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Abstract: Several methods have been developed to predict effects of amino acid substitutions
on protein stability. Benchmark datasets are essential for method training and testing and have
numerous requirements including that the data is representative for the investigated phenomenon.
Available machine learning algorithms for variant stability have all been trained with ProTherm data.
We noticed a number of issues with the contents, quality and relevance of the database. There were
errors, but also features that had not been clearly communicated. Consequently, all machine
learning variant stability predictors have been trained on biased and incorrect data. We obtained
a corrected dataset and trained a random forests-based tool, PON-tstab, applicable to variants
in any organism. Our results highlight the importance of the benchmark quality, suitability and
appropriateness. Predictions are provided for three categories: stability decreasing, increasing and
those not affecting stability.

Keywords: protein stability prediction; variation interpretation; mutation; benchmark quality;
machine learning method

1. Introduction

Stability of biomolecules, especially of proteins, is of great interest and significance. Stability in
cells is important for the function of proteins in ambient conditions, responses in signalling and
metabolic networks, as well as for many other features. Stability has been the major target for protein
engineering, mainly to increase thermal stability [1,2], but sometimes also to destabilize proteins [3–5].
Effects on stability have been estimated to be among the most common consequences for disease-related
variations [6], thus, stability prediction is of interest for variation interpretation to explain the effects of
harmful variants.

Amino acid substitutions (AASs) affect biological, chemical and physical properties of proteins,
including stability. Understanding the effects of these alterations facilitates the elucidation of molecular
bases of many diseases. Site-directed mutagenesis has been utilized for decades to study and modify
thermostability; however, the experimental trial and error-based design and construction of variants is
time-consuming and expensive. Experimental methods are tedious and often costly, so there is need
for computational methods that can predict effects of large numbers of AASs.
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Several methods are available for predicting protein thermal stability changes due to AASs
based on the primary sequence or protein three-dimensional structure information or both of them.
Energy function-based methods include those using physical energy function from ab initio quantum
mechanics (QM) calculations, empirical energy function or force field methods, or statistical energy
function methods. The other major category of methods is machine learning (ML)-based methods.
These tools either predict the sign of ∆∆G, i.e., whether AASs are stabilizing or destabilizing, or they
calculate with regression the ∆∆G, or both. ML methods have been developed by using various
algorithms including support vector machines [7–10], neural networks [11,12], gradient boosting [13],
random forests (RF) [14,15] and a metapredictor [16]. Common to all these tools is that they have
been trained with data from the same source, ProTherm database [17]. ProTherm contains detailed
information for variants that come from numerous investigations.

The performance of ML methods is largely dependent on the quality of the data used for training
and testing [18,19]. Benchmark datasets should fulfil a number of requirements [20]. The datasets
should be relevant, representative, non-redundant, contain experimentally determined cases both
for positive and negative effect, be scalable and allow reusability. A number of subselections of
ProTherm have been used for method training and testing and are available at VariBench database [20],
the dedicated resource for variation datasets.

Recently, it became evident to us that the ProTherm data contains a number of problems, which can
hamper reliable predictor development. Some authors have applied certain measures to clean the data
e.g., by selecting representative cases or by calculating averages over related entries [7,8,11]. However,
systematic analysis of the relevance and quality of the dataset has been missing. Another area
related to stability predictors and where improvements would be needed has been the lack of
comprehensive reporting of the method performance [21,22] which has made it impossible to compare
method performance reported in literature. Systematic performance analyses of several stability
predictors [23,24] showed the tools to have widely varying performance. Even the best methods had
only moderate accuracies.

Here, we checked thoroughly variant details in ProTherm database and corrected numerous
problems. In the end, we had 38% of the original number of variants left. Out of these, 77% came from
ProTherm, the rest are either corrected or new variants. Using the new high-quality dataset, we trained
a novel ML-predictor, PON-tstab, for amino acid substitution effects on stability and established a new
baseline for variant stability prediction method performance. Our study revealed the importance of
knowing and checking data and their relevance when used for predictor development since predictors
cannot be better than the data used to train them. Therefore, one has to be careful when using datasets
collected by others unless they are properly documented and systematically compiled.

