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Abstract: Metabolic stability is an important parameter to be optimized during the complex process
of designing new active compounds. Tuning this parameter with the simultaneous maintenance
of a desired compound’s activity is not an easy task due to the extreme complexity of metabolic
pathways in living organisms. In this study, the platform for in silico qualitative evaluation of
metabolic stability, expressed as half-lifetime and clearance was developed. The platform is based
on the application of machine learning methods and separate models for human, rat and mouse
data were constructed. The compounds’ evaluation is qualitative and two types of experiments
can be performed—regression, which is when the compound is assigned to one of the metabolic
stability classes (low, medium, high) on the basis of numerical value of the predicted half-lifetime,
and classification, in which the molecule is directly assessed as low, medium or high stability.
The results show that the models have good predictive power, with accuracy values over 0.7 for all
cases, for Sequential Minimal Optimization (SMO), k-nearest neighbor (IBk) and Random Forest
algorithms. Additionally, for each of the analyzed compounds, 10 of the most similar structures
from the training set (in terms of Tanimoto metric similarity) are identified and made available for
download as separate files for more detailed manual inspection. The predictive power of the models
was confronted with the external dataset, containing metabolic stability assessment via the GUSAR
software, leading to good consistency of results for SMOreg and Naïve Bayes (~0.8 on average).
The tool is available online.
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1. Introduction

During the drug design process, attention is initially placed on obtaining the desired affinity with the
appropriate receptors. However, failures of compounds at later stages of drug development are connected
with other unfavorable physicochemical, pharmacokinetic, or toxic properties. The proper evaluation
of these properties in silico is therefore just as important as the development of computational tools for
accurate activity predictions [1–4].

A number of parameters can be set on the basis of which drug-like potential of the compounds is
evaluated. One of the most popular groups of these properties are Lipinski’s Rule of Five, which are
one of the simplest and usually the first filters applied to disqualify compounds with an unfavorable
physicochemical profile [5]. It is also important to provide proper compound solubility (both in water
due to solubility in the fluids in the organism, and in non-polar solvents due to the provision of
penetration of biological membranes, as well as the provision of proper equilibrium between the
solubility in these two environments [6]), determine the ionization potential [7] and assure that the
compound can penetrate the gut-blood and blood-brain barrier (in the case of drugs acting within the
central nervous system) [8]. The permeability through the biological membranes is vital not only from
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the point of view of determining the proper therapeutic dose but also because of the possible toxic
effects. It is also important to analyze whether the compound will bind to the plasma proteins [9] as
well as evaluate the half-life time or potential metabolic routes [3]. In terms of toxicity, predictions
most often concern the possible interactions of the examined compound with other therapeutics and
the possible undesirable modulations of other protein activities, such as hERG potassium channels [10]
leading to the compound’s cardio toxicity [11,12].

These abovementioned properties are connected with the characterization of compounds in
terms of their Absorption, Distribution, Metabolism, Excretion, Toxicity (ADMET) properties [3,13–16].
Metabolism and metabolic stability are particularly considered in the study, as compounds need to
have sufficient time to induce the desirable therapeutic effect. Additionally, although metabolites
might possess desirable biological activity, transformations of biologically active substances can also
lead to the formation of toxic products. Unfortunately, the in silico examination of metabolic stability
is very difficult due to the extreme complexity of the metabolism process. However, although it is
difficult to obtain a broad predictive model that can correctly evaluate compounds that cover a wide
structural spectrum, studies on metabolic stability, as well as the construction of in silico tools that
enable the computational evaluation of metabolic stability, are continuously carried out.

A number of approaches for the prediction of ADMET properties are already available.
They are mostly ligand-based tools, and two classes of models are constructed—classification
ones (mutagenesic/non-mutagenesic, stable/unstable, soluble/insoluble, etc. [17–19]) or regression
tools [19–21]. The application of the tools of the latter type is connected with the formation of
the QSAR-type [22–25] models, in which the quantitative impact of particular structural moieties
on considered parameters is examined. Many comprehensive software packages for ADMET
properties evaluation are available, such as ADMET Predictor [26], CASE ULTRA [27], DEREK [28],
META-PC [29], METEOR [30,31], ONCOLOGIC [32], PASS [33], TOPKAT [34], and GUSAR [35].
Moreover, the initial characteristics of physicochemical and pharmacokinetic properties are offered
in most packages of software for molecular modeling, such as QikProp in the Schrödinger Suite [36],
Molecular Descriptors in the MOE [37], or ADMET and Predictive Toxicology from the BIOVIA
Discovery Studio [34]. A number of individual ADMET properties can also be evaluated via various
online servers, such as ALOGPS [38], Molinspiration [39] PreADMET [40], MetaPrint2D [41–43],
MetaPred [44] or Pred-hERG [45]. A summary of some of the available tools is shown in Table 1.

