
 International Journal of 

Molecular Sciences

Article

Genome-Wide Analysis of DCL, AGO, and RDR Gene
Families in Pepper (Capsicum Annuum L.)

Lei Qin, Ning Mo, Tayeb Muhammad and Yan Liang *

College of Horticulture, Northwest A&F University, Yangling 712100, China; qinlei@nwsuaf.edu.cn (L.Q.);
moning0826@163.com (N.M.); tayebmuhammad@nwsuaf.edu.cn (T.M.)
* Correspondence: liangyan@nwsuaf.edu.cn; Tel.:+86-29-8708-2179

Received: 28 January 2018; Accepted: 27 March 2018; Published: 30 March 2018
����������
�������

Abstract: RNA silencing is an evolutionarily conserved mechanism that regulates variety of cellular
processes in plants. Argonaute protein (AGO), Dicer-like protein (DCL) and RNA-dependent RNA
polymerase (RDR) are critical components of RNA silencing. These efficient and indispensable
components of the RNAi pathway have not been identified and characterized in pepper. In this study,
we identified 12 CaAGO, 4 CaDCL and 6 CaRDR genes in pepper and compared them with
those of Arabidopsis, tobacco, potato and tomato. Detailed phylogenetic analyses revealed that
each CaAGO, CaDCL and CaRDR protein family were classified into four clades. The tissue specific
expression and respond to abiotic or biotic stress were studied. The real-time quantitative polymerase
chain reaction (PCR) results demonstrated that CaAGO2, CaAGO10b, CaDCL2 and CaDCL4 were
upregulated with cucumber mosaic virus (CMV), potato virus Y (PVY) and tobacco mosaic virus
(TMV) infections, whereas they showed difference expression patterns in response to abiotic stress.
In addition, we found that many of the candidate genes were induced by phytohormones and
H2O2 treatment. Our results provide useful information for further elucidation of gene silencing
pathways and RNAi-mediated host immunity in pepper.
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1. Introduction

Plants have evolved some control mechanisms that efficiently prevent pathogen invasion to
protect themselves from pathogen attack throughout their life-cycles [1]. RNA silencing is one
such mechanism, which is highly conserved in most eukaryotes and controls sequence specific
regulation of gene expression. Dicer-like (DCL), Argonaute (AGO), and RNA-dependent RNA
Polymerase (RDR) proteins are the key components of RNA silencing machinery [1–3]. DCL proteins
belong to the RNase III family of endoribonucleases that contain DExD, Helicase-C, DUF283, PAZ,
RNase III and dsRNA-binding domains [4,5]. DCLs process double-stranded RNAs (dsRNAs) into
21–24 nucleotide small RNA duplexes [4]. Previous studies indicated that AGO proteins contained the
PAZ domain and PIWI domain. The PAZ domain can bend small RNA into a specific binding pocket,
whereas the PIWI domain can cleave target mRNA similar to RNase H [6,7]. RDR proteins,
containing a RNA-dependent RNA polymerase (RdRP) domain, catalyze the dsRNA formation from
single-stranded RNAs (ssRNAs) [8].

In recent years, studies of the AGO, DCL and RDR gene families in Arabidopsis, rice, tomato and
maize have advanced our understanding of RNA silencing [9–11]. There are 10 AtAGOs, four AtDCLs
and six AtRDRs in Arabidopsis thaliana [11]. In rice, eight OsDCLs, 19 OsAGOs and five OsRDRs
genes were identified, in which OsAGO2 showed specific upregulation in response to cold, salt and
dehydration stress [10]. Likewise, genes for seven SlDCLs, 15 SlAGOs and six SlRDRs were identified
in tomato. The expression models of tandem gene duplications among SlDCL2s indicate that the DCL2

Int. J. Mol. Sci. 2018, 19, 1038; doi:10.3390/ijms19041038 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://dx.doi.org/10.3390/ijms19041038
http://www.mdpi.com/journal/ijms
http://www.mdpi.com/1422-0067/19/4/1038?type=check_update&version=1