2. Results

2.1. Cleaning and Pruning Stability Data

All the existing machine learning (ML) methods for protein variant stability prediction have been
trained with data from a single database, ProTherm. We had previously noticed some issues with
the database and wanted to correct them. While doing that, we noted additional issues and ended
up in checking most of the entries having measured ∆∆G values and comparing them to the original
literature. We found some errors, while some aspects are apparently features of the database; however,
not clearly described and therefore the data has been used in wrong way. As an example of a feature
can be mentioned that there are cases where for a two-stage denaturation pathway has been recorded
values for the steps from folded to intermediate/transition stage, from intermediate to unfolded,
and then the total value for the two. Previously, method developers have either taken the middlemost
value or calculated an average over all of them, both practices being wrong. Examples of this kind of
cases include variants in α-subunit of tryptophan synthase [25,26] and in apoflavodoxin [27]. The types
of problems and issues noticed in the ProTherm entries are listed in Figure 1.
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Figure 1. Types of problems and issues noted in ProTherm and which were taken into account when
selecting an unbiased dataset for method training and testing. PDB, Protein Data Bank.

We found a number of instances where the sequence did not match with the one given in
ProTherm, because there were additional variations. The most common problems of this kind include
deletions, especially in the protein N-terminus. For example, from the murine interleukin-6 totally
22 N-terminal residues were removed [28]. Some proteins contain insertions, such as C-terminal
FLAG-affinity tag in Staphylococcal nuclease, Escherichia coli ribose-binding protein and in E. coli
maltose-binding protein [29], or additional residues such as in the bovine ribonuclease A [30].

In the case of T4 lysozyme, for which hundreds of variants together with three dimensional
structures have been determined, the variants have been made to one of two backgrounds. The WT is
the normal wildtype, whereas pseudo-wild type (WT*) is cysteine free and contains additional variants
C54T and C97A [31] that remove all cysteines from the protein. For many variants, a wrong structural
reference was given. Since many of the prediction methods use information about the sequence and
variation context, it is essential to have the correct sequence and structure.

In some experiments, unfolded proteins were investigated such as subtilisin BPN’ variants at
pH 5 [32]. These were discarded due to not representing a real folded protein. Still they have been
included into several selections used for method development.

Several stability values had wrong sign or wrong unit. In ProTherm, a positive ∆∆G value
indicates that the variant is stabilizing whereas a negative ∆∆G indicates the destabilizing effect of



Int. J. Mol. Sci. 2018, 19, 1009 4 of 16

the variant. The majority of the measurements were indicated in kcal/mol, but there were numerous
instances in kJ/mol, which have been previously used without conversion. Some measurement
temperatures were given in Kelvin instead of Celsius. All these were corrected and unified.

Numerous entries were corrected, and others deleted. A number of entries for very short peptides
were removed, as they do not represent true proteins with a defined fold. We generated rules for the
selection of representative and reliable set of cases (Figure 1). We chose cases that were measured
preferably with thermal denaturation methods, especially differential scanning calorimetry (DSC).
Measurements performed in non-natural pH, high salt concentration or in high pressure were deleted if
values for measurements in natural environment were available. The intacellular pH is controlled even
in extremophilic micro-organisms, therefore the preferred pH range was 5–9, and salt concentration
<0.2 M. We favoured single variants in comparison to background. The reference sequence had to
match with the used sequence. In case the background sequence contained several variations common
for several measured cases, we made the relevant changes to the reference sequence. Similarly,
the three-dimensional structure had to match with the actual sequence. The dataset entries were
checked and cleaned of duplicates.

The appearance of the large number of inconsistencies in ProTherm means that all previous
machine learning methods have been trained with somewhat biased and incorrect data, although some
cleaning and pruning may have been applied. Therefore, our cleaned dataset provides the baseline for
determining the “new normal” of the stability predictor performance.

Previously several sub-selections of ProTherm data have been generated (see Supplementary
Material), available at the VariBench database. Most of the previous selections have been for single
variants in proteins. However, none of them reports correcting for additional variants, as we did.
Some of these selections have been corrected for errors in units, but not all. The pH range has
been limited close to neutrality in several datasets, and some have restricted the temperature range,
which may have biased dataset towards proteins functional at rather low temperatures. Most common
way of dealing with several measurements for the same variants has been taking an average of
them. The second most common selection has been for representative cases. Many datasets have
contained duplicates.

Structural information has been a requirement for a number of datasets, however,
e.g., the background (WT vs. WT*) has been noted in only one. And even in that case, apparently no
corrections were made. We found several cases where the reference sequence and structure were
wrong. Some datasets have excluded variants with large ∆∆G values, melting temperature differences
or long sequences.

