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Supplementary Materials 

Previous Protherm Selections 

Many of the datasets have been used in several articles. Original papers reporting the datasets 
are described. 

 
I-Mutant [1] 
S1615 single AASs in 42 proteins with structures available. 
S388 subset of the former, measurements at pH 6-8 and temperature 20-40°C. Variants in 17 

proteins. 
 
I-Mutant2.0 [2] 
Single AASs with experimental measurements. 
2087 with sequence information 
1948 with 3D structures. 
 
MUpro [3] 
SR1135 Redundancy cleaned version of S1615 [1], removal of identical duplicates. 
S388 Subset of S1615. Unique variants measured at physiological conditions. 
SR1135 Subset of S1615. Removed parallel cases. 
SR1023 Subset of S1615 from where identical variants were removed. 
 
Saraboji et al. [4] 
1791 single AASs. Secondary structure and solvent accessible surface available for PDB 

structure. Thermal denaturation method. 
1396 variants with thermal denaturation and 2205 variants with chemical denaturation. 
Experimental conditions (pH, ions, buffer, additives etc.) not considered. 
 
iPTREE-STAB [5]  
1859 single variants in 64 proteins. Duplicates were removed, and same variants in same 

conditions averaged.  
 
SVM-WIN31 and SVM-3D12 [6] 
1681 single AASs (sequences) in 58 proteins and 1634 in 55 proteins (structures available) both 

in reversible experiments.   
499 additional variants from a later version of ProTherm, excluded new variants at the same 

positions as in the other datasets. 
 
AUTOMUTE [7] 
1204 and 1962 variants from 1396 and 2204 of  [4] by removing cases which missed from PDB 

or had less than six nearest neighbours. 
 
PoPMuSiC-2.0 [8] 
2648 single AASs in 131 proteins. Original articles checked. Globular proteins, structure 

available. Only in true wild type background. Heme-containing proteins excluded (except apo 
forms), as well as variants involving prolines. Destabilizing variants with ΔΔG value larger than 5 
kcal/mol excluded. Average value for parallel experiments. If the protein forms homo-multimers, 
values accepted only when monomer state verified. Measurements close to pH 7 and temperature 
close to 25°C, without additives, were favoured. 
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Potapov et al. [9] 
2156 Single variants. Combined two datasets [10] and ProTherm. Removed from Guerois set 

cases not matching with PDB structure. The latter set filtered to exclude duplicates with the first set, 
to remove all structures determined with NMR. Parallel results for variants were averaged. 

 
Khan and Vihinen [11] 
1784 Single variants in 80 proteins. Representative cases selected for variants measured several 

times and in different conditions. 
 
sMMGB [12] 
1109 Variants in 60 proteins with 3D structures. Single AASs, measurement pH 6-8. Average 

value for parallel experiments. 
 
M47 and M8 [13] 
S2760 variants in 75 proteins. Single AASs with PDB structure available. Parallel results 

averaged. 
S1810 variants in 71 proteins. Cases between -0.5 and 0.5 kcal/mol excluded from S2760. 
 
EASE-MM [14] 
1914 Single AASs in 95 proteins. Manually checked. Averaged values for variants measured in 

the same condition. Clustering of proteins. 
S236 Subselection of I-Mutant2.0 dataset [6] including 25 proteins. Note that in the article the 

dataset is named as S238. 
S1676 Remaining cases from the set of 1914. 
S543 In 55 proteins [15]. Subset of 2648 [8]. <25% sequence identity to both S1676 and S236. 
 
mCSM [16] 
S350 Randomly picked subselection of S2648 [8]. Variants in 67 proteins. 
S1925 Variants in 55 proteins. Uniformly distributed to SCOP classes. 
42 Variants in P53 DNA binding domain with experimental details. 
 
HoTMuSiC [17] 
1626 Single AASs in 90 proteins. Manually checked.  
Resolution of structure <2.5Å, ΔTm measurements without chemical denaturants, proteins with 

two-state folding transition. Effects on stability larger than 20°C excluded. 
More details at https://www.biorxiv.org/content/early/2016/01/10/036301 
 
Jia et al. [18] 
380 Single AASs. Measurements at pH 6-8. Proteins <300 AAs long. Multiple data points 

averaged. ΔΔG values <-10 or >10 kcal/mol excluded. 
Numerous datasets for training and testing. 
 
SAAFEC [19] 
sDB, 1262 variants in 49 proteins. Measurements between pH 5-9, representatives for each 

variant. When several measurement values, those within 0.1 kcal/mol were averaged, otherwise 
deleted. 

tDB, 983 variants in 42 proteins. Further filtered to contain only X-ray structures without ligands. 
 
STRUM [20] 
Q3421 Single AASs, protein structure available. Weighted averaging of values when several 

experiments. Measurements close to pH 7 and temperature close to 25°C, without additives, were 
favoured. 
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Q306 variants in 32 proteins, sequence identity <60% to S2648 [8]. 
 
Meta predictor [21] 
605 Single AASs in 60 proteins, manually checked. Measurements at pH 5-9 and temperature 

20-30°C. Proteins with cofactors or prosthetic groups deleted. Excluded cases used to train the 
constituent method. Corrected for the sign of ΔΔG values and energy units. 