Int. J. Mol. Sci. 2018, 19, 1038 2 of 16

family plays an important role in the evolution of tomato [9]. Similarly, a total of seven, five and
eight CsAGOs, CsDCLs, and CsRDR genes, respectively, have been identified in cucumber. All CsAGOs,
especially CsAGO1c, CsAGO1d, and CsAGO7, were profusely upregulated in leaves and tendrils
compared to that in other organs, whereas all CsDCL genes showed a higher up regulation in tendrils,
with almost no expression of CsDCL1, CsDCL4a, or CsDCL4b in other organs. In addition, CsRDR1a,
CsRDR2, CsRDR3, and CsRDR6 were relatively upregulated in tendrils, but almost all CsRDRs are
downregulated in other organs [12]. Genome of the allopolyploid species of Brassica napus possessed
eight BnDCLs, 27 BnAGOs, and 16 BnRDRs [13,14]. In grapevines, a total of four VvDCLs, 13 VvAGOs,
and five VvRDRs were identified. It was worth mentioning that one gene, VvAGO10a, was only
expressed in the stem, suggesting that VvAGO10a might function in the regulation of siRNAs in the
grapevine stem [15].Thus, these key components of RNA silencing machinery of various plant species
exhibited considerable variation and likely contributed to a diverse set of functions in different species
of plants.

Pepper is one of the most important vegetable crops in the world. However, its productivity
is severely affected by viral disease [16,17]. In previous study, we cloned CaRDR1 from pepper,
which was induced by salicylic acid (SA) and tobacco mosaic virus (TMV). CaRDR1 played a positive
role in pepper TMV resistance by regulating antioxidant enzymes’ activities and the expression of RNA
silencing-related genes [18]. In this study, the expression pattern of pepper AGO, DCL and RDR gene
families were examined in response to biotic/abiotic stress. These results provide useful information
for further elucidation of RNA silencing pathways and RNAi-mediated host immunity in pepper.

2. Results

In this study, expression levels of RNA silencing related genes were investigated in response to
biotic and abiotic stress conditions. In addition, effects of these treatments were evaluated by detecting
the expression of stress-related genes [19–21]. CaPR1 was induced by cucumber mosaic virus (CMV),
potato virus Y (PVY) and TMV infections. The expression level of CaDEF1 upregulated after abscisic
acid (ABA), H2O2, MeJA, SA, NaCl and PEG treatments, and CaEREBP-C1 was induced by cold
treatment (Figure S1). The results indicated that the stresses worked on the plants.

2.1. Identification and Structural Analysis of CaAGO, CaDCL and CaRDR Genes

To identify potential CaAGO, CaDCL and CaRDR genes in the pepper genome, we obtained the
Hidden Markov Model (HMM) profiles of the conserved PIWI, DCL (RNase III) and RdRP, and then
used BLAST-p to search a draft pepper genome sequence on the genome database (http://pepperse
quence.genomics.cn/page/species/index.jsp and Table 1). Subsequently, the structural integrity of
conserved domains was evaluated, and redundant sequences were eliminated. Twelve CaAGOs, four
CaDCLs and six CaRDRs were identified in pepper. The identified AGOs showed coding potentials
of −100 kDa proteins. Early studies showed that AGO proteins typically have a PAZ domain and
a PIWI domain [6,7]. CaAGOs shared a DUF1785 domain, a PAZ domain and a C-terminus PIWI
domain, which were highly consistent with known plant AGO proteins by SMART analysis (Figure 1A).
In addition, a Gly-rich AGO1 domain was found in front of the DUF1785 domain in CaAGO1a/b
proteins. The pepper genome encoded four hypothetical CaDCLs, which contained the conserved
DEXDc, HELICc, Dicer-dimer, PAZ, RIBOc and DSRM domains of DCL proteins in plants (Figure 1B).
In addition, CaDCL3 lacked C-terminal DSRM regions (Figure 1B). The four DCLs showed coding
potentials of 158–214 kDa proteins. Six hypothetical CaRDRs in pepper shared a common motif
corresponding to the catalytic β′ subunit of RdRP [22]. They showed coding potentials of 114–135 kDa
proteins. In contrast, homologous CaRDR3b was the largest protein in the RDR family, most likely
to encode 1682-amino acid polypeptides. Besides the conserved RdRP domain, there was an RRM
(RNA recognition motif) domain that existed in the N-terminus of CaRDR1, CaRDR2 and CaRDR6
(Figure 1C). These analyses demonstrated that DCL, RDR, and AGO proteins, along with their correct
domains, are well conserved in pepper.

http://peppersequence.genomics.cn/page/species/index.jsp
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Table 1. List of CaDCL, CaAGO, and CaRDR genes in pepper.