None of the previous selections have utilized as extensive cleaning and pruning approach as
we used. The following selection criteria have not been applied previously to any of the datasets:
wrong sequence position, non-matching sequence, additional sequence changes including deletions
and insertions, wrong Protein Data Bank (PDB) reference, non-matching PDB structure, values for
separate stages of denaturation pathway, unfolded proteins, and very short peptides (see Figure 1).
Thus, our selection is much more extensive and detailed and therefore representative of true data,
meaning that the new dataset is best suited for testing and training prediction methods.

2.2. Dataset Properties

The final dataset contains 1564 entries from 99 proteins. This dataset is available in VariBench at
http://structure.bmc.lu.se/VariBench/stability.php [20]. The proteins in the dataset originate from a
wide spectrum of organisms. There are 233 stabilizing and 864 destabilizing variants, while 467 do not
affect stability. Because of technical difficulties in measuring exact ∆∆G values [33], we consider cases
with values between −0.5 and 0.5 kcal/mol as neutral, similar to our previous studies [7,23].

The largest numbers of variants are for lysozyme (250), barnase (132), gene V protein (111),
cold chock protein (101) and chymotrypsin inhibitor (100). The ∆∆G values range from −17.4 to
23.0 kcal/mol, measurement pHs from 2.7 to 9.6, the majority being between 5 and 8. The measurement
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temperatures range from 0 to 89 ◦C. Thus, the included cases represent a wide spectrum of proteins
and measurement conditions and thus provide a good starting point for method development.

Of the 4148 entries in the ProTherm database with values for ∆∆G, 1197 (29%) are included as
such into our selection. In addition, we have 367 entries that either had errors in ProTherm or were
missing. Altogether, 2951 entries were not approved to the final dataset due to the problems discussed
above or because of being duplicates or otherwise not fulfilling the inclusion criteria. The new dataset
is smaller than the most ones used previously for method training; however, it is consistent and has
been cleaned of several problematic cases and mistakes, and as such provides an unbiased starting
point for method development.

The amino acid distribution of the variants in the dataset is shown in Supplementary Table S1.
Alanine scanning mutagenesis has been widely used for investigating the function of amino acids.
These variants are clearly the most common in our dataset, altogether 410 instances (26%) spread
out over all possible original residues. The other amino acid types for substituting residues are quite
equally represented in the dataset. Glycine (120), valine (113) and serine (80) are the next most common
substituting amino acids.

The dataset has its limitations and so does the entire ProTherm. There are a number of substitutions
that are not represented at all. These follow to some extent the genetic code, only 150 of the total of
380 amino acid substitutions are possible by single nucleotide substitution in DNA. Valine (175),
aspartate (135), glutamate (124), and leucine (115) are the most frequent substituted residues.
Substitutions from tryptophan (18), cysteine (32), glutamine (36) and methionine (37) are the least
frequent ones.

2.3. Novel Stability Predictor

In total, 1106 features were collected to train a machine learning method for stability prediction.
To eliminate redundant and non-relevant features, we used a combined greedy feature-selection
algorithm with two steps (Figure 2): backward elimination and forward selection. This approach has
been previously described [34].

The data were partitioned to subclasses as follows. First an independent test set of 165 variants
in ten proteins was separated. The proteins in this dataset did not have close homologues (>30%
sequence identity) with each other or rest of the proteins. The remaining cases were used for
training (1399 variations in 89 proteins). For that purpose, the data were split into five partitions of
approximately equal sizes and used in five-fold cross validation (Supplementary Table S2). Variations
from the same protein and closely related proteins were always kept in the same partition during the
five-fold cross validation. In each cross-validation step, four partitions were used for training and the
remaining partition for testing.

In the first feature selection step, 5 feature subsets were independently selected by using the
cross-validation training and test sets (Figure 2). Each feature selection consisted of a loop where a
RF classifier was used to eliminate one feature per iteration. This was repeated until 8 features
were left. The number was chosen based on our prior experience of highly reliable predictor
development [7,34–37]. In all these methods, the number of informative features has been ten or
less. Then the features that gave the best performance were selected. All the selected features were
merged, and duplicates were eliminated. In the second feature selection, a single feature subset was
selected by using all the five cross-validation training and test dataset partitions. The most useful
feature was selected by training a classifier and tested using the cross-validation datasets. In the next
step, each of the remaining features was combined with the selected feature(s) one at a time and the
feature that showed the least error rate was selected. This was repeated until the addition of features
no more reduced the error rate from the previous iteration. After that, the selected features were used
for training the final predictor.
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Figure 2. The procedure for feature selection. CPR, correct prediction ratio; CV, cross validation.