Table 1. A summary of some of the available tools for ADMET properties predictions.

Package Name Link Availability Description

ADMET Predictor http://www.simulations-plus.com/ commercial software

Comprehensive characteristic of
physicochemical and ADMET properties of
compounds, including cancerogenity,
mutagenicity, overall toxicity and
possibility of interactions with 5 selected
CYP isoforms

CASE ULTRA http://www.multicase.com/case-
ultra-models commercial software A set of statistical and expert tools for

evaluation of compounds toxicity

DEREK http://www.lhasalimited.org commercial software

Expert system for predicting toxicity of
compounds, including cancerogenity,
mutagenicity, genotoxicity, teratogenicity,
influence on fertility, irritating influence on
skin or allergic effect

META-PC http://www.multicase.com/meta-pc commercial software Expert system for predicting products of
compounds metabolism

METEOR http://www.lhasalimited.org commercial software Expert system for predicting metabolic
transformations

ONCOLOGIC

http://www2.epa.gov/tsca-
screening-tools/oncologictm-
computer-system-evaluate-

carcinogenic-potential-chemicals

free software Predicting of cancerogenicity of compounds

http://www.simulations-plus.com/
http://www.multicase.com/case-ultra-models
http://www.multicase.com/case-ultra-models
http://www.lhasalimited.org
http://www.multicase.com/meta-pc
http://www.lhasalimited.org
http://www2.epa.gov/tsca-screening-tools/oncologictm-computer-system-evaluate-carcinogenic-potential-chemicals
http://www2.epa.gov/tsca-screening-tools/oncologictm-computer-system-evaluate-carcinogenic-potential-chemicals
http://www2.epa.gov/tsca-screening-tools/oncologictm-computer-system-evaluate-carcinogenic-potential-chemicals
http://www2.epa.gov/tsca-screening-tools/oncologictm-computer-system-evaluate-carcinogenic-potential-chemicals
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Table 1. Cont.

Package Name Link Availability Description

PASS http://www.pharmaexpert.ru
commercial software
(simplified version is

freely available online)

Qualitative evaluation of above 3500
properties, including mechanisms of action,
side and toxic effects, interaction with
various enzymes and transport proteins,
influence on genes expression

TOPKAT

http://accelrys.com/products/
collaborative-science/biovia-

discovery-studio/qsar-admet-and-
predictive-toxicology.html

commercial software Mutagenicity, cancerogenity, irritating
action on skin, eyes, etc.

GUSAR http://www.way2drug.com/gusar/
index.html commercial software Evaluation of compounds toxicity and

interaction with selected off-targets

In this study, we focus on one of the compound’s parameters—metabolic stability. Usually,
the tools for ADMET properties evaluation do not consider this property, as its predictions are very
difficult due to the extreme complexity of the metabolic stability phenomenon and the great number
of factors influencing this parameter. On the other hand, metabolic stability is a very important
parameter, as the compound requires sufficient time to trigger the desired pharmacological response
before its decomposition and moreover, the formed metabolites might not only be unable to provide
the biological action of interest, but they can be toxic. For the evaluation of metabolic stability on the
basis of experimental data, the most often used are half-lifetime (T1/2) data produced in assays using
liver microsomes. There were already several machine learning-based approaches to construct general
QSAR models for prediction of this parameter [46–49] and several other studies based on narrower
chemical space of selected classes of compounds [50–54].

Here, we present a freely available online tool for metabolic stability predictions expressed as
T1/2 or clearance. The tool uses ligand-based methodology and six machine learning methods to
evaluate the compound stability, with separate models constructed for various species and assays
preformed on liver microsomes and plasma. Additionally, an analysis of available metabolic stability
data was performed and the most similar compounds from the training set are provided for each of
the submitted structures, enabling manual analysis of the results and comparisons. The outcome of the
constructed tool was compared with the external National Cancer Institute (NCI) dataset containing
a GUSAR-based evaluation of metabolic stability [35]. The tool and all obtained results are freely
available at http://skandal.if-pan.krakow.pl/met_stab_pred/.

2. Materials and Methods

The data for the construction of the tool for metabolic stability predictions were collected from
the ChEMBL database version 23 [55]. All records with the T1/2 and intrinsic clearance parameters
reported were downloaded. Data preprocessing involved the following steps: selection of in vitro
assays performed on liver microsomes or plasma, selection of records with standard unit “hr” for T1/2
and “mL·min−1·g−1”, and division into separate sets referring to human, rat and mouse experiments.
Due to the lack of sufficient number of entries for clearance data obtained via plasma-based assays,
for plasma data, only records for T1/2 were gathered. The number of data points present in the
respective datasets is gathered in Table 2.

Table 2. The number of compounds present in each dataset used for the predictive model’s construction.

Human Rat Mouse

Liver Microsomes Plasma Liver Microsomes Plasma Liver Microsomes Plasma

T1/2 2127 561 1308 277 808 62
clearance 2546 - 1244 - 266 -

The compounds were represented with the use of the 1- and 2-dimensional PaDEL-Descriptors [56]
(1d2d descriptors) and Extended Fingerprint [57] (ExtFP) from the same software package. These forms

http://www.pharmaexpert.ru
http://accelrys.com/products/collaborative-science/biovia-discovery-studio/qsar-admet-and-predictive-toxicology.html
http://accelrys.com/products/collaborative-science/biovia-discovery-studio/qsar-admet-and-predictive-toxicology.html
http://accelrys.com/products/collaborative-science/biovia-discovery-studio/qsar-admet-and-predictive-toxicology.html
http://accelrys.com/products/collaborative-science/biovia-discovery-studio/qsar-admet-and-predictive-toxicology.html
http://www.way2drug.com/gusar/index.html
http://www.way2drug.com/gusar/index.html
http://skandal.if-pan.krakow.pl/met_stab_pred/
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of representation were chosen after initial studies performed on a series of long-chain aryl piperazines,
where several fingerprints implemented in PaDEL (Extended Fingerprint, MACCS Fingerprint [58],
Klekota-Roth Fingerprint [59], Graph Fingerprint [57], PubChem Fingerprint [60], and Substructure
Fingerprint [61]) and descriptor sets were tested. Three dimensional descriptors were not included
due to the relatively high fraction of compounds for which they could not be calculated due to errors
in their generation.

The constructed tool predicts the numerical value of metabolic stability with the predictive model
based on the application of the two types of machine learning algorithms, regression and classification.
From the first group of methods, one algorithm was used: SMOreg, which is a modification of the
very popular and efficient algorithm Support Vector Machine (SVM) [62] into Sequential Minimal
Optimization (SMO) [63] and adjusted for performing regression tasks. Additionally, five classification
algorithms were used: SMO, Random Forest [64], Naïve Bayes [65], k-nearest neighbor (IBk) [66],
and decision tree J48 [67]. However, in order to enable easier interpretability of the outcome of
regression experiments, compounds are also divided into three classes according to metabolic stability
values—low, medium, and high—and the results are colored accordingly. For each of the analyzed
structures, the 10 most similar compounds from the training set (Tanimoto metric [68], topological
fingerprint from RDKit package [69]) are found and provided in separate files for manual inspection
(the particular chemical structure is provided only once, and the median half-lifetime value is given).
Structures for analysis online can be submitted as a structure data file (sdf) or drawn using the
MarvinJS [70] plugin. Regardless of the way the query is submitted, all the structures are shown in
the results.

3. Results and Discussion

3.1. The Importance of Separate Models for Different Species

Separate models were constructed for different species. This approach was applied due to the
relatively high differences in results of the in vitro tests for some of the compounds, despite the similar
overall distribution of data points for human, rat and mouse data with the majority of very unstable
compounds (Figures 1–3 presenting the distribution of T1/2). Some examples of the abovementioned
problems are shown in Figure 4.

Figure 1. Distribution of compound half-lifetimes in the constructed datasets referring to experiments
performed on human samples. For better visualization, the dataset was divided into several parts.
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Figure 2. Distribution of compound half-lifetimes in the constructed datasets referring to experiments
performed on rat samples. For better visualization, the dataset was divided into several parts.

Figure 3. Distribution of compound half-lifetimes in the constructed datasets referring to experiments
performed on mouse samples. For better visualization, the dataset was divided into several parts.
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Figure 4. Examples of differences in results of metabolic stability tests for human, rat and mouse models.