Gene Name Accession Number Chr Range CDS (bp) Protein (aa) Mw (kD)

CaAGO1a Capana06g000835 6 13,219,325–13,229,295 3156 1051 116.40
CaAGO1b Capana03g001538 3 28,791,304–28,798,662 3339 1112 122.52
CaAGO2 Capana02g001299 2 119,455,171–119,460,059 3027 1008 112.42
CaAGO4a Capana01g001805 1 70,676,331–70,686,308 2733 910 102.02
CaAGO4b Capana06g000702 6 11,153,712–11,162,578 2730 909 101.33
CaAGO4d Capana08g001169 8 125,940,932–125,950,280 2646 881 98.44
CaAGO5 Capana06g000572 6 8,647,138–8,654,022 3048 1015 111.73
CaAGO6 Capana07g001363 7 175,512,846–175,528,611 2718 905 101.76
CaAGO7 Capana01g002131 1 114,240,252–114,244,871 3036 1011 115.15

CaAGO10a Capana03g004637 3 261,275,238–261,283,423 2967 988 110.83
CaAGO10b Capana09g000331 9 10,489,518–10,495,890 2844 947 107.02
CaAGO15 Capana03g001292 3 22,639,388–22,645,377 2682 893 100.94
CaDCL1 Capana10g000732 10 43,673,571–43,714,716 5736 1911 214.29
CaDCL2 Capana12g002509 12 220,158,256–220,168,547 4206 1401 158.07
CaDCL3 Capana08g000619 8 95,835,542–95,908,094 4956 1651 186.11
CaDCL4 Capana07g000265 7 11,520,463–11,570,768 4854 1617 182.23
CaRDR1 Capana11g001709 11 191,597,130–191,608,269 3351 1116 127.40
CaRDR2 Capana03g000988 3 16,378,521–16,387,609 3393 1130 128.28
CaRDR3a Capana07g000168 7 8,346,974–8,399,430 3024 1007 114.57
CaRDR3b Capana08g000377 8 51,083,159–51,128,885 5049 1682 191.94
CaRDR5 Capana09g000243 9 7,491,673–7,505,214 3204 1067 122.95
CaRDR6 Capana05g000179 5 2,848,056–2,858,044 3591 1196 135.98

CDS: Coding sequence; MW: Molecular weight.

Figure 1. Structural analysis of CaAGOs (A), CaRDRs (B) and CaDCLs (C) in pepper. Domains are
indicated as boxes in different colors.

2.2. Phylogenetic Analysis of CaAGO, CaDCL and CaRDR Genes

The AGO, DCL and RDR proteins of Arabidopsis, tomato and tobacco were used to study the
phylogenetic relationships and functional diversities of CaAGOs, CaRDRs and CaDCLs in pepper. The
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12 CaAGOs were separated into four distinct groups in the phylogenetic tree (Figure 2A). The groups
were named according to their identity to tomato AGO proteins. Among all clades, group I was
with four CaAGOs proteins (CaAGO1a, CaAGO1b, CaAGO10a, CaAGO10b). Group II and group III
contained CaAGO5 and two CaAGOs (CaAGO2 and CaAGO7), respectively. There were five CaAGOs
in group VI, which were CaAGO15, CaAGO6, CaAGO4a, CaAGO4b and CaAGO4d. The CaDCLs
showed high sequence conservation compared with tomato. The four CaDCLs could be classified into
four distinct clades (Figure 2B). Each clade contained one member that was closely allied with SlDCL
orthologs at a high similarity. These results indicated that high conservation of DCL family in dicots.
The phylogenetic tree derived from CaRDRs sequences was divided into four clades (Figure 2C).
Among the four groups, group I contained one member, CaRDR1, as shown in Figure 2C. Groups II
and III also contained one member, CaRDR2 and CaRDR6, respectively. There were three CaRDRs in
group VI, which were CaRDR3a, CaRDR3b and CaRDR5.