2.4. Predictor Training

When using all the features for three-class prediction (stability increasing, decreasing and not
affecting stability), the ratio of correctly predicted cases is 0.466 and 0.469 after normalization in 5-fold
cross validation, and increases to 0.573 after feature selection (Table 1). Note that a random prediction
for three states would have a score of 0.33 for equally distributed data. As this was not the case with
our dataset, we normalized the categories to be of equal size. This predictor was based only on eight
features, including temperature, one similarity feature, three amino acid features, two-neighbour
features and one protein feature (Supplementary Table S3). As the numbers of cases in the categories
are different, we had to normalize them to get comparable results. After normalization, the correct
prediction ratio (CPR) was decreased to 0.450 (Table 1). We used the no-change category as the
reference state based on which the stability increasing and decreasing cases were normalized.
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Table 1. Comparison of different classifier designs on five-fold cross-validation.

Performance
Measures

Predictors Trained and Test on Original Dataset Feature Selection on Original Dataset and Training/Testing on Balanced
Original and Reversed Dataset

3-Class RF with
All Features a

3-Class RF with 8
Selected Features

2-Layer Predictor
with All Features

2-Layer Predictor
with 10 Selected

Features (PON-tstab)

3-Class RF with
All Features

3-Class RF with
5 Selected
Features

2-Layer Predictor
on 3 Classifiers

with All Features

2-Layer Predictor on
3 Classifiers with
Selected Features

TP b
+ 21.6/43.5 9.6/19.0 19/38.3 23.2/46.3 40.8 44.8 42.8 43.4
− 74.8/40.2 124.4/67.2 90.6/48.1 91.4/49.0 43.4 42 41.6 37.4
no 34 26.4 28.8 30.8 36.2 37.2 37.8 40

TN
+ 180.6/123.6 32.2/64.4 183.4/125.7 186.2/127.9 125.4 122.2 125.4 123.8
− 95/130.4 30.2/16.2 85.8/118.1 88.2/122.7 125.4 129.2 126.4 131.4
no 134.6/113.9 57 149/121.6 150.8/125.6 121.4 123.4 121.2 116.4

FP
+ 57.4/43.2 10.6/8.0 54.6/41.1 51.8/38.9 41.8 45 41.8 43.4
− 30.2/36.4 71.8/91.6 39.4/48.7 37/44.1 42.8 38 40.8 35.8
no 61.8/52.9 37/38.0 47.4/45.2 45.6/41.2 45.8 43.8 46 50.8

FN
+ 20.2/39.9 227.4/158.7 22.8/45.1 18.6/37.1 42.8 38.8 40.8 40.2
− 79.8/43.2 53.4/75.2 64/35.3 63.2/34.4 40.2 41.6 42 46.2
no 49.4 159.4/128.8 54.6 52.6 47.4 46.4 45.8 43.6

Sensitivity
+ 0.516 0.228 0.455 0.554 0.488 0.537 0.511 0.518
− 0.483 0.805 0.583 0.59 0.52 0.504 0.498 0.449
no 0.406 0.318 0.339 0.367 0.432 0.445 0.451 0.478

Specificity
+ 0.759/0.744 0.955/0.953 0.771/0.756 0.783/0.769 0.75 0.732 0.75 0.741
− 0.755/0.776 0.427/0.451 0.68/0.700 0.701/0.730 0.743 0.772 0.755 0.785
no 0.686/0.683 0.812/0.772 0.757/0.732 0.767/0.756 0.727 0.739 0.725 0.697

PPV
+ 0.271/0.498 0.463/0.691 0.258/0.481 0.318/0.551 0.492 0.505 0.505 0.502
− 0.714/0.527 0.635/0.424 0.701/0.503 0.715/0.530 0.505 0.528 0.548 0.513
no 0.354/0.388 0.421/0.413 0.371/0.386 0.399/0.428 0.445 0.462 0.452 0.444