 
There are additional papers with ProTherm selections, but since they have just used subsets 

listed above they are not mentioned in here. 

Supplementary Table S1. Distribution of amino acid substitutions in the dataset. The original amino 
acids are in rows and variant residues in columns. 

 A C D E F G H I K L M N P Q R S T V W Y Total 
A 0 2 3 3 1 18 2 2 3 6 4 1 8 2 2 9 7 8 1 1 83 
C 7 0 0 0 0 1 0 2 0 1 1 0 0 0 0 11 3 6 0 0 32 
D 32 2 0 9 3 8 9 3 14 3 1 25 3 4 3 6 4 2 2 2 135 
E 25 2 5 0 3 5 2 1 27 4 3 5 2 24 2 2 3 6 1 2 124 
F 18 1 0 0 0 2 1 1 1 9 3 0 0 0 0 1 1 4 4 8 54 
G 21 1 3 3 1 0 1 0 1 1 0 2 3 2 4 6 0 6 0 0 55 
H 8 1 2 2 0 4 0 0 1 3 0 2 2 5 2 1 2 0 1 6 42 
I 28 3 1 1 4 9 1 0 0 7 9 1 0 0 0 2 10 29 2 1 108 
K 29 0 3 22 2 8 3 1 0 0 5 5 2 17 8 2 0 4 1 1 113 
L 43 4 1 2 6 6 2 6 1 0 13 1 2 1 5 0 4 14 2 2 115 
M 9 1 1 1 2 2 0 6 2 6 0 0 0 0 0 0 2 4 0 1 37 
N 17 0 16 1 1 2 3 3 4 1 2 0 0 1 0 5 1 1 0 0 58 
P 30 0 0 0 0 6 0 0 0 2 0 1 0 0 1 5 0 1 1 1 48 
Q 13 1 0 3 0 4 1 1 2 2 1 1 2 0 2 1 0 0 0 2 36 
R 18 3 1 8 1 5 7 1 9 2 3 1 1 7 0 5 1 1 1 1 76 
S 23 2 5 2 2 8 2 1 2 0 0 1 1 1 0 0 5 3 0 1 59 
T 27 4 7 4 1 10 2 7 1 2 1 5 2 4 3 16 0 23 1 1 121 
V 48 11 0 2 4 18 3 23 3 12 9 1 3 1 1 6 26 0 0 4 175 
W 2 0 0 0 9 0 2 0 0 1 0 0 0 0 0 0 0 0 0 4 18 
Y 12 2 2 0 35 4 2 0 1 3 0 2 1 1 1 2 0 1 6 0 75 

Total 410 40 50 63 75 120 43 58 72 65 55 54 32 70 34 80 69 113 23 38 1564 

Supplementary Table S2. Distribution of the cleaned dataset to subsets for method training and 
testing. 

Datasets Variations Proteins (families) Increase Decrease No-Change 
train1 a 280 27(13) 44 156 80 
train2 279 23(19) 43 151 85 
train3 280 10(7) 41 156 83 
train4 279 17(12) 41 142 96 
train5 281 12(7) 41 167 73 

Blind-test set 165 10(10) 23 92 50 
total 1564 99(67) 233 864 467 

a Parts 1-5 denote to the 5 partitions used in 5-fold cross validation. 
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Supplementary Table S3. Features used to train PON-tstab. 

Layer1：Features selected for the decrease/no decrease classifier 

Feature name Description 
Importance 
factor in RF Reference 

pssm_wild Position specific score for the wild type residue 76.4  

BULH740101 Transfer free energy to surface 63.6 [22] 

ZHOH040101 The stability scale from the knowledge-based atom-
atom potential 

77.5 [23] 

pssm_mut Position specific score for the variant residue 53.4  

ZHAC000102 Environment-dependent residue contact energies 68.5 [24] 
T Temperature 66.3  

NonPolarAA 
Frequency of non-polar amino acids in a 23 amino acid 

neighbor window 58.1  

BAEK050101 Prediction of protein inter-domain linker regions by a 
hidden Markov model 67.7 [25] 

Layer2: Features selected for the increase/no effect classifier 
T Temperature 61.7  

NADH010105 
Hydropathy scale based on self-information values in 

the two-state model (25% accessibility) 56.7 [26] 

ZIMJ680102 Bulkiness 61.2 [27] 

Supplementary Table S4. Sequence-based features from ProtDCal. 

Feature Description 
Gw(U) Free energy contribution from the entropy of the first shell of water molecules in an unfolded state 
Gs(U) Interfacial free energy contribution of an unfolded state 
W(U) Number of water molecules close to a residue in an unfolded state 
Mw Molecular weight 
HP Kyte-Doolitle's hydrophobicity scale 
IP Isoelectric point 

ECI Electronic charge index 
Vm Amino acid volume 
Anp Nonpolar area 
Z1 Composed parameter related with hydrophilicity 
Z2 Composed parameter related with steric features 
Z3 Composed parameter related with electronic features 
ISA Isotropic surface area 
At Estimated solvent accessible surface area of residues in fully exposed states 
Ap Polar area 
Pa Levitt's Probability of adopting alpha helix conformation 
Pb Levitt's Probability of adopting beta sheet conformation 
Pt Levitt's Probability of adopting beta turn conformation 

TAE energy Transferable Atom Equivalent energy 
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