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Abstract: Adenosine triphosphate (ATP) has been well established as an important extracellular
ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous
physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular
mechanisms of cellular ATP release have been demonstrated in many cell types. Although large
and negatively charged ATP molecules cannot diffuse across the lipid bilayer of the plasma
membrane, conductive ATP release from the cytosol into the extracellular space is possible
through ATP-permeable channels. Such channels must possess two minimum qualifications for
ATP permeation: anion permeability and a large ion-conducting pore. Currently, five groups of
channels are acknowledged as ATP-release channels: connexin hemichannels, pannexin 1, calcium
homeostasis modulator 1 (CALHM1), volume-regulated anion channels (VRACs, also known as
volume-sensitive outwardly rectifying (VSOR) anion channels), and maxi-anion channels (MACs).
Recently, major breakthroughs have been made in the field by molecular identification of CALHM1
as the action potential-dependent ATP-release channel in taste bud cells, LRRC8s as components
of VRACs, and SLCO2A1 as a core subunit of MACs. Here, the function and physiological roles of
these five groups of ATP-release channels are summarized, along with a discussion on the future
implications of understanding these channels.

Keywords: ATP; purinergic signaling; ion channel; connexin; pannexin; CALHM; VRAC; VSOR;
maxi-anion channel

1. Introduction

Adenosine triphosphate (ATP) is abundantly present in the cytosol and used to power
energy-consuming reactions, as the hydrolysis of ATP releases energy. Thus, it is known as
the energy currency of cells. In addition to this classical cytosolic role, ATP has also been
established as an important extracellular ligand of autocrine signaling, intercellular communication,
and neurotransmission in numerous physiological and pathophysiological phenomena as it satisfies
the criteria for extracellular ligands: production, release, receptors, and extracellular scavenging
systems [1–3]. ATP is constantly produced within cells through cellular respiration and glycolysis.
There are two groups of P2 purinergic receptors, ionotropic P2X and metabotropic P2Y receptors,
which respond to ATP [4]. Ectonucleotidases are ubiquitously expressed in the plasma membranes and
their active catalytic sites are exposed to the extracellular space to convert extracellular ATP to ADP,
AMP, and adenosine [4,5]. Adenosine is then transported back into the cells by nucleoside transporters.
Adenosine may stimulate P1 purinergic (A1, A2A, A2B, and A3) receptors, thereby exerting as a ligand
of autocrine and/or paracrine signaling.

Although large and negatively charged ATP molecules cannot simply diffuse across the lipid
bilayer of the intact plasma membrane, there are several pathways for both unregulated and
regulated ATP release across the plasma membrane. First, cell damage leads to the unregulated
leakage of ATP as well as other large cytosolic molecules including enzymes through the disrupted
plasma membrane [6,7]. Second, stimulated exocytotic release of ATP occurs in various cell types
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including neurons and secretory cells. For example, the ATP concentration in neuronal synaptic
vesicles is estimated to be up to 100 mM and fast synaptic purinergic neurotransmision occurs in
both peripheral [8,9] and central [10–13] neurons [1–3,14]. Importantly, spontaneous and evoked
quantal release of ATP has been observed in mouse pyramidal neurons [15]. Physiological relevance
of synaptic purinergic neurotransmission in the central nervous system is, however, less clear
than in the peripheral nervous system [16]. Third, numerous studies have indicated that ATP can
be released through conductive pathways. Considering the steep concentration gradient of ATP
anions across the plasma membrane (nano- and millimolar concentrations in the extracellular space
and cytosol, respectively) [17,18], the electrochemical potential gradient of ATP should always be
outwardly directed at physiological membrane voltages (Figure 1). Indeed, certain channels have been
demonstrated to play carrier roles in regulated non-exocytotic conductive ATP release. ATP-binding
cassette (ABC) transporter proteins such as cystic fibrosis transmembrane conductance regulator
(CFTR) and P-glycoprotein, also known as multidrug resistance protein 1, were previously proposed
to function as conductive ATP-releasing pathways [19–21]. Although the pore diameter of the CFTR
channel can become larger than the size of ATP [22,23], the existence of ABC transporter-mediated
conductive ATP transport has been refuted by subsequent studies [24,25]. Currently, five groups of
channels are recognized as ATP-permeable channels that mediate various forms of physiological and
pathophysiological ATP release: connexin hemichannels, pannexin 1 (PANX1), calcium homeostasis
modulator 1 (CALHM1), volume-regulated anion channels (VRACs, also known as volume-sensitive
outwardly rectifying (VSOR) anion channels), and maxi-anion channels (MACs) (Figure 1). Recently,
several breakthroughs were made in this field. CALHM1 has been identified as a novel ATP-permeable
channel that mediates the action potential-dependent release of ATP from taste cells to the afferent
gustatory nerves [26,27]. CALHM1 is the first example of voltage-gated ATP channels that can even
mediate action potential-dependent fast purinergic neurotransmission. VRACs and MACs had solely
been functionally identified by their electrophysiological phenotypes until LRRC8s and SLCO2A1 were
recently discovered as their respective core subunits [28–30]. Thus, the field of conductive ATP release
is entering an exciting era as the identified physiological/physiological roles of ATP-release channels
are expanding and their molecular identities are now clearer than ever. This review summarizes
the current knowledge on the structures, biophysical properties, and function of the five groups of
molecularly identified ATP-release channels.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  2 of 24 

 

including neurons and secretory cells. For example, the ATP concentration in neuronal synaptic 
vesicles is estimated to be up to 100 mM and fast synaptic purinergic neurotransmision occurs in 
both peripheral [8,9] and central [10–13] neurons [1–3,14]. Importantly, spontaneous and evoked 
quantal release of ATP has been observed in mouse pyramidal neurons [15]. Physiological relevance 
of synaptic purinergic neurotransmission in the central nervous system is, however, less clear than 
in the peripheral nervous system [16]. Third, numerous studies have indicated that ATP can be 
released through conductive pathways. Considering the steep concentration gradient of ATP anions 
across the plasma membrane (nano- and millimolar concentrations in the extracellular space and 
cytosol, respectively) [17,18], the electrochemical potential gradient of ATP should always be 
outwardly directed at physiological membrane voltages (Figure 1). Indeed, certain channels have 
been demonstrated to play carrier roles in regulated non-exocytotic conductive ATP release. 
ATP-binding cassette (ABC) transporter proteins such as cystic fibrosis transmembrane conductance 
regulator (CFTR) and P-glycoprotein, also known as multidrug resistance protein 1, were previously 
proposed to function as conductive ATP-releasing pathways [19–21]. Although the pore diameter of 
the CFTR channel can become larger than the size of ATP [22,23], the existence of ABC 
transporter-mediated conductive ATP transport has been refuted by subsequent studies [24,25]. 
Currently, five groups of channels are recognized as ATP-permeable channels that mediate various 
forms of physiological and pathophysiological ATP release: connexin hemichannels, pannexin 1 
(PANX1), calcium homeostasis modulator 1 (CALHM1), volume-regulated anion channels (VRACs, 
also known as volume-sensitive outwardly rectifying (VSOR) anion channels), and maxi-anion 
channels (MACs) (Figure 1). Recently, several breakthroughs were made in this field. CALHM1 has 
been identified as a novel ATP-permeable channel that mediates the action potential-dependent 
release of ATP from taste cells to the afferent gustatory nerves [26,27]. CALHM1 is the first example 
of voltage-gated ATP channels that can even mediate action potential-dependent fast purinergic 
neurotransmission. VRACs and MACs had solely been functionally identified by their 
electrophysiological phenotypes until LRRC8s and SLCO2A1 were recently discovered as their 
respective core subunits [28–30]. Thus, the field of conductive ATP release is entering an exciting era 
as the identified physiological/physiological roles of ATP-release channels are expanding and their 
molecular identities are now clearer than ever. This review summarizes the current knowledge on 
the structures, biophysical properties, and function of the five groups of molecularly identified 
ATP-release channels. 

 
Figure 1. Adenosine triphosphate (ATP) release ion channels. In the presence of physiological levels 
of Mg2+, the majority of ATP molecules exist as MgATP2− anions in both the extracellular and 
intracellular compartments. Based on the typical extracellular and intracellular MgATP2− 
concentrations ((MgATP2−)o and (MgATP2−)i, respectively), the equilibrium potential of MgATP2− 
(EMgATP2−) was calculated. Cx, connexin; PANX1, pannexin 1; CALHM1, calcium homeostasis 
modulator 1; VRAC, volume-regulated anion channel; MAC, maxi-anion channel. 

Figure 1. Adenosine triphosphate (ATP) release ion channels. In the presence of physiological
levels of Mg2+, the majority of ATP molecules exist as MgATP2− anions in both the extracellular
and intracellular compartments. Based on the typical extracellular and intracellular MgATP2−

concentrations ((MgATP2−)o and (MgATP2−)i, respectively), the equilibrium potential of MgATP2−

(EMgATP
2−) was calculated. Cx, connexin; PANX1, pannexin 1; CALHM1, calcium homeostasis

modulator 1; VRAC, volume-regