents the composition of amino
acid pairs and gapped amino acid pairs [9], pseudo amino acid composition [10–14], Markov chains [15],
wavelet coefficients [3], distance frequency [16], grouped weight encoding [2], PSSMs [7,17,18], and gene
ontology [19,20]. For example, the Markov chains, being a discrete stochastic model [21], contain the
frequencies of 20 native amino acids and the information of amino acid pairs in protein sequences,
which reflect the composition and local amino acid order of the protein sequences. They have been
used for the identification of interaction sites between proteins and nucleic acids [21,22]. The PSSM
reflects the evolutionary information of a protein sequence, and has been used for the prediction of
protein function [23], subcellular location [5], and structural class [24,25]. In addition, a few machine
learning algorithms have been developed for the second task, including the fuzzy k-nearest neighbor
algorithm [12], SVM [3,7,16–18], covariant discrimination algorithm [9], and ensemble classifier [26,27].
Among these, the SVM proposed by Vapnik [28] exhibited the most promising results [7]. It is a
supervised machine learning algorithm based on the structural risk minimization principle of statistical
learning theory [26]. Samples labeled positive or negative are projected into a high dimensional feature
space using a kernel, in which the hyper plane is optimized to maximize the margin of positive and
negative samples [29]. For the SVM-based methods, it is crucial to convert the protein sequences
with different lengths into fixed-length vectors [18]. The ACC transformation method was developed
by Wold et al. [30], and has been widely used in protein family classification and protein interaction
prediction [31,32]. Although computational methods, such as PSSM-trigram [7] and FKNN (fast k-nearest
neighbor algorithm) [12], have been reported to reliably identify the subcellular location of APs, there is
still room for improvement of the prediction accuracy. In our previous research, we established highly
accurate protein structural class prediction methods based on the PSSMs using the SVM classifier [25,32].
In this study, we developed a novel method named iAPSL-IF using integrative features captured from
amino acid sequences (Figure 1), and examined it based on three datasets ZD98, CL317, and ZW225 using
the jackknife cross-validation test, as it is an objective and rigorous statistical test [22]. In jackknifing,
a part of the sample is systematically omitted, for example, by removing one data point at a time, and the
analysis is then carried out for each newly constructed subset [33]. Our data indicated that the iAPSL-IF
achieved better results than the known predictors reported in the literature.
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Figure 1. The flowchart of the iAPSL-IF method. NR: non-redundant (NR) database of the National
Center for Biotechnology Information (NCBI) (available online: https://www.ncbi.nlm.nih.gov/).

2. Results and Discussion

2.1. Feature Extraction

In order to capture the feature information embedded in amino acid sequences, we analyzed
amino acid compositions and Markov chains of each protein sequence in the three datasets ZD98,
CL317, and ZW225, and encoded each sequence by a 420 (20 × 20 + 20) dimensional feature vector
(see the Materials and Methods section). Meanwhile, the 10 physicochemical properties of amino acids
were also individually numbered based on their corresponding values [34] for these protein sequences,
and then each sequence was replaced by a numerical physicochemical property matrix. Furthermore,
the evolutionary information of these protein sequences was each extracted by BLAST analysis, and
then each sequence was represented by a PSSM. The resulting physicochemical property matrices and
PSSM displayed different lengths, based on the different protein sequences.

2.2. Parameter Selection

To transform the physicochemical property matrices and PSSMs with different lengths into
fixed-length feature vectors using the ACC method, we analyzed the key parameter length (g). The g
values were set in the range of 4 ≤ g ≤ L/4 [17], where L is the length of the shortest protein sequence
in a dataset. For the three datasets ZD98, CL371, and ZW225, L was 130, 87, and 76, respectively. We
used the jackknife cross-validation test to measure the overall accuracy of the datasets corresponding
to different g values. The resulting data were illustrated in Figures 2 and 3. For the physicochemical
property matrices, the highest overall accuracy of the datasets ZD98 and CL317 were 90.82% and
90.22%, when g = 12 and 13, respectively (Figure 2). In order to guarantee that the dimensions of the

https://www.ncbi.nlm.nih.gov/
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vectors were consistent, we set g = 12 for the ACC transformation of the physicochemical property
matrices. Hence, each protein sequence was encoded by a 1100 (10 × 10 × (12 − 1)) dimensional
vector. Likewise, for the PSSMs, when g = 8, the highest overall accuracy of the datasets ZD98 and
CL317 were observed (94.90% and 93.69%, respectively). Therefore, each protein sequence was also
replaced by a 2800 (20 × 20 × (8 − 1)) dimensional vector through the ACC transformation (Figure 3).
Given the same dimension (420) for the Markov chains vectors, we obtained a 4320 (1100 + 2800 + 420)
dimensional vector for each protein sequence by integrating the three different types of sequence
features. Similarly, the parameter based on the dataset ZW225, with a similar size as CL371, was
also determined.

Figure 2. The effects of g on overall accuracy based on the datasets ZD98 and CL317 after ACC
transformation of the physicochemical property matrices.

Figure 3. The effect of g on overall accuracy based on the datasets ZD98 and CL317 after ACC
transformation of the PSSMs.
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2.3. Optimal Feature Selection

Although the integrated features captured sequence information from multiple aspects,
the number of candidate features was large and the original feature space may have contained
noisy and redundant features. Therefore, we reduced the dimensions using the SVM-RFE method [35],
and improved the performance: (1) less prone to overfitting; (2) able to make full use of the training
data; (3) much faster [29]. The feature vectors of a dataset were ranked according to their importance,
and their top-K (K = 10, 20, 30, . . . , 380, 390, 400) [32] features were examined by the jackknife
cross-validation test. The resulting data were illustrated in Figure 4. Based on the dataset ZD98,
when K = 50, the highest overall accuracy (OA) was observed (100%), whereas when K = 90, the
highest OA was 94.95% and 97.78% on the datasets CL317 and ZW225, respectively. In order to avoid
losing important information if the dimension was low, we choose the top-90 ranked features for
further analyses.

Figure 4. The effect of the Top-K features on overall accuracy based on datasets ZD98, CL317,
and ZW225.

2.4. Performance of the iAPSL-IF

In this study, each protein sequence was encoded by a 90-dimensional vector after feature
integration and optimal feature selection. We trained these features using the SVM and developed
the iAPSL-IF. The performance of the iAPSL-IF was examined by the jackknife cross-validation
test based on the three datasets, and the results were presented in Table 1. Based on the datasets
ZD98, CL317, and ZW225, the OA was 98.98%, 94.95%, and 97.33%, respectively; the sensitivity
(Sens) for different classes of subcellular location proteins was 97.67–100%, 88.24–100%, 88.00–100%,
respectively; the specificity (Spec) was 98.53–100%, 97.07–100%, 98.71–100%, respectively; and the
Matthew’s correlation coefficient (MCC) was 0.98–1.00, 0.88–0.99, 0.90–0.98, respectively. Notably,
among the seven classes of subcellular location proteins tested in this study, only the Sens of the
mitochondrial proteins (Mito) in the datasets CL317 and ZW225 was slightly lower (88.24% and 88.0%,
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respectively) than the other subcellular location proteins. Moreover, their corresponding MCC values
were also lower (0.88 and 0.90, respectively). Similar results yielded by some previous predictors
were also reported [1,10,23]. This may result from the discrepancies in dataset traits, such as the size,
sequence homology, and unbalance of the subsets [16].

Table 1. Performance of the iAPSL-IF on the three datasets.

Dataset Location Sens (%) Spec (%) MCC OA (%)

ZD98

Cyto 97.67 100 0.98

98.98
Memb 100 98.53 0.98
Mito 100 100 1.0
other 100 100 1.0

CL317

Cyto 95.54 97.07 0.92

94.95

Memb 94.55 98.85 0.93
Mito 88.24 98.94 0.88
Secr 100 99.67 0.97
Nucl 94.23 98.87 0.93
Endo 97.87 100 0.99

ZW225

Cyto 100 98.71 0.98

97.33
Memb 98.88 99.26 0.98
Mito 88.00 99.50 0.90
Nucl 95.12 98.98 0.94

2.5. Performance Comparison with Other Known Methods

To evaluate how reliable the performance of the iAPSL-IF was, we compared it with all the
known methods based on the same datasets available in the literature. The OA and Sens of different
subcellular location proteins were chosen as the evaluation indexes for the jackknife cross-validation
test. Based on dataset ZD98, the OA was 76.5–96.9%, as identified by twelve previous predictors,
among which, the PSSM-trigram had the best performance (96.9%). However, the iAPSL-IF developed
in this study further increased the OA by 2.1% when compared with the PSSM-trigram (Table 2).
Moreover, the highest Sens value was also achieved by the iAPSL-IF for the cytoplasm proteins (Cyto)
(97.7%), membrane proteins (Memb) (100%), Mito (100%), and other proteins (100%) (Table 2).

Table 2. Performance comparison of different methods on the ZD98 dataset.

Method
Sens for Each Class (%)

OA (%) Reference
Cyto Memb Mito Other

Covariant 97.7 73.3 30.8 25.0 72.5 [1]
ID_SVM 95.3 93.3 84.6 58.3 88.8 [10]

DWT_SVM 95.4 93.3 53.9 91.7 88.8 [26]
ID 90.7 90.0 92.3 91.7 90.8 [11]

EBGW_SVM 97.7 90.0 92.3 83.3 92.9 [2]
PseAAC_SVM 95.3 93.3 92.3 83.3 92.9 [36]

DF_SVM 97.7 96.7 92.3 75.0 93.9 [16]
Dual_layer

SVM 95.4 96.7 92.3 91.7 94.9 [37]

APSLAP 95.3 90.0 100 91.7 94.9 [27]
FKNN 95.3 96.7 100 91.7 95.9 [12]

PSSM-AC 97.7 96.7 100 83.3 95.9 [38]
PSSM-trigram 95.3 100 100 91.7 96.9 [7]

iAPSL-IF 97.7 100 100 100 99.0 This study

Based on dataset CL317, the performance of the iAPSL-IF was compared with ten known
predictors by the jackknife cross-validation test. The OA of the predictors ranged between 82.7%
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and 95.0%, among which the iAPSL-IF achieved the best performance (95.0%) with an increase of
2.6%. Although the Sens values for the Cyto, Memb, and Mito proteins identified by the iAPSL-IF
were slightly lower (95.5%, 94.5%, 88.2%) than the previous better predictors (81.3–99.1%, 81.8–95.7%,
76.5–93.8%), the Sens values for the endoplasmic reticulum proteins (Endo), nuclear proteins (Nucl),
and secreted proteins (Secr) were the highest among all the methods analyzed in this study (Table 3).

Table 3. Performance comparison of different methods on the CL317 dataset.

Method
Sens for Each Class (%)

OA (%) Reference
Cyto Memb Mito Secr Nucl Endo

ID 81.3 81.8 85.3 88.2 82.7 83.0 82.7 [10]
ID_SVM 91.1 89.1 79.4 58.8 73.1 87.2 84.2 [11]
DF_SVM 92.9 85.5 76.5 76.5 93.6 86.5 88.0 [16]

Auto_Cova 86.4 90.7 93.8 85.7 92.1 93.8 90.0 [14]
FKNN 93.8 92.7 82.4 76.5 90.4 93.6 90.9 [12]

PseAAC_SVM 93.8 90.9 85.3 76.5 90.4 95.7 91.1 [36]
EN_FKNN 98.2 83.6 79.4 82.4 90.4 97.9 91.5 [26]
PSSM-AC 93.8 90.9 91.2 82.4 86.5 95.7 91.5 [38]
APSLAP 99.1 89.1 85.3 88.2 84.3 95.8 92.4 [27]
EI_SVM 94.6 95.7 92.7 82.4 90.4 70.6 91.1 [18]
iAPSL-IF 95.5 94.5 88.2 100 94.2 97.9 95.0 This study

Similarly, based on dataset ZW225, the iAPSL-IF was also compared with seven known predictors
available in the literature, and the resulting data were presented in Table 4. The OA (97.3%) generated
by the iAPSL-IF was higher than most of the methods tested in this study, but was lower than the
PSSM-trigram by 0.5%. The Sens values for the Cyto and Memb proteins identified by the iAPSL-IF
were the highest (100% and 98.9%, respectively) among all these methods, but the Sens for the Mito and
Nucl proteins were slightly lower than the PSSM-trigram. Given that the sequence features were also
extracted from the PSSM by the PSSM-trigram [7], we concluded that the PSSMs contained important
evolutionary information about protein sequences, and were very useful for identifying the subcellular
location of APs.

Table 4. Performance comparison of different methods on the ZW225 dataset.

Method
Sens for Each Class (%)

OA (%) Reference
Cyto Memb Mito Nucl

EBGW_SVM 90.0 93.3 60.0 63.4 83.1 [2]
DF_SVM 87.1 92.1 64.0 73.2 84.0 [16]
PSSM-AC 82.9 92.1 68.0 78.0 84.0 [38]
ID_SVM 92.9 91.0 68.0 73.2 85.8 [11]

Auto_Cova 81.3 93.3 85.7 84.6 87.1 [14]
EN_FKNN 94.3 94.4 60.0 80.5 88.0 [26]

PSSM-trigram 97.1 98.9 96.0 97.6 97.8 [7]
iAPSL-IF 100 98.9 88.0 95.1 97.3 This study

Taken together, the overall performance of the iAPSL-IF developed in this study was better than
the previous methods reported in the literature. It is known that increased or decreased apoptosis
is associated with human diseases, and the function of APs is strongly related to their subcellular
location. Therefore, the high-throughput and sequence-based iAPSL-IF will benefit researchers by
allowing fast and efficient identification of the subcellular location of APs, which could be candidate
targets for the development of novel diagnostics, vaccines, and therapeutics for human diseases.
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3. Materials and Methods

3.1. Datasets

In this study, three widely used datasets ZD98, CL317, and ZW225 were used to test the
performance of proposed methods for identifying the subcellular location of APs. The protein
sequences were retrieved from the SWISS-PROT database (available online: https://www.uniprot.
org/uniprot/), a source which includes protein sequences for human and the other organisms (e.g.,
pig, bovine, rat, chicken, African clawed frog, and fruit fly). The dataset ZD98 contained 98 proteins:
43 Cyto, 13 Mito, 30 Memb, and 12 other proteins [1]. The dataset CL317 consisted of 317 proteins
classified into 6 classes: 112 Cyto, 55 Memb, 52 Nucl, 47 Endo, 34 Mito, and 17 Secr [10,11]. The dataset
ZW225 contained 225 proteins classified into 4 classes: 89 Memb, 70 Cyto, 41 Nucl, and 25 Mito [2].

3.2. Markov Chains

The Markov chains have a substantial mathematical foundation [21]. Suppose S is a set of finite
state, S = {S1, S2, . . . , SN}, where S is called state set and the symbol SN (N is positive integer) is called
state. For a random sequence {Xt}t=0, Xt refers to a state in S at time t. The state of Markov chains is qt

at t time, if the state qt+1 at t + 1 only related to qt, i.e.,

P(Xt+1 = qt+1|Xt = qt, Xt−1 = qt−1, ..., X0 = q0) = P(Xt+1 = qt+1|Xt = qt),

In the formula, q0, q1, . . . , qn∈S. Thus, the {Xt}t=0 is called Markov chains [22].
The matrix M = {Pi,j} (i, j∈S) is the transition matrix of Markov chains, and

Pi,j = P(Xt+1 = j|Xt = i) is the transition probability. M can be expressed as:

M =


P11 P12 · · · P1n

P21 P22 · · · P2n
...

...
. . .

...
Pn1 Pn2 · · · Pnn

,

In this matrix, 0 ≤ Pi,j ≤ 1,
N
∑

j=1
Pi,j = 1 for all state i, j.

Suppose the length of a protein sequence S is L, Ai is the ith amino acid of S. Thus, this protein
sequence can be represented as Pro = A1 A2 A3 . . . Ai Ai+1 . . . AL. In this study, we analyzed
the probability of each amino acid residue affected by the previous amino acid residue, which is
expressed as:

P(Ai|Ai−1) =
F(Ai−1 Ai)

F(Ai−1)
,

where F(Ai−1Ai) and F(Ai−1) is the frequency of amino acid pairs Ai−1Ai and Ai−1, respectively.
Every protein sequence consists of 20 native amino acids, thus, the combinations of amino acid

pairs generate a 20 × 20 matrix. In addition, amino acid composition is a basic feature of every protein
sequence, which consists of 20 discrete numbers. Each of the numbers represent the frequency of
the native amino acid residues in a protein sequence [39]. In this study, every protein sequence was
represented by a 420 (20 × 20 + 20) dimensional vector by combining amino acid composition and
Markov chains.

3.3. Physiochemical Properties of Amino Acids

In this study, 10 physicochemical properties were adopted: polarity, secondary structure,
molecular volume, codon diversity, electrostatic charge, hydrophobicity, hydrophilicity, side-chain
volume, polarizability, and solvent-accessible surface area, which were represented as P(1), P(2), P(3),

https://www.uniprot.org/uniprot/
https://www.uniprot.org/uniprot/
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P(4), P(5), P(6), P(7), P(8), P(9), P(10), respectively [35]. The original values of these physicochemical
properties (Table 5) were normalized by the following formula before use, as described previously [40]:

Pm
n ⇐

Pm
n − Pn

SD(Pn)
(m = 1, 2, . . . , 20; n = 1, 2, . . . , 10)

where Pm
n is the value of the n type physicochemical property of the m type amino acid, Pn and SD(Pn)

are the mean and standard deviation of the n type physicochemical property of the 20 native amino
acids. Therefore, a protein sequence with a length of L can be encoded into ten different numerical
series as follows:

Pro =



P(1)
1 P(1)

2 P(1)
3 P(1)

4 P(1)
5 P(1)

6 P(1)
7 P(1)

8 P(1)
9 P(1)

10 · · · P(1)
L

P(2)
1 P(2)

2 P(2)
3 P(2)

4 P(2)
5 P(2)

6 P(2)
7 P(2)

8 P(2)
9 P(2)

10 · · · P(2)
L

P(3)
1 P(3)

2 P(3)
3 P(3)

4 P(3)
5 P(3)

6 P(3)
7 P(3)

8 P(3)
9 P(3)

10 · · · P(3)
L

P(4)
1 P(4)

2 P(4)
3 P(4)

4 P(4)
5 P(4)

6 P(4)
7 P(4)

8 P(4)
9 P(4)

10 · · · P(4)
L

P(5)
1 P(5)

2 P(5)
3 P(5)

4 P(5)
5 P(5)

6 P(5)
7 P(5)

8 P(5)
9 P(5)

10 · · · P(5)
L

P(6)
1 P(6)

2 P(6)
3 P(6)

4 P(6)
5 P(6)

6 P(6)
7 P(6)

8 P(6)
9 P(6)

10 · · · P(6)
L

P(7)
1 P(7)

2 P(7)
3 P(7)

4 P(7)
5 P(7)

6 P(7)
7 P(7)

8 P(7)
9 P(7)

10 · · · P(7)
L

P(8)
1 P(8)

2 P(8)
3 P(8)

4 P(8)
5 P(8)

6 P(8)
7 P(8)

8 P(8)
9 P(8)

10 · · · P(8)
L

P(9)
1 P(9)

2 P(9)
3 P(9)

4 P(9)
5 P(9)

6 P(9)
7 P(9)

8 P(9)
9 P(9)

10 · · · P(9)
L

P(10)
1 P(10)

2 P(10)
3 P(10)

4 P(10)
5 P(10)

6 P(10)
7 P(10)

8 P(10)
9 P(10)

10 · · · P(10)
L

where P(1)
1 is the polarity value of the first amino acid in the protein sequence, P(2)

2 is the secondary
structure value of the second amino acid in the sequence, and so forth.

Table 5. The original values of the ten physiochemical properties for all amino acids [41].

AA P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10)

A 8.100 −1.302 −0.733 1.57 −0.146 0.620 −0.500 27.500 0.046 1.181
C 5.500 0.465 −0.862 −1.02 −0.255 0.290 −1.000 44.600 0.128 1.461
D 13.000 0.302 −3.656 −0.259 −3.242 −0.900 3.000 40.000 0.105 1.587
E 12.300 −1.453 1.477 0.113 −0.837 −0.740 3.000 62.000 0.151 1.862
F 5.200 −0.59 1.891 −0.397 0.412 1.190 −2.500 115.500 0.290 2.228
G 9.000 1.652 1.33 1.045 2.064 0.480 0.000 0.000 0.000 0.881
H 10.400 −0.417 −1.673 −1.474 −0.078 −0.400 −0.500 79.000 0.230 2.025
I 5.200 −0.547 2.131 0.393 0.816 1.380 −1.800 93.500 0.186 1.810
K 11.300 −0.561 0.533 −0.277 1.648 −1.500 3.000 100.000 0.219 2.258
L 4.900 −0.987 −1.505 1.266 −0.912 1.060 −1.800 93.500 0.186 1.931
M 5.700 −1.524 2.219 −1.005 1.212 0.640 −1.300 94.100 0.221 2.034
N 11.600 0.828 1.299 −0.169 0.933 −0.780 2.000 58.700 0.134 1.655
P 8.000 2.081 −1.628 0.421 −1.392 0.120 0.000 41.900 0.131 1.468
Q 10.500 −0.179 −3.005 −0.503 −1.853 −0.850 0.200 80.700 0.180 1.932
R 10.500 −0.055 1.502 0.44 2.897 −2.530 3.000 105.000 0.291 2.560
S 9.200 1.399 −4.76 0.67 −2.647 −0.180 0.300 29.300 0.062 1.298
T 8.000 0.326 2.213 0.908 1.313 −0.050 −0.400 51.300 0.108 1.525
V 5.900 −0.279 −0.544 1.242 −1.262 1.080 −1.500 71.500 0.140 1.645
W 5.400 0.009 0.672 −2.128 −0.184 0.810 −3.400 145.500 0.409 2.663
Y 6.200 0.83 3.097 −0.838 1.512 0.260 −2.300 117.300 0.298 2.368

3.4. PSSM

In this study, we analyzed all protein sequences using the PSI-BLAST program [26] against a NR
database of the NCBI (available online: https://www.ncbi.nlm.nih.gov/) with default parameters,

https://www.ncbi.nlm.nih.gov/
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except the e-value threshold and the maximum number of iterations were set to 0.001 and 3, respectively,
as described previously [35]. Each protein sequence generated a corresponding L× 20 PSSM as follows:

PSSM =


p1,1 p1,2 · · · p1,20

p2,1 p2,2 · · · p2,20
...

...
. . .

...
pL,1 pL,2 · · · pL,20


where L is the length of a protein sequence and 20 is the number of native amino acids. The element pij
represents the occurrence probability of amino acid j at position i of the protein sequence. The rows of
the matrix represent the positions of the sequence, while the columns represent the 20 amino acids [42].

The original values of the PSSM were normalized to reduce the noise and bias using the sigmoid
function: f(x) = 1/(1 + e−x) [16], where x is the original value of the PSSM.

3.5. ACC Transformation

In this study, the matrices of protein sequences with different lengths were transformed into
fixed-length vectors using the ACC method, as described previously [35]. The method has two
variables: auto covariance A(j, g) measures the correlation of the same property between amino acids
by a distance of g along the sequence; cross-covariance C(j, k, g) measures different properties [43].
Both variables can be computed using the following formulae:

A(j, g) =
L−g

∑
i=1

(pi,j − Pj)(pi+g,j − Pj)/(L− g)

C(j, k, g) =
L−g

∑
i=1

(pi,j − Pj)(pi+g,k − Pk)/(L− g)

where Pj =
1
L

L
∑

i=1
pi,j and Pk =

1
L

L
∑

i=1
pi,k represent the average scores of amino acid j and k, respectively.

L is the length of the protein sequence, while j and k represent different amino acids, and g is the gap
between two amino acids [29].

In this study, for the physicochemical property matrices of protein sequences, the number of
auto-covariance variables is 10 × G, while the number of cross-covariance variables is 10 × 9 × G.
Hence, each protein sequence can be encoded by a 100 × G dimensional feature vector. Likewise,
for the PSSMs of protein sequences, the numbers of auto-covariance variables and cross-covariance
variables are 20 × G, and 20 × 19 × G, respectively. Therefore, every protein sequence can be replaced
by a 400 × G dimensional feature vector, where G is the maximal value for g.

3.6. SVM and SVM-RFE

In this study, SVM was adopted as the classifier using the LIBSVM algorithm package [44],
in which four basic kernel functions are provided: linear, polynomial, Gaussian, and radial basis
function (RBF). We chose the RBF as the kernel function, because it had a better boundary response
and could reflect the distribution of the dataset more accurately [34]. The two parameters C and γ

were optimized by the jackknife cross-validation test on the datasets.
In order to decrease feature abundance and computation complexity, we reduced the feature

dimensions using the SVM-RFE method [35]. Briefly, a matrix was constructed based on all the feature
vectors of protein sequences in a dataset, where each row represented a protein sequence and each
column a feature [7]. Then, a ranked feature list was obtained by running the SVM-RFE algorithm
based on the feature importance. Subsequently, each protein sequence was encoded by an optimal
subset of top-K ranked features.
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3.7. Performance Measurement

In this study, the jackknife cross-validation test was chosen to measure the performance of
predictors, because it is recognized as an objective and rigorous statistical test [45]. In a dataset, one
protein sequence was selected as the test set each time, and the remaining were used as the training set.
All the protein sequences were selected in turn, and finished until all the sequences were tested.

Four widely-used measurements, including the OA, Sens, Spec, and MCC were used to measure the
predictive capability of the classification, as described previously [45]. They were calculated using the
following formulae: OA = (TP + TN)/(TP + TN + FP + FN); Sens = TP/(TP + FN); Spec = TN/(TN + TP);
MCC = [(TP × TN) − (FP × FN)]/

√
[(TP + FP)(TP + FN)(TN + FP)(TN + FN)], where TP, TN, FP,

and FN represent the numbers of true positive, true negative, false positive, and false negative results,
respectively [42].

4. Conclusions

In this study, we developed a novel sequence-based method, iAPSL-IF, for the identification of the
subcellular location of APs using integrative features captured from Markov chains, physicochemical
property matrices, and PSSMs of amino acid sequences. Based on the three datasets ZD98, CL317,
and ZW225, the iAPSL-IF outperformed the known predictors reported in the literature for several
classes of subcellular location of APs, including the membrane proteins, cytoplasmic proteins,
endoplasmic reticulum proteins, nuclear proteins, and secreted proteins. The source codes were
written in the programming language Python 3, which is available by contacting the authors. In our
future research, a web-based platform will be constructed for further application of the iAPSL-IF.

Acknowledgments: This study was supported by grants from the Shanghai Municipal Science and Technology
Commission (No. 17050502200) and the National Nature Science Foundation of China (No. 31671946).

Author Contributions: Yadong Tang, Lu Xie, and Lanming Chen participated in the design, analyses, and/or
discussion of the study; Yadong Tang carried out the sequence analyses; Yadong Tang and Lanming Chen wrote
the manuscript. All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Guo, P.Z.; Kutbuddin, D. Subcellular Location prediction of apoptosis proteins. Protein Struct. Funct. Genet.
2003, 50, 44–48.

2. Zhang, Z.H.; Wang, Z.H.; Zhang, Z.R.; Wang, Y.X. A novel method for apoptosis protein subcellular
localization prediction combining encoding based on grouped weight and support vector machine. FEBS Lett.
2006, 580, 6169–6174. [CrossRef] [PubMed]

3. Qiu, J.D.; Luo, S.H.; Huang, J.H.; Sun, X.Y.; Liang, R.P. Predicting subcellular location of apoptosis proteins
based on wavelet transform and support vector machine. Amino Acids 2010, 38, 1201–1208. [CrossRef]
[PubMed]

4. Fadeel, B.; Orrenius, S.; Zhivotovsky, B. Apoptosis in human disease: A new skin for the old ceremony?
Biochem. Biophys. Res. Commun. 1999, 266, 699–717. [CrossRef] [PubMed]

5. Guo, X.; Liu, F.; Ju, Y.; Wang, Z.; Wang, C. Human protein subcellular localization with integrated source
and multi-label ensemble classifier. Sci. Rep. 2016, 6, 28087. [CrossRef] [PubMed]

6. Liu, B.; Wang, S.; Wang, X. DNA binding protein identification by combining pseudo amino acid composition
and profile-based protein representation. Sci. Rep. 2015, 5, 15479. [CrossRef] [PubMed]

7. Liu, T.; Tao, P.; Li, X.; Qin, Y.; Wang, C. Prediction of subcellular location of apoptosis proteins combining
tri-gram encoding based on pssm and recursive feature elimination. J. Theor. Biol. 2015, 366, 8–12. [CrossRef]
[PubMed]

8. Bui, V.M.; Weng, S.L.; Lu, C.T.; Chang, T.H.; Weng, J.T.; Lee, T.Y. Sohsite: Incorporating evolutionary
information and physicochemical properties to identify protein s-sulfenylation sites. BMC Genom. 2016, 17, 9.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.febslet.2006.10.017
http://www.ncbi.nlm.nih.gov/pubmed/17069811
http://dx.doi.org/10.1007/s00726-009-0331-y
http://www.ncbi.nlm.nih.gov/pubmed/19653066
http://dx.doi.org/10.1006/bbrc.1999.1888
http://www.ncbi.nlm.nih.gov/pubmed/10603308
http://dx.doi.org/10.1038/srep28087
http://www.ncbi.nlm.nih.gov/pubmed/27323846
http://dx.doi.org/10.1038/srep15479
http://www.ncbi.nlm.nih.gov/pubmed/26482832
http://dx.doi.org/10.1016/j.jtbi.2014.11.010
http://www.ncbi.nlm.nih.gov/pubmed/25463695
http://dx.doi.org/10.1186/s12864-015-2299-1
http://www.ncbi.nlm.nih.gov/pubmed/26819243


Int. J. Mol. Sci. 2018, 19, 1190 12 of 13

9. Park, K.J.; Kanehisa, M. Prediction of protein subcellular locations by support vector machines using
compositions of amino acids and amino acid pairs. Bioinformatics 2003, 19, 1656–1663. [CrossRef] [PubMed]

10. Chen, Y.L.; Li, Q.Z. Prediction of apoptosis protein subcellular location using improved hybrid approach
and pseudo-amino acid composition. J. Theor. Biol. 2007, 248, 377–381. [CrossRef] [PubMed]

11. Chen, Y.L.; Li, Q.Z. Prediction of the subcellular location of apoptosis proteins. J. Theor. Biol. 2007, 245,
775–783. [CrossRef] [PubMed]

12. Ding, Y.-S.; Zhang, T.-L. Using Chou’s pseudo amino acid composition to predict subcellular
localization of apoptosis proteins: An approach with immune genetic algorithm-based ensemble classifier.
Pattern Recognit. Lett. 2008, 29, 1887–1892. [CrossRef]

13. Liao, B.; Jiang, J.B.; Zeng, Q.G.; Zhu, W. Predicting apoptosis protein subcellular location with PseAAC by
incorporating tripeptide composition. Protein Peptide Lett. 2011, 18, 1086–1092. [CrossRef]

14. Yu, X.; Zheng, X.; Liu, T.; Dou, Y.; Wang, J. Predicting subcellular location of apoptosis proteins with pseudo
amino acid composition: Approach from amino acid substitution matrix and auto covariance transformation.
Amino Acids 2012, 42, 1619–1625. [CrossRef] [PubMed]

15. Bulashevska, A.; Eils, R. Predicting protein subcellular locations using hierarchical ensemble of Bayesian
classifiers based on Markov chains. BMC Bioinform. 2006, 7, 298. [CrossRef] [PubMed]

16. Zhang, L.; Liao, B.; Li, D.; Zhu, W. A novel representation for apoptosis protein subcellular localization
prediction using support vector machine. J. Theor. Biol. 2009, 259, 361–365. [CrossRef] [PubMed]

17. Liang, Y.; Liu, S.; Zhang, S. Detrended cross-correlation coefficient: Application to predict apoptosis protein
subcellular localization. Math. Biosci. 2016, 282, 61–67. [CrossRef] [PubMed]

18. Xiang, Q.; Liao, B.; Li, X.; Xu, H.; Chen, J.; Shi, Z.; Dai, Q.; Yao, Y. Subcellular localization prediction of
apoptosis proteins based on evolutionary information and support vector machine. Artif. Intell. Med. 2017,
78, 41–46. [CrossRef] [PubMed]

19. Reed, J.C.; Paternostro, G. Postmitochomdrial regulation of apoptosis during heart failure. Proc. Natl. Acad.
Sci. USA 1999, 96, 7614–7616. [CrossRef] [PubMed]

20. Suzuki, M.; Youle, R.J.; Tjandra, N. Structure of bax: Coregulation of dimer formation and intracellular
localization. Cell 2000, 103, 645–654. [CrossRef]

21. Wang, T.; Yun, J.H.; Xie, Y.; Xiao, G.H. Finding RNA-protein interaction sites using HMMs. Methods Mol. Biol.
2017, 1552, 177–184. [PubMed]

22. Yun, J.Y.; Wang, T.; Xiao, G.H. Bayesian Hidden Markov Models to identify RNA-protein interaction sites in
PAR-CLIP. Biometrics 2014, 70, 430–440. [CrossRef] [PubMed]

23. Liu, T.; Qin, Y.; Wang, Y.; Wang, C. Prediction of protein structural class based on gapped-dipeptides and a
recursive feature selection approach. Int. J. Mol. Sci. 2016, 17, 15. [CrossRef] [PubMed]

24. Wei, L.; Liao, M.; Gao, X.; Wang, J.; Lin, W. Mgof-loc: A novel ensemble learning method for human protein
subcellular localization prediction. Neurocomputing 2016, 217, 73–82. [CrossRef]

25. Tao, P.; Liu, T.; Li, X.; Chen, L. Prediction of protein structural class using tri-gram probabilities of
position-specific scoring matrix and recursive feature elimination. Amino Acids 2015, 47, 461–468. [CrossRef]
[PubMed]

26. Gu, Q.; Ding, Y.S.; Jiang, X.Y.; Zhang, T.L. Prediction of subcellular location apoptosis proteins with ensemble
classifier and feature selection. Amino Acids 2010, 38, 975–983. [CrossRef] [PubMed]

27. Saravanan, V.; Lakshmi, P.T. Apslap: An adaptive boosting technique for predicting subcellular localization
of apoptosis protein. Acta Biotheor. 2013, 61, 481–497. [CrossRef] [PubMed]

28. Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998.
29. Wang, Y.; Ding, Y.; Guo, F.; Wei, L.; Tang, J. Improved detection of DNA-binding proteins via compression

technology on PSSM information. PLoS ONE 2017, 12, e0185587. [CrossRef] [PubMed]
30. Wold, S.; Jonsson, J.; Sjostrom, M.; Sandberg, M.; Rannar, S. DNA and peptide sequences and chemical

processes multivariately modelled by principal component analysis and partial least-squares projections to
latent structures. Anal. Chim. Acta 1993, 277, 239–253. [CrossRef]

31. Liu, X.; Zhao, L.; Dong, Q. Protein remote homology detection based on auto-cross covariance transformation.
Comput. Biol. Med. 2011, 41, 640–647. [CrossRef] [PubMed]

32. Li, X.; Liu, T.; Tao, P.; Wang, C.; Chen, L. A highly accurate protein structural class prediction approach using
auto cross covariance transformation and recursive feature elimination. Comput. Biol. Chem. 2015, 59 Pt A,
95–100. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/bioinformatics/btg222
http://www.ncbi.nlm.nih.gov/pubmed/12967962
http://dx.doi.org/10.1016/j.jtbi.2007.05.019
http://www.ncbi.nlm.nih.gov/pubmed/17572445
http://dx.doi.org/10.1016/j.jtbi.2006.11.010
http://www.ncbi.nlm.nih.gov/pubmed/17189644
http://dx.doi.org/10.1016/j.patrec.2008.06.007
http://dx.doi.org/10.2174/092986611797200931
http://dx.doi.org/10.1007/s00726-011-0848-8
http://www.ncbi.nlm.nih.gov/pubmed/21344173
http://dx.doi.org/10.1186/1471-2105-7-298
http://www.ncbi.nlm.nih.gov/pubmed/16774677
http://dx.doi.org/10.1016/j.jtbi.2009.03.025
http://www.ncbi.nlm.nih.gov/pubmed/19328812
http://dx.doi.org/10.1016/j.mbs.2016.09.019
http://www.ncbi.nlm.nih.gov/pubmed/27720879
http://dx.doi.org/10.1016/j.artmed.2017.05.007
http://www.ncbi.nlm.nih.gov/pubmed/28764871
http://dx.doi.org/10.1073/pnas.96.14.7614
http://www.ncbi.nlm.nih.gov/pubmed/10393865
http://dx.doi.org/10.1016/S0092-8674(00)00167-7
http://www.ncbi.nlm.nih.gov/pubmed/28224499
http://dx.doi.org/10.1111/biom.12147
http://www.ncbi.nlm.nih.gov/pubmed/24571656
http://dx.doi.org/10.3390/ijms17010015
http://www.ncbi.nlm.nih.gov/pubmed/26712737
http://dx.doi.org/10.1016/j.neucom.2015.09.137
http://dx.doi.org/10.1007/s00726-014-1878-9
http://www.ncbi.nlm.nih.gov/pubmed/25583603
http://dx.doi.org/10.1007/s00726-008-0209-4
http://www.ncbi.nlm.nih.gov/pubmed/19048186
http://dx.doi.org/10.1007/s10441-013-9197-1
http://www.ncbi.nlm.nih.gov/pubmed/23982307
http://dx.doi.org/10.1371/journal.pone.0185587
http://www.ncbi.nlm.nih.gov/pubmed/28961273
http://dx.doi.org/10.1016/0003-2670(93)80437-P
http://dx.doi.org/10.1016/j.compbiomed.2011.05.015
http://www.ncbi.nlm.nih.gov/pubmed/21664609
http://dx.doi.org/10.1016/j.compbiolchem.2015.08.012
http://www.ncbi.nlm.nih.gov/pubmed/26460680