Figure 2. Phylogenetic analysis of putative Argonaute protein (AGO), RNA-dependent RNA
polymerase (RDR) and Dicer-like protein (DCL) proteins of pepper. Unrooted neighbor-joining trees
constructed from multiple alignments of total (A) AGO, (B) DCL and (C) RDR protein sequences
of pepper, tomato, Arabidopsis, tobacco and potato. Bootstrap support values from 1000 replications are
indicated above the branches. Each gene family is divided into different clades as shown in the figure.
Sequences of tomato, Arabidopsis, tobacco and potato were downloaded from the NCBI database.
The red star indicated the proteins in pepper.
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2.3. Expression Pattern of CaAGOs, CaDCLs and CaRDRs in Various Organs

In order to determine the expression pattern of candidate genes in different organs of pepper,
real-time quantitative polymerase chain reaction (qRT-PCR) was performed to analyze the transcript
level of CaAGOs, CaDCLs and CaRDRs. The various organs of pepper: roots, stems, leaves, flowers, and
fruits were investigated. The results showed that most of the CaAGO genes were expressed in all five
organs except for CaAGO4d and CaAGO15. This was probably due to no expression or an extremely
low expression of these genes in these organs. The spatial expression data that normalized with CaUbi3
were compared with data for roots. Compared to their expression in root, 10 of the CaAGO genes
exhibited higher transcript level (fold > 2) in flower, especially CaAGO1b, CaAGO5 and CaAGO10b
(Figure 3, Figure S2). CaAGO2 showed high expression in fruit; CaAGO4a showed high expression
in leaves; CaAGO6, CaAGO10a and CaAGO10b showed high expression in stems compared to their
expression in roots. Similarly, the expression results showed that all CaDCLs and CaRDRs were also
expressed in various organs (Figure 3). All of the CaDCLs exhibited a higher expression level in flowers
as compared to roots (Figure 3). CaRDR1 and CaRDR5 were highly expressed in stems, while the
other CaRDRs exhibited a higher level of expression in flowers as compared to their expression in root
tissues (Figure 3).

Figure 3. Heatmap showing the expression pattern of CaAGO, CaDCL and CaRDR genes in various
organs. Relative expression levels of CaAGO, CaDCL and CaRDR genes in pepper were determined by
real-time quantitative polymerase chain reaction (qRT-PCR) at corresponding organs, including roots,
leaves, flowers, stems and fruit. The CaUbi3 was used as the reference gene. The color scale for each
value is shown on the down pane.

2.4. Biotic Stress Induces Expression of CaAGO, CaDCL and CaRDR Genes

To unravel the functions of CaAGOs, CaDCLs and CaRDRs in response to biotic stressors,
we inoculated pepper leaves with TMV, CMV and PVY, and measured the expression of CaAGOs,
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CaDCLs and CaRDRs. At 7 day-post inoculation (dpi) with the viruses, the expression of CaAGO
genes was differentially expressed in pepper leaves (Figure 4A). The transcripts of CaAGO2 and
CaAGO10b were significantly induced by CMV inoculation, accounting for 20-fold and 10-fold increases,
respectively (Figure 4A), the expression of these genes were also upregulated by PVY inoculation
(>10 folds) (Figure 4A). Similarly, an upregulation in the expression of CaAGO1a/1b, CaAGO2, CaAGO4a
and CaAGO10b was observed at 7 dpi with TMV (Figure 4A). In this study, the transcripts of CaDCL2
and CaDCL4 responded to all viruses (Figure 4B); however, a relatively higher expression of CaDCL3
was observed when challenged with PVY. The transcripts of CaRDR6 were significantly induced upon
virus inoculation, and even more CaRDR1 was induced by TMV (Figure 4C). The results suggest that
these genes commonly participated in virus-induced resistance pathways.

Figure 4. qRT-PCR analyses of CaAGOs (A), CaDCLs (B) and CaRDRs (C) expression in response to
viral infections. The pepper CaUbi3 was used as the reference gene, and three biological replicates
were performed for these experiments. Error bars indicate the standard errors. Asterisks indicate the
significant differences (p < 0.05) between control and treatment.

2.5. Abiotic Stress Induces CaAGO, CaDCL and CaRDR Expression

Evidence from prior research shows that RNA silencing plays a critical role in plant tolerance to
abiotic stress [9]. Therefore, the expression patterns of CaAGOs, CaDCLs and CaRDRs were measured
at 24 h-posttreatment with cold, drought and salinity in pepper. Although cold treatment positively
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induced CaAGO1b, CaAGO2 and CaAGO5 expression, it suppressed the expression of CaAGO6,
CaAGO10a and CaAGO10b in pepper (Figure 5A). Drought and salinity increased the transcripts
of CaAGO2 and CaAGO10b mildly. Interestingly, CaAGO10a was downregulated under all abiotic
stresses. CaDCL1 and CaDCL4 were upregulated by cold treatment (Figure 5B). Drought stress induced
transcripts of CaDCL1 and CaDCL3, especially CaDCL3, by 5-fold (Figure 5B). Among CaRDRs, CaRDR1
expressed in response to cold and drought treatment (Figure 5C). Drought treatment also increased
the transcripts of CaRDR2 and CaRDR6, whereas CaRDR2 and CaRDR5 were upregulated by salinity.
The expression of CaRDR3b was not induced by abiotic treatment (Figure 5C).