NPV
+ 0.9/0.757 0.876/0.712 0.89/0.763 0.909/0.774 0.746 0.76 0.755 0.756
− 0.543/0.75 0.643/0.824 0.57/0.771 0.58/0.781 0.756 0.758 0.75 0.741
no 0.732/0.698 0.737/0.694 0.731/0.690 0.741/0.705 0.719 0.727 0.726 0.728

GC2 0.172/0.078 0.101/0.281 0.121/0.085 0.162/0.112 0.063 0.08 0.068 0.071

CPR 0.466/0.469 0.573/0.450 0.495/0.459 0.520/0.503 0.48 0.495 0.487 0.481
a Normalized performance values are separated by a slash if they are different from the original ones. b GC2, generalized squared correction; CPR, correct prediction ratio; FN, false
negative; FP, false positive; NPV, negative predictive value; PPV, positive predictive value; RF, random forest; TN, true negative; TP, true positive.
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To further improve the method, we generated two binary classifiers based on a balanced dataset
which has been shown to be beneficial even when the true classes have different frequencies [38].
For the first classifier we combined the same number of variations in classes increase and no effect on
protein stability together as no decrease, the total number of no increase variations was the same as that
of decrease cases. The second classifier was trained on balanced increase and no effect cases. Then we
performed feature-selection separately for both of them. The accuracies for decrease/no decrease
and increase/no effect classifiers are 0.67 and 0.62, respectively. 8 Features were informative for the
decrease/no decrease classifier while 3 features were informative for increase/no effect classifier.
The feature temperature is included to both classifiers, so altogether there are 10 unique features
(Supplementary Table S3) that were used to generate the 2-layer predictor (Figure 3). First, the tool
predicts whether a variant leads to decreased stability or not. Variants that do not decrease stability
are then classified further into those that increase or have no effect on stability. We call this method
for PON-tstab.

Figure 3. The scheme for the PON-tstab predictor. A two-layer random forest predictor was developed
to predict increasing, decreasing or having no change on variant stability. RF, random forest.

Reverse variants have been suggested to improve prediction performance [39]. We trained four
predictors including reverse variants, however the performance was consistently somewhat lower
than for the original variants only (Table 1). This may be due to altered variant context in the new
reference sequences.

2.5. Testing

For the two-layer predictor without feature selection, the normalized CPR and GC2 are 0.459 and
0.085, respectively, and increase to 0.503 and 0.112 after feature selection by five-fold cross validation.
The two-layer predictor with ten features (PON-tstab) had the best performance.

We further tested the method with the blind test set that was selected in the beginning and
not used in any of the previous steps. The dataset contains 165 variations. PON-tstab has better
performance than the three other versions (Table 2). After normalization, CPR and GC2 are 0.429 and
0.219, respectively, for PON-tstab.
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Table 2. Blind test performance.

Performance
Measures

Predictors

3-Class RF with
All 1106 Features a

3-Class RF with 8
Selected Features

2-Layer Predictor
with All 1106

Features

2-Layer Predictor
with 10 Selected

Features (PON-tstab)

TP
+ 2/4.4 1/2.2 4/8.7 3/6.5
− 66/35.9 69/37.5 62/33.7 66/35.9
no 18 16 20 22

TN
+ 135/94.8 134/94.7 120/83.5 126/88.1
− 28/36.2 20/22.3 37/45.2 37/46.4
no 88/77.2 97/88.6 94/83.7 93/79.9

FP
+ 7/5.2 8/5.3 22/16.5 16/11.9
− 45/63.8 53/77.7 36/54.8 36/53.6
no 27/22.8 18/11.4 21/16.3 22/20.1

FN
+ 21/45.7 22/47.8 19/41.3 20/43.5
− 26/14.1 23/12.5 30/16.3 26/14.1
no 32 34 30 28

Sensitivity
+ 0.087 0.043 0.174 0.130
− 0.717 0.750 0.674 0.717
no 0.360 0.320 0.400 0.440

Specificity
+ 0.951/0.948 0.944/0.947 0.845/0.835 0.887/0.881
− 0.384/0.362 0.274/0.223 0.507/0.452 0.507/0.464
no 0.765/0.772 0.843/0.886 0.817/0.837 0.809/0.799

PPV
+ 0.222/0.457 0.111/0.292 0.154/0.345 0.158/0.354
− 0.595/0.36 0.566/0.326 0.633/0.381 0.647/0.401
no 0,4/0.441 0.471/0.584 0.488/0.551 0.5/0.522

NPV
+ 0.865/0.675 0.859/0.665 0.863/0.669 0.863/0.670
− 0.519/0.719 0.465/0.641 0.552/0.735 0.587/0.767
no 0.733/0.707 0.74/0.723 0.758/0.736 0.769/0.740

GC2 0.049/0.291 0.091/0.476 0.043/0.200 0.046/0.219

CPR 0.521/0.388 0.521/0.371 0.521/0.416 0.552/0.429
a Normalized performance values are separated by a slash if they are different from the original ones.

We compared the performance of PON-tstab to that for some previously published tools.
These include I-mutant 2.0 [9], INPS [10] and EASE-MM [8]. They all have been trained with datasets
extracted from ProtTherm and thus are based on several problematic and erroneous cases.

We excluded from the blind test dataset of 165 variant records those that had been used for
training the other predictors. In the end, we had 40 variants that came from 5 proteins and did not have
even close homologues among our training dataset proteins. The performance of the 4 predictors is
shown in Table 3. Both EASE-MM and I-Mutant 2.0 have CPR of 0.6 before normalization, whereas the
GC2 is very low for both the tools. After normalization, the CPR is much lower, 0.36 for EASE-MM
and 0.37 for I-Mutant 2.0 and 0.43 for PON-tstab. INPS could predict only 15 out of the 40 variants,
9 of which were correctly predicted. Since none of these variations increase protein stability, the GC2

score cannot be calculated. Therefore, the result cannot be normalized, either.
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Table 3. Performance of PON-tstab and comparison to other methods.

Predictors

Performance Measures EASE-MM I-Mutant INPS PON-tstab

Variants Predicted 40 40 15 165

TP
+ 0 0 0 3/6.5
− 22/6.8 22/6.8 9 66/35.9
no 2 2 0 22

TN
+ 34/16 33/15.7 15 126/88.1
− 2 3/3.3 0 37/46.4
no 28/14.77 28/13.7 9 93/79.9

FP
+ 0 1/0.3 0 16/11.9
− 12/14 11/12.7 2 36/53.6
no 4/1.23 4/2.3 4 22/20.1

FN
+ 6/8 6/8 0 20/43.5
− 4/1.2 4/1.2 4 26/14.1
no 6 6 2 28

Sensitivity
+ 0 0 NA a 0.13
− 0.85 0.85 0.69 0.717
no 0.25 0.25 0 0.44

Specificity
+ 1 0.97/0.98 1 0.89/0.88
− 0.14/0.13 0.21 0 0.51/0.46
no 0.88/0.92 0.88/0.86 0.69 0.81/0.80

PPV
+ 0 0 NA 0.16/0.35
− 0.65/0.33 0.67/0.35 0.82 0.65/0.40
no 0.33/0.62 0.33/0.47 0 0.5/0.52

NPV
+ 0.85/0.67 0.85/0.66 1 0.86/0.67
− 0.33/0.62 0.43/0.73 0 0.59/0.77
no 0.82/0.71 0.83/0.70 0.82 0.77/0.74

GC2 0.13/0.68 0.09/0.54 NA 0.05/0.22

CPR 0.6/0.36 0.6/0.37 0.6 0.55/0.43
a Not available.

3. Discussion

ML methods are trained on known cases, thus, these instances should be reliably defined. Datasets
for training, testing and benchmarking have a number of requirements, as previously described [20],
here the relevance was investigated. During the analysis of cases in ProTherm database it became
apparent that it was necessary to perform an exhaustive check to select correct and representative cases.

Some of the noticed issues are features of the database; however, either not known or taken
into account by method developers. Problems with data selection have been further inherited to
other studies when data have been used without controlling the quality. There are numerous such
examples in the protein stability prediction field. All the existing selections turned out to contain
numerous problematic cases. Thus, available ML predictors have been trained on non-optimal data
and therefore their performance is adversely affected. Further, the performance tests have been biased
and results inflated.

We corrected numerous problems and included additional variants to obtain a consistent and
reliable set. There are 1563 variants, only about half of what has been used to train some recent
methods. With this new dataset we can obtain reliable estimates of method performance, as well.

The new dataset has uneven distribution of substitution types. The same problem appears in
all the previous ProTherm selections, as well. Since some substitutions are not represented at all
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and others just by a few cases, it is apparent that prediction methods have limitations. New variant
stability cases are published infrequently. We can expect the spread of massively parallel reporter
assays (MPRAs) to improve the situation in the future. Much larger datasets would be needed to
cover the context effects in protein sequences and three-dimensional structures. At the moment the
landscape is very sparse.