For all the compounds presented in the Figure 4, there were substantial differences in the results of
metabolic stability examinations based on different species. For example, for compound CHEMBL214957,
the human and mouse-based data were quite consistent (with stability experiments outcome being 10.05
and 9.57 hr, respectively); however, for experiments, in which rat liver microsomes were used, the obtained
T1/2 value was equal to 3.27. For compound CHEMBL2335990, more consistency was observed for rat and
mouse-based experiments with the stability values of 0.93 and 0.55 hr, respectively, whereas in experiments
using human microsomes, the obtained T1/2 value was equal to 7.25 hr. For the other two compounds
presented in Figure 4, that is CHEMBL3108858 and CHEMBL2346736, no similarities between any two
experiments were observed, and the T1/2 values varied from 0.5 to 5.5 hr.

Therefore, the data referring to human, rat and mouse-based experiments were not mixed,
and separate models were constructed for each of these experimental conditions.

In order to provide a more general picture of variations in experimental results of metabolic
stability for different models (human, rat, mouse), all compounds for which the half-lifetimes were
provided for all the models were identified and standard deviations (σ) given by the following equation
were calculated:

σ =

√
∑3

i (xi − µ)2

3
(1)

where xi is half-lifetime value measured for a particular model; µ—mean value of all three measures
(human, mouse, rat) provided for a particular compound

The obtained values of standard deviations were presented in Figure 5 (the CHEMBL identifiers
of compounds with metabolic stability data for human, rat, and mouse models with standard deviation
values are provided in the Supplementary Materials).
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Figure 5. Standard deviation values of half-lifetimes between human, rat and mouse data.

The analysis of the histogram in Figure 5 indicates and confirms the relatively high variation of
data. Out of 249 structures containing data referring to all three experimental conditions (human, rat,
mouse) to which Figure 5 refers, for over 16% of them, standard deviation of half-lifetimes values was
higher than 0.5, leading to swap of metabolic classes. Moreover, for 172 structures, it was above 0.
Additionally, although for datasets containing human-based data, the percentage of datapoints with
non-zero standard deviation was equal to 8% for mouse-based datasets, which contained much less
records, the percentage of non-zero data was equal to 20%. All these results support the construction
of separate predictive models for human, rat, and mouse-based data.

A scheme of all the predictive approaches that were used in the study is presented in Figure 6.
Taking into account the combination of all datasets used, prediction algorithms and compounds
representation, the total number of predictive models provided as a result of the study is equal to
108; the online version of the tool for metabolic stability predictions includes 36 models referring
to experimental data produced on liver microsomes and reported as T1/2. Remaining models are
available at http://skandal.if-pan.krakow.pl/met_stab_pred/ and can directly be used within the
WEKA software [71].

Figure 6. Scheme of the prediction approaches covered in the study.

http://skandal.if-pan.krakow.pl/met_stab_pred/
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3.2. Evaluation of Models in 10-Fold Cross-Validation

Ten-fold cross-validation (CV) studies were performed for optimization and evaluation of the
constructed predictive models. WEKA implementation [71] was used for all the algorithms used in
the study.

The division into metabolic stability classes was applied, and evaluation parameters were
subsequently calculated: overall accuracy, AUROC [72] in case of classification models, and recall and
precision for each class.

The cutoffs for metabolic stability class division were as follows (T1/2 expressed in hours):

• ≤0.6—low
• (0.6–2.32)>—medium
• >2.32—high

The number of compounds belonging to each stability class are presented in Table 3.

Table 3. Statistics of number of compounds belonging to each class.

Class/Number of Compounds Human Rat Mouse

Low 928 (44%) 814 (62%) 486 (60%)
Medium 937 (44%) 382 (29%) 252 (31%)

High 262 (12%) 112 (9%) 70 (9%)
Total 2127 1308 808

The class distribution was not uniform and in all cases the highest number of compounds belonged
to the group of low metabolic stability. The highest variation was observed for rat and mouse models,
with 62% and 60% of compounds exhibiting low values of half-lifetimes, respectively. For both of
these cases, compounds of high stability constituted 9% of the whole dataset, and the fraction of
medium stability compounds in the whole dataset was equal to 29% and 31% for rat and mouse
models, respectively. For human models, the compounds were more uniformly distributed among
classes with 44% of compounds belonging to low and medium stability class, and the remaining 12%
of datapoints referred to compounds characterized by high metabolic stability.

The values of evaluating parameters obtained in 10-fold CV studies are presented in Table 4 for T1/2
liver microsomes data, all results for the remaining datasets are present in the Supplementary Materials.

The parameters values above 0.7 are presented in bold. In order to facilitate the results
interpretation, the data were also presented in the respective figures (Figure 7 for T1/2 liver microsomes;
remaining data in Supplementary Materials).

Table 4. Evaluation parameters obtained in 10-fold CV for data (T1/2) produced on liver microsomes.
Values above 0.7 are depicted in bold.

1d2d Descriptors ExtFP

Class SMOreg SMO IBk Naïve
Bayes

Random
Forest J48 SMOreg SMO IBk Naïve

Bayes
Random
Forest J48

human

Recall
Low 0.176 0.792 0.773 0.344 0.778 0.696 0.650 0.768 0.761 0.626 0.775 0.745

Medium 0.872 0.733 0.713 0.701 0.753 0.679 0.834 0.743 0.697 0.508 0.740 0.673
High 0.561 0.573 0.557 0.480 0.447 0.463 0.389 0.515 0.592 0.603 0.527 0.500

Precision
Low 0.873 0.781 0.759 0.688 0.766 0.695 0.841 0.778 0.749 0.693 0.777 0.745

Medium 0.477 0.725 0.709 0.520 0.692 0.649 0.618 0.695 0.700 0.631 0.701 0.676
High 0.573 0.632 0.609 0.310 0.710 0.562 0.662 0.643 0.615 0.295 0.648 0.491

Overall
accuracy 0.524 0.739 0.720 0.517 0.726 0.660 0.698 0.725 0.711 0.571 0.728 0.682

AUROC 0.836 0.800 0.708 0.886 0.7333 0.821 0.792 0.757 0.881 0.781
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Table 4. Cont.

1d2d Descriptors ExtFP

Class SMOreg SMO IBk Naïve
Bayes

Random
Forest J48 SMOreg SMO IBk Naïve

Bayes
Random
Forest J48

rat

Recall
Low 0.467 0.903 0.877 0.768 0.935 0.821 0.565 0.904 0.870 0.713 0.903 0.827

Medium 0.752 0.617 0.644 0.114 0.561 0.542 0.427 0.605 0.607 0.573 0.586 0.576
High 0.514 0.400 0.476 0.648 0.228 0.390 0.598 0.384 0.429 0.553 0.348 0.429

Precision
Low 0.896 0.838 0.848 0.748 0.799 0.804 0.759 0.837 0.834 0.841 0.828 0.809

Medium 0.379 0.680 0.663 0.512 0.694 0.570 0.354 0.672 0.637 0.489 0.655 0.598
High 0.422 0.545 0.568 0.181 0.615 0.387 0.276 0.506 0.505 0.365 0.500 0.444

Overall
accuracy 0.553 0.777 0.775 0.566 0.767 0.704 0.528 0.771 0.754 0.657 0.762 0.718

AUROC 0.819 0.813 0.698 0.912 0.773 0.817 0.870 0.821 0.906 0.774

mouse

Recall
Low 0.570 0.881 0.834 0.650 0.896 0.772 0.706 0.825 0.860 0.718 0.872 0.782

Medium 0.796 0.601 0.622 0.248 0.521 0.584 0.723 0.667 0.615 0.615 0.579 0.591
High 0.500 0.329 0.486 0.728 0.357 0.271 0.529 0.557 0.343 0.500 0.457 0.386

Precision
Low 0.888 0.781 0.808 0.738 0.753 0.780 0.848 0.815 0.787 0.841 0.782 0.766

Medium 0.448 0.678 0.643 0.546 0.685 0.565 0.525 0.648 0.654 0.525 0.679 0.575
High 0.614 0.622 0.540 0.199 0.658 0.284 0.638 0.684 0.600 0.357 0.627 0.509

Overall
accuracy 0.632 0.743 0.736 0.533 0.730 0.667 0.696 0.751 0.737 0.665 0.743 0.686

AUROC 0.753 0.781 0.673 0.872 0.729 0.776 0.846 0.809 0.848 0.742

In general, the values of evaluating parameters are high and show that the constructed models
are capable of making a valid evaluation of metabolic stability expressed as T1/2.

Figure 7. Visualization of evaluating parameters values obtained in 10-fold CV studies (T1/2 liver
microsomes data).
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The general observation is that 1d2d descriptors provided higher values of evaluating parameters
than ExtFP. It is also visible that there are high variations for recall and precision values depending
on the metabolic stability class considered. However, for the great majority of cases, low stability
class was the one that led to the highest recall and precision values. However, the highest number of
cases belonged to the low stability class in all human, mouse and rat datasets. Relatively, the highest
recall values were obtained for rat models, for Random Forest and SMO models (0.935 and 0.903,
respectively) with compounds represented by 1d2d descriptors; for ExtFP representation, the recall
values were on similar level for these methods: 0.903, and 0.904, respectively. On the other hand,
it was IBk (for 1d2d descriptors) and Naïve Bayes (for ExtFP) that provided the highest precision
values: 0.848 and 0.841, respectively.

Taking into account the overall accuracy of predictions, the SMO, IBk and Random Forest methods
were the only ones that consistently provided overall accuracy over 0.7. For human models, it was 0.739
for SMO and 0.728 for Random Forest (for 1d2d descriptors and ExtFP representations, respectively)
that were the highest overall accuracies; however, for mouse and rat data, it was SMO that provided
the best performance of predictive models for both compounds representations, with values varying
from 0.743 to 0.777. The other parameter that provided information on the general performance of the
model was AUROC, which in general adopted higher values than overall accuracy, reaching values
close to 0.9: 0.886 and 0.881 for Random Forest models constructed on human data, 0.912 and 0.906 for
Random Forest models that used mouse data, and 0.872 and 0.848 for Random Forest model built on
rat data (for 1d2d descriptors and ExtFP representations, respectively).

3.3. Comparison of the Constructed Tool Outcome with the Predictions on the External Dataset

The outcome of the constructed tool was compared with the external NCI dataset containing
GUSAR-based evaluation of metabolic stability [35]. The predictions provided there were only binary
(stable/unstable). After the removal of compounds with errors, and those containing heavy atoms,
such as Pb, Ag, Se, Te (leading to errors in descriptors calculations), the predictions with models
produced on T1/2 liver microsomes data were carried out (as the dataset originally contained such
data). The results obtained via these two approaches were compared by accuracy indicating the
fraction of the same predictions (Table 5).

Table 5. Accuracies of predictions on external test set (T1/2 human data on liver microsomes). Values
above 0.7 are depicted in bold.

SMOreg SMO IBk Naïve Bayes Random Forest J48

Medium class
predictions removed

1d2d
descriptors 0.89 0.58 0.22 0.81 0.61 0.51

ExtFP 0.39 0.27 0.44 0.72 0.23 0.38

Medium class
preditcions shifted to

high class

1d2d
descriptors 0.78 0.66 0.22 0.77 0.71 0.58

ExtFP 0.77 0.64 0.61 0.72 0.54 0.53

The comparison of the predictions obtained via the constructed tool with the GUSAR predictions
indicate great dependence of the results on the machine learning algorithm applied. The most consistent
predictions with the output of the GUSAR software were provided by the SMOreg and Naïve Bayes
algorithms. As the GUSAR predictions were binary (the compounds were evaluated only as stable or
unstable) and our tool evaluates compounds as low, medium or high stability, two approaches of dealing
with records assigned to medium stability class were applied: such entries were removed before the
accuracy calculation, or the medium class assignments were shifted to the high stability class, as being
more populated. With the removal of records assigned to medium stability class, the most consistent
predictions with the GUSAR software outcome were obtained with the use of the SMOreg algorithm
with 1d2d descriptors used for compounds representation (accuracy of 0.89). Surprisingly, the application
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of SMOreg with ExtFP for compounds representation led to high inconsistency of the constructed tool
outcome with the GUSAR-based evaluation with the accuracy of 0.39. The GUSAR software output
was also in line with the Naïve Bayes predictions, for both 1d2d descriptors and ExtFP compounds
representation, with accuracies of 0.81 and 0.72, respectively. In general, for sets with medium class
predictions removed, the application of 1d2d descriptors for compounds representation led to more
consistent results with the GUSAR software than ExtFP (for all algorithms but IBk, the accuracies were
much higher for the former compounds representation, by from 0.13 for J48, through 0.38 for Random
Forest, to 0.50 for SMOreg). The advantage of the 1d2d descriptors representation over ExtFP was not
visible for the situation, when the medium class predictions were manually shifted to the group of records
referring to high stability compounds. For the most consistent with the GUSAR predictions, SMOreg,
the difference in accuracy between these two forms of representations was only 0.01 (0.78 vs. 0.77).
For Naïve Bayes, which also produced results consistent with the GUSAR software, the difference was
equal to 0.05 (accuracy of 0.77 vs. 0.72 for 1d2d descriptors and ExtFP, respectively). Random Forest
predictions were in line with the output of the GUSAR software only for the 1d2d descriptors (0.71 accuracy
for this representation vs. 0.54 for ExtFP).

3.4. Example Results

A screenshot from the example output of the tool is presented in Figure 8. The summary describes
the compound representation used, the predictive model applied, the number of input compounds and
the number of compounds assigned to a particular metabolic stability class. Detailed results are gathered
in a table with the structure and simplified molecular-input line-entry system (SMILES) of a compound,
the predicted value of half-lifetime and the metabolic stability class to which a compound was assigned.
Additionally, in order to perform a more detailed analysis, the 10 most similar compounds from the
training set (in terms of Tanimoto metric-based similarity) can be downloaded for each of the analyzed
structures (due to the computational resources limitations, this option is available for a maximum number
of 100 structures submitted at one time). As the training sets contained all available data, in order to
prevent situations in which the number of structures for manual inspection is very restricted, the particular
chemical structure was listed only once, and in case of multiple metabolic stability entries available, median
values of half-lifetimes were provided. The abovementioned data can be downloaded separately for each
of the analyzed compounds or as one zipped directory.

Figure 8. Screenshot from example results, containing summary of predictions and predicted metabolic
stabilities with coloring corresponding to metabolic stability results.



Int. J. Mol. Sci. 2018, 19, 1040 12 of 16

4. Materials and Methods

The models’ parameters were optimized with the set of values gathered in Table 6. For each
model, the value that provided the lowest overall accuracy was selected. The conditions selected for
each model are shown in Table 7.

The overall accuracy, recall and precision were calculated using the following equations:

overall accuracy =
number of correct predictions

number of all predictions
(2)

recall =
TP

TP + FN
(3)

precision =
TP

TP + FP
(4)

where TP is the number of instances correctly assigned to a particular class, FN is the number of
instances belonging to particular class incorrectly assigned to another one, and FP is the number of
instances incorrectly assigned to particular class.

Table 6. Optimization conditions for SMOreg, SMO, Random Forest, and IBk.

Method Parameter Tested Values

SMOreg/SMO
C 0.01, 0.1, 1, 10, 100, 1000

Gamma 0.001, 0.01, 0.1, 1, 10
Operations on data Normalization standardization

Random Forest Number of trees 10, 100, 1000

Ibk Number of nearest neighbors 1, 2, 3, 4, 5

Table 7. Conditions selected for each model.

Compounds
Representation Method Parameter Human Rat Mouse

1d2d
descriptors

SMOreg

C 0.01 0.1 0.1
gamma 0.1 0.1 0.1

Operations on data normalization normalization normalization

ExtFP
C 0.1 1 1

gamma 0.001 0.001 0.001
Operations on data standardization standardization standardization

1d2d
descriptors

SMO

C 100 100 100
gamma 0.01 0.1 0.1

Operations on data normalization normalization normalization

ExtFP
C 10 10 10

gamma 0.01 0.01 0.001
Operations on data normalization normalization normalization

1d2d
descriptors Random Forest Number of trees

1000 1000 1000

ExtFP 1000 100 100

1d2d
descriptors IBk

Number of nearest
neighbors

1 1 1

ExtFP 1 5 1

5. Conclusions

In summary, a tool for the qualitative evaluation of metabolic stability expressed as half-lifetime
was constructed. It uses regression and classification tools to provide the assignment of a compound to
a particular stability class (low, medium, high), 1d2d descriptors and ExtFP for compound representation,
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and the SMOreg, Random Forest, SMO, IBk, Naïve Bayes and J48 machine learning algorithms for
making predictions. The tool is freely available online and allows for the submission of structures via
sdf files or through drawing. Separate predictive models were constructed for human, rat and mouse
data, and for data obtained in experiments using liver microsomes and plasma, as well as for data with
metabolic stability expressed as T1/2 and clearance. A detailed retrospective analysis and the application of
the constructed model to the external dataset proved the usefulness of the developed tool. The tool can be
very useful in designing new potential drugs, and in enabling a fast initial evaluation of a compound’s
metabolic stability.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/4/
1040/s1.
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