Figure 5. qRT-PCR analyses of CaAGOs (A), CaDCLs (B) and CaRDRs (C) expression under abiotic stress.
The pepper CaUbi3 was used as the reference gene, and three biological replicates were performed for
these experiments. Error bars indicate the standard errors. Asterisks indicate the significant differences
(p < 0.05) between control and treatment.

2.6. CaAGOs, CaDCLs and CaRDRs Are Responsive to Phytohormones and H2O2

Phytohormones and H2O2 function as signals in mediating plant response to abiotic and
biotic stress. The expression of CaAGOs, CaDCLs and CaRDRs was assessed after ABA, H2O2, methyl
jasmonate (MeJA) and SA treatment. Gene expression analysis at 24 h after phytohormones and
H2O2 treatment showed that CaAGO10a and CaAGO10b were significantly induced by ABA, especially
CaAGO10b (20 folds). Similarly, H2O2 increased the transcripts of CaAGO1a, CaAGO2, CaAGO5,
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CaAGO6, CaAGO10a and CaAGO10b (Figure 6A), in which the expression of AGO10b was upregulated
by 32-fold with H2O2 treatment (Figure 6A). The expression of CaAGOs were hardly affected by
MeJA (Figure 6A). CaAGO1a expression was upregulated by SA (Figure 6A). The transcripts of
CaDCLs were significantly induced by ABA and H2O2. Similarly, MeJA increased the expression
of CaDCLs, expect for CaDCL3, whereas SA induced the expression of CaDCL2 by 4-fold (Figure 6B).
The transcripts of CaRDR2 and CaRDR5 were significantly induced by both ABA and H2O2. Likewise,
MeJA significantly induced the transcript of CaRDR2 (Figure 6C) and SA induced the expression of
CaRDR1 and CaRDR3a/b in pepper (Figure 6C).

Figure 6. qRT-PCR analyses of CaAGOs (A), CaDCLs (B) and CaRDRs (C) expression under
phytohormone and H2O2 treatment. The pepper CaUbi3 was used as the reference gene, and three
biological replicates were performed for these experiments. Error bars indicate the standard errors.
Asterisks indicate the significant differences (p < 0.05) between control and treatment.

3. Discussion

In plants, RNA silencing plays an important role in sequence specific regulation of gene
expression via posttranscriptional regulation and chromatin modification during abiotic stress,
viral defense and plant development. Therefore, it is indispensable to explore the temporal and spatial
expression patterns of the core elements of the RNA silencing machinery. In addition, availability
of the pepper genome sequence has enabled genome wide gene expression analysis in pepper [23].
In the present investigation, 12 CaAGOs, four CaDCLs and six CaRDRs genes were identified in
the pepper genome and a phylogenetic analysis for each gene family was carried out. Finally,
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the expression patterns of CaAGOs, CaDCLs and CaRDRs under biotic or abiotic stress and treatment
with phytochromes were analyzed in pepper. Our results unveiled important roles of CaAGOs,
CaDCLs and CaRDRs that provide new insights into gene silencing pathways and RNAi-mediated host
immunity in pepper.