Int. J. Mol. Sci. 2018, 19, 1190 13 of 13

33. Papini, A.; Kim Rossmo, D.; Le Comber, S.C.; Verity, R.; Stevenson, M.D.; Santosuosso, U. The use of
jackknifing for the evaluation of geographic profiling reliability. Ecol. Inform. 2017, 38, 76–81. [CrossRef]

34. Wang, X.; Li, H.; Wang, R.; Zhang, Q.; Zhang, W.; Gan, Y. Multip-apo: A multilabel predictor for identifying
subcellular locations of apoptosis proteins. Comput. Intell. Neurosci. 2017, 2017, 9183796. [CrossRef]
[PubMed]

35. Guyon, I.; Weston, J.; Barnhill, S. Gene selection for cancer classification using support vector machines.
Mach. Learn. 2002, 46, 389–422. [CrossRef]

36. Lin, H.; Wang, H.; Ding, H.; Chen, Y.L.; Li, Q.Z. Prediction of subcellular localization of apoptosis protein
using chou’s pseudo amino acid composition. Acta Biotheor. 2009, 57, 321–330. [CrossRef] [PubMed]

37. Wei, L.; Xing, P.; Shi, G.; Ji, Z.L.; Zou, Q. Fast prediction of protein methylation sites using a sequence-based
feature selection technique. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017. [CrossRef] [PubMed]

38. Zhou, X.B.; Chen, C.; Li, Z.C.; Zou, X.Y. Improved prediction of subcellular location for apoptosis proteins
by the dual-layer support vector machine. Amino Acids 2008, 35, 383–388. [CrossRef] [PubMed]

39. Meher, P.K.; Sahu, T.K.; Banchariya, A.; Rao, A.R. Dirprot: A computational approach for discriminating
insecticide resistant proteins from non-resistant proteins. BMC Bioinform. 2017, 18, 190. [CrossRef] [PubMed]

40. Tahir, M.; Hayat, M. Machine learning based identification of protein-protein interactions using derived
features of physiochemical properties and evolutionary profiles. Artif. Intell. Med. 2017, 78, 61–71. [CrossRef]
[PubMed]

41. Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iPPI-Esml: An ensemble classifier for identifying the interactions of
proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J. Theor. Biol.
2015, 377, 47–56. [CrossRef] [PubMed]

42. Zhang, J.; Liu, B. Psfm-dbt: Identifying DNA-binding proteins by combing position specific frequency matrix
and distance-bigram transformation. Int. J. Mol. Sci. 2017, 18, 1856.

43. Liu, B.; Wang, S.; Dong, Q.; Li, S.; Liu, X. Identification of DNA-binding proteins by combining auto-cross
covariance transformation and ensemble learning. IEEE Trans. Nanobiosci. 2016, 15, 328–334. [CrossRef]
[PubMed]

44. Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol.
2011, 2, 27. [CrossRef]

45. Liu, T.; Geng, X.; Zheng, X.; Li, R.; Wang, J. Accurate prediction of protein structural class using auto
covariance transformation of psi-blast profiles. Amino Acids 2012, 42, 2243–2249. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ecoinf.2017.02.001
http://dx.doi.org/10.1155/2017/9183796
http://www.ncbi.nlm.nih.gov/pubmed/28744305
http://dx.doi.org/10.1023/A:1012487302797
http://dx.doi.org/10.1007/s10441-008-9067-4
http://www.ncbi.nlm.nih.gov/pubmed/19169652
http://dx.doi.org/10.1109/TCBB.2017.2670558
http://www.ncbi.nlm.nih.gov/pubmed/28222000
http://dx.doi.org/10.1007/s00726-007-0608-y
http://www.ncbi.nlm.nih.gov/pubmed/18157588
http://dx.doi.org/10.1186/s12859-017-1587-y
http://www.ncbi.nlm.nih.gov/pubmed/28340571
http://dx.doi.org/10.1016/j.artmed.2017.06.006
http://www.ncbi.nlm.nih.gov/pubmed/28764874
http://dx.doi.org/10.1016/j.jtbi.2015.04.011
http://www.ncbi.nlm.nih.gov/pubmed/25908206
http://dx.doi.org/10.1109/TNB.2016.2555951
http://www.ncbi.nlm.nih.gov/pubmed/28113908
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1007/s00726-011-0964-5
http://www.ncbi.nlm.nih.gov/pubmed/21698456
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Feature Extraction 
	Parameter Selection 
	Optimal Feature Selection 
	Performance of the iAPSL-IF 
	Performance Comparison with Other Known Methods 

	Materials and Methods 
	Datasets 
	Markov Chains 
	Physiochemical Properties of Amino Acids 
	PSSM 
	ACC Transformation 
	SVM and SVM-RFE 
	Performance Measurement 

	Conclusions 
	References