The performance measures for PON-tstab are lower than those recently reported for some
predictors. However, as only PON-tstab has been trained on quality controlled and unbiased
data, our results have to be considered as the current state-of-the-art for variant stability predictors.
The performance is somewhat skewed. NPV values are clearly better than PPV values. There are wide
differences on the performance measures for increasing, decreasing and not affecting variants. It is
evident that this is due to the size and composition limits of the dataset. Although the ProTherm
database has not been updated for five years, it is still up-to-date because stability details are
seldom published.

There are likely several reasons why the performance of the new method seems to be lower than
what has been claimed for some previous methods. Use of biased datasets may provide benefits,
especially as some previous method developers have used circulatory cases which increase the
performance. Some tools have included variants in the same position in the training and test data.
As many features are protein wide they apply to all variants in a position. We had most stringent test,
the proteins with variants did not even have close homologs among training data. Probably one of the
major factors limiting the performance of stability predictors is the size of the dataset. Our selected
dataset includes just 1564 variants. Protein stability is a complex property and numerous factors
contribute to it. Natural proteins have numerous stabilizing bonds and interactions, still the free
energy difference between the folded and unfolded form is only 3 to 15 kcal/mol [40]. To fully capture
the features governing the stability would require substantially larger dataset.

Developers of ML methods have to know their data and trust on it. As this example indicates,
the quality of data has to be validated. This is especially important when using datasets developed
by others.

When training PON-tstab, lessons from our previous machine learning methods [7,34–37,41] were
taken into account. We are confident that it represents the highest performance attainable with the
currently available data. Only with a substantial increase in learning and test dataset sizes, we can
expect to improve the performance. We used the largest number of features ever applied to stability
predictors; however, just ten features are informative. Despite its limitations, PON-tstab is useful for
estimating variant effects whether for interpreting consequences of disease-related substitutions or
planning for stability changes to modify protein properties.

4. Materials and Methods

4.1. Variation Data

Stability affecting variants were taken from ProTherm database (the latest update was from
22 February 2013). Both manual and computational steps were applied to check the correctness and
quality of annotations. We corrected inconsistencies with data in published articles and included
additional cases. The sequence for the investigated protein was matched with sequence entries
in UniProtKB [42]. The protein three dimensional structures were chosen to have the background
sequence used in experiments. Sometimes additional variants appeared in sequences in comparison to
the wild type form of the protein.

A selection of reliable cases was made. If there were several entries for a variant, the criteria for
selecting cases included the following: experimental pH close to neutrality, low salt concentration,
stability determined with thermal denaturation method, preferably with a calorimeter (Figure 1).
The final set was manually curated and used to develop a novel stability predictor.



Int. J. Mol. Sci. 2018, 19, 1009 12 of 16

4.2. Features

The collected featured to characterize the variants can be classified as follows:
The first two features are for experimental conditions: temperature and pH value.
Conservation features. Three features were from information content and position specific scoring

matrices. First, we collected related sequences by a Basic Local Alignment Search Tool (BLAST) [43]
search against the non-redundant protein sequence database at National Center for Biotechnology
Information (NCBI). The significant sequence hits (E-value < 0.001) were aligned using ClustalW [44].
Based on the multiple sequence alignment (MSA) of the protein sequences, position specific scoring
matrix (PSSM) and information content for each position of the reference protein sequence were
generated using the AlignInfo module in BioPython. The information content and PSSM scores for the
reference and the altered amino acid at the variant site were used as features [36,37]. These features
were previously described in [36,37]. Another 4 co-evolution features were calculated by CAPS tool [45]
using the protein sequences obtained from the BLAST search. These features (is_coevolving, max_cor,
is_coevolving_grp, grp_count) indicate if the original residue at the variant position has co-evolved
with any other residue in the protein, the correlation coefficient of co-evolution, if the residue is part of
any of co-evolving groups found by CAPS and the number of these groups, respectively.

Amino acid features. The AAindex database contains totally 685 features in 3 databases, 544,
94 and 47 features, respectively [46]. AAindex contains indices for physicochemical properties and
propensities of amino acids, substitution matrices and pair-wise contact potentials. Incomplete feature
sets were eliminated, leaving 617 features, similar to those used for training the PON-P2 predictor [34].

Variation type features. Two matrices were used for the types of the amino acid substitutions.
The first one is a 20 × 20 matrix with the first dimension denoting to original residue and the other to
20 amino acids for variant residue. In this matrix, only one position has value 1 while all others are set
to 0. Another matrix has 6 × 6 size. In this case, the amino acids are divided into 6 groups according to
their physicochemical properties, as follows: hydrophobic (V, I, L, F, M, W, Y, C), negatively charged
(D, E), positively charged (R, K, H), conformational (G, P), polar (N, Q, S) and others (A, T) [47].
Similar to the previous set of features, the feature corresponding to the original and variant residues is
set to 1 and the remaining features are set to 0.

Neighbourhood features. To take into account the sequence context of variation sites, 25 features
were included. 20-dimensional vector of neighbourhood residues indicates the occurrences of each
amino acid type within the neighbourhood in a window of 23 positions, i.e., 11 positions both before
and after the variation site.

Five additional neighbourhood features included NonPolarAA, PolarAA, ChargedAA,
PosAA and NegAA, which denote to the numbers of nonpolar, polar, charged, positively charged and
negatively charged neighborhood residues [48] within a window of 23 residues, respectively.

Other sequence-based protein features. 19 features for either thermodynamic indices of
the extended protein state or property-based indices obtained with ProtDCal protein descriptor
calculator [49] are listed in Supplementary Table S4.

Altogether 1106 features were collected and a two-step feature selection was performed to find
the useful features for stability prediction.

4.3. Predictor Training

Random forest (RF) algorithm implemented in the R package [50] was used for classification and
regression. RF combines tree predictors such that each tree depends on the values of a random vector
sampled independently and with the same distribution for all trees in the forest. RF can be applied to
multi-class classification tasks as well as to regression.

The default number of trees grown in each random forest was set to 300 and the default values
were used for all other parameters. These settings have been discussed in our previous work [41].

The training and test datasets are available at VariBench database for variation datasets [20] at
http://structure.bmc.lu.se/VariBench/stability.php.

http://structure.bmc.lu.se/VariBench/stability.php
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4.4. Method Quality Assessment

For comprehensive reporting of the predictor, we used a number of measures as previously
suggested [22,51], including

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Positive predictive value

PPV =
TP

TP + FP
(2)

Negative predictive value

NPV =
TN

TN + FN
(3)

Sensitivity/True positive rate

TPR =
TP

TP + FN
(4)

Specificity/True negative rate

TNR =
TN

TN + FP
(5)

and Matthews Correlation Coefficient:

MCC =
(TP × TN)− (FP × FN)√

(TP + FN)× (TP + FP)× (TN + FN)× (TN + FP)
(6)

where TP, TN, FP, and FN represent the numbers of true positives, true negatives, false positives,
and false negatives, respectively. Matthews correlation coefficient (MCC) was used to evaluate the
performance of the two binary classifiers in PON-tstab.

For 3-class predictors, we used correct prediction ratio (CPR) instead of accuracy. The generalized
squared correlation, GC2, was used since MCC is not readily generalized to more than two classes [52].
The squared correlation is calculated as

GC2 =
∑ij

(zij−eij)
2

eij

N(K − 1)
(7)

where zij represents the number of times the input is predicted to be in class j while belonging in reality
to class i, and eij = xiyj/N is the expected number of data in cell i,j is the expected number of data in cell
i,j of the contingency matrix under the null hypothesis assumption that there is no correlation between
assignments and predictions. K denotes to number of classes. N means number of total inputs while xi
is the number of inputs predicted to be in class i. The values for GC2 range from 0 to 1 unlike MCC
that ranges from −1 to 1.

Since the three classes in the test dataset were of different sizes (the proportion of increase,
no effect and decrease samples is about 1:2:4, Supplementary Table S4), the numbers were normalized
so that they equalled the size of class “no effect on stability”.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/4/1009/s1.
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∆∆G Gibb’s free energy
AAS Amino acid substitution
BLAST Basic Local Alignment Search Tool
CPR Correct prediction ratio
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FN False negative
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MCC Matthews correlation coefficient
ML Machine learning
MPRA Massively parallel reporter assay
MSA Multiple sequence alignment
NPV Negative predictive value
PPV Positive predictive value
QM Quantum mechanics
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TNR True negative rate
TP True positive
TPR True positive rate
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