3.1. Argonaute (AGO) Proteins in Pepper

Argonautes are the highly basic RNA binding proteins characterized by the presence of PAZ and
PIWI domains [24]. Genes for 12 CaAGOs were identified in the pepper genome in this study (Table 1).
CaAGO4d and CaAGO15 were barely detected by real-time qPCR. Other CaAGO genes exhibited diverse
expression patterns in different organs (Figure 3). CaAGO1a, CaAGO1b, CaAGO10a and CaAGO10b
were grouped into the same cluster (Figure 2). In Arabidopsis, AtAGO1 was expressed generally
in leaves, roots, flowers and siliques, but mutant ago1 showed a dwarf and sterile phenotype [10,25,26].
Notably, AGO10 acted as a locker of miR165/miR166 in shoot apical meristem (SAM) development,
while miR165/miR166 cooperated with AGO1 to suppress SAM maintenance [27,28]. In the
present study, we found an increased expression of CaAGO1a/CaAGO1b in flowers compared to
that in other organs, whereas CaAGO10a/CaAGO10b showed high expression in stems. These results
were in agreement with a previous report, in which BnAGO1a was profusely expressed in flowers
of Brassica napus [14]. AGO1 stabilized miR168 posttranscriptional and the transcripts of AGO1
were regulated by miR168, which played an important role in plant development [29]. AGO1 and
AGO10 interacted with miR172 and miR165/166 regulate the SAM and floral meristems development
through targeting APETALA2 (AP2) and type III homeodomain-leucine zipper (HD-Zip) genes,
respectively [28,30–32]. Cells in the SAM whether differentiated or not were regulated by HD-Zip
transcription factors [33]. AP2 played a key role in the specification of reproductive and perianth
organ identities in flower development [34]. The AS1 and AS2 genes played important roles in leaf
development [35,36]. AGO1 interacted with AS1 and AS2 for plant development, and AGO1 was
required for repressing class I KNOX genes in the developing leaves [37]. AGO1a and AGO2 were
co-expressed with MADS15 involved in the flowering process and flower development in rice [38].
An miR168 binding site was found in CaAGO1a/b (Figure S3A,B). It suggested that AGO1/10 might
participate in the plant development, especially flower development via miR168 with regulating the
development related genes’ expression.

AGO2-like proteins play a crucial role in battle against viral infections guided by siRNAs
generated from double stranded virus RNAs that are synthesized by RdRP using viral RNA as
templates [39]. Likewise, AGO2 functioned in defense against various viruses, including TCV,
Potato virus X, CMV, and Tomato bushy stunt virus [39–42]. In Arabidopsis, PVX failed to infect
wild-type but not ago2 mutants, suggesting that AGO2 is required to suppress PVX infection [43].
While AtAGO2 was highly induced by Pseudomonas syringae pv. tomato (Pst) in wild-type, ago2 mutants
displayed an enhanced susceptibility to Pst [44]. Similarly, in Nicotiana benthamiana, NbAGO2
contributed to anti-viral defense, and suppression of the NbAGO2 expression enhanced susceptibility
to TBSV [45]. Both ago1 and ago2 mutants were hypersensitive to viral infection in plant [46–49].
In plants, AGO2 mRNA is targeted by the miR403 [50,51]. Transcript levels of AGO1 but not AGO2
were repressed after SMV infection, which were regulated by the upregulation of miR168a and
miR403a [52]. RNA-mediated defense contains multiple layers in the interactions between plants
and viruses. AGO1 represented a first layer and AGO2 acted as the second layer when AGO1
was overcome by viral suppressors of silencing, and the second layer was also activated when
the first layer was suppressed because AGO2 was repressed by AGO1 via miR403 [39]. CaAGO2
contained an miR403 binding site (Figure S3C). Our real-time PCR data showed that CaAGO2 was
significantly induced by biotic stress (Figure 4A). CaAGO2 might be participated in pepper virus
defense via miR403. AGO1 mainly acted in miRNA and siRNA pathways for post-transcriptional gene
silencing (PTGS) [53]. AGO1 functions to ensure targeting and efficient clearance of viral RNAs [54].
The expression of CaAGO1a/b and CaAGO10b increased by CMV, PVY and TMV infection. It implied
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that CaAGO1 might have played a positive role in pepper through other regulatory mechanisms.
In line with previous reports, our findings suggested that the AGO family genes might function
collaboratively in RNA silencing-mediated viral defense in plants. Importantly, CaAGOs were also
induced by aboitic stress (Figure 5). Here, cold treatment increased the transcripts of CaAGO2
and CaAGO5, whereas drought and salinity induced an upregulation in CaAGO10b expression.
In sunflowers, miR403 played critical roles in responses to stress [55]. CaAGO2 might be regulated the
response of abiotic stresses via miR403. In rice, OsAGO2 also shows similar upregulation in response
to cold, salt and dehydration stress [10]. Furthermore, CaAGO10a/10b expressions were induced by
ABA (Figure 6). ABA is a universal hormone in plants, and it was a core component in multiple plant
signaling pathways to mediate several responses, including gene regulation, stomatal closure and
plant growth modulation [56–58]. Our results suggested that CaAGO10b might play an important role
in the response of pepper plants to osmotic stress by regulating ABA responsive genes. However,
CaAGO10b shows a strong induction in the presence of ABA rather than NaCl. It implied that ABA
might participate in multiple plant physiological mechanism via CaAGO10b, and this hypothesis needs
to be confirmed in further study.

3.2. Dicer-Like (DCL) Proteins in Pepper

Dicer enzymes work to process dsRNA into small RNA of diverse size. DCL1 and
DCL4 are well known to trigger post-transcriptional gene silencing (PTGS), DCL2 generated
22-nt siRNAs, which share functional overlap in antiviral defense with DCL4-generated 21-nt siRNAs,
and DCL3-produced 24-nt heterochromatic siRNA (hc-siRNA) mediated DNA methylation,
gene silencing and chromatin modification [59–62]. In this study, four DCL genes clustered into
four subgroups were found in pepper (Figure 2). CaDCL1 and CaDCL3 exhibited a higher expression
level in flowers than other organs. In Arabidopsis, DCL1 and DCL3 promote flowering, whereas double
mutants of dcl1 and dcl3 exhibited a delay in flowering [63]. It implied that CaDCL1 and CaDCL3 might
also be involved in pepper flower development. Moreover, the transcripts of CaDCL2 and CaDCL4
were significantly induced upon virus inoculation (Figure 4B). In tomato, TYLCV infection upregulates
expression of SlDCL1, 2a, 2c, 2d and 3, which supports our current results [9]. The expression of CaDCLs
was induced under different abotic stress and hormonal treatment (Figures 5 and 6). These findings
were in agreement with a previous study on tomato, which showed an increased expression of SlDCL1,
2a, 2bc and 2d in response to various stress [9].

3.3. RNA-Dependent RNA Polymerase (RDR) Proteins in Pepper

RDRs participate in dsRNAs synthesis to initiate a new round of RNA silencing [8,64,65].
Six RDRs had been identified in Arabidopsis [8]. Similarly, we found six CaRDR genes in pepper,
which was expressed in all five tissues. Several lines of evidence suggested that plant RDR1 was
involved in antiviral defense [66,67]. In Arabidopsis, AtRDR6 acted in many RNA silencing pathways,
leading to defense against viruses, such as TMV and CMV [65,68–70]. NgRDR6 could be induced by
ABA, GA, MeJA, CMV, but not by PVY, TMV, H2O2 and SA in Nicotiana glutinosa [71]. In the present
study, CaRDR6 was induced by CMV, PVY, TMV, ABA and H2O2, indicating an important role of
RDR6 in different signal pathways in a range of plant species (Figure 4C). AtRDR2 played a crucial
role in the biogenesis of hc-siRNAs that induced a DNA methylation pathway with the participation
of AGO4 and DCL3 [72,73]. In tomato, TYLCV infection enhanced the expression of SlRDR2 and
SlDCL3 [9]. In Solanum chilense, the tomato yellow leaf curl virus resistance loci Ty-1 and Ty-3 were
homologous to Arabidopsis RDR3, 4, and 5 [74], suggesting that RDR3, 4, and 5 might be involved in
plant viral defense by their active participations in generating siRNAs. In the current study, transcripts of
CaRDR3a and CaRDR3b were significantly induced upon virus inoculation. Furthermore, expression of
CaRDR2 was enhanced by virus infection and plant hormones (Figures 4C and 6C).
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4. Materials and Methods

4.1. Identification of Putative Pepper DCL, AGO, and RDR Genes

Protein sequences of tomato DCLs, AGOs, and RDRs were downloaded from NCBI (https://ww
w.ncbi.nlm.nih.gov/) and SGN (https://solgenomics.net/). Protein sequence was analyzed for domain
structure using Pfam (http://pfam.xfam.org/). DCLs, AGOs, and RDRs in pepper were identified by
using Hidden Markov Model (HMM) profiles and BLAST-P to search the Pepper Genome database
(http://peppersequence.genomics.cn/page/species/index.jsp). All identified genes in this study were
named after the homologies sequence in the same gene family of tomato. The conserved domains
of the gene sequences were searched using the Simple Modular Architecture Research Tool (SMART,
http://smart.embl-heidelberg.de/). The molecular weight (MW) of CaDCL, CaAGO, and CaRDR
proteins were predicted using ExPASy ComputepI/Mwtool (http://au.expasy.org/tools/pi_tool.html).
The gene information, including accession number, chromosome location, coding sequence (CDS)
length and encoded protein length were downloaded from the pepper genome database.

4.2. Phylogenetic Analysis

The phylogenetic trees were constructed by the Neighbor-Joining (NJ) method following the
Poisson model using MEGA 5.0 [75,76]. The accession number of proteins in phylogenetic tree were
listed in Table 1 and Table S1.

4.3. Plant and Treatment

Pepper (Capsicum annuum L.) cultivars P79 was used in the present study. Pepper seedlings were
grown in a plant growth chamber under a 16 h/8 h light/dark period at 25 ◦C/20 ◦C. Tissue samples
were collected from roots, leaves, stems, flowers and fruit.

In addition, 2 mM SA, 100 µM MeJA, 100 µM ABA and 10 mM H2O2 were used to spray the
leaves of 8-week-old pepper seedlings [77,78]. The corresponding solvent was used to deal with
control plants. Leaves were collected at 24 h after treatment. Samples were frozen in liquid nitrogen
and stored at −80 ◦C.

For abiotic stress, such as drought, salinity and cold, 8-week-old seedlings of pepper were treated
with 20% (w/v) polyethylene glycol (PEG), 200 mM sodium chloride (NaCl) and placed at 4 ◦C,
respectively. Leaves were collected at 24 h after treatment. Samples were frozen in liquid nitrogen and
stored at −80 ◦C.

Two to three lower leaves of 8-week-old pepper seedlings were inoculated with TMV, PVY and
CMV (0.01 M phosphate buffer, pH 7.0) mechanically. Leaves were collected at 7 d after treatment.
Samples were frozen in liquid nitrogen and stored at −80 ◦C.

4.4. Quantitative Real-Time PCR (qRT-PCR)

An Omega plant RNA kit (Omega Bio-tek, Guangzhou, China) was used for RNA extracted.
qRT-PCR performed using iQ5 Real-Time PCR Detection System (Bio-Rad Corp., Hercules, CA, USA)
with SYBR® Premix Ex Taq (TaKaRa, Beijing, China). Pepper ubiquitin-conjugating protein (CaUbi3)
was used as an internal reference gene [54]. Three biological replicates were performed for qRT-PCR
assay. Gene relative expression levels were determined using the 2−∆∆Ct method [79]. Primers for
qRT-PCR were listed in Table S2.

4.5. Statistical Analysis

SPSS software was used for statistical analysis. The treatments were compared with the control
using Tukey’s test at p < 0.05.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://solgenomics.net/
http://pfam.xfam.org/
http://peppersequence.genomics.cn/page/species/index.jsp
http://smart.embl-heidelberg.de/
http://au.expasy.org/tools/pi_tool.html
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5. Conclusions

In this study, a total of 12 CaAGO, four CaDCL and six CaRDR genes were identified in pepper
plants. We discussed the structures and conserved domains of these genes and performed a detailed
phylogenetic analysis that classified CaAGO, CaDCL and CaRDR gene families into four clades.
Tissue specific expression analysis revealed that CaAGO, CaDCL and CaRDR genes showed multiple
patterns of expression in different organs. We also analyzed expression of CaAGOs, CaDCLs and
CaRDRs in response to abiotic and biotic stressors. CMV, PVY and TMV infections upregulated
CaAGO2, CaAGO10b, CaDCL2, CaDCL4 and CaRDR6 expression, whereas cold, drought and salinity
treatments induced various CaAGOs, CaDCLs and CaRDRs expression in pepper. Additionally,
a potential involvement of phytohormones in regulating many of the candidate genes was speculated.
RNA silencing components showed distinct role in stress responses of pepper. The results play a basis
role in further functional characterization of these genes.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/4/1038
/s1.
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Abbreviations

AGO Argonaute Protein
ABA Abscisic Acid
CMV Cucumber Mosaic Virus
DCL Dicer-Like Protein
MeJA Methyl Jasmonate
MW Molecular Weight
NaCl Sodium Chloride
PEG Polyethylene Glycol
PVY Potato Virus Y
RDR RNA-Dependent RNA Polymerase protein
RISCs RNA-induced Silencing Complexes
SA Salicylic Acid
ssRNAs Single-Stranded RNAs
TMV Tobacco Mosaic Virus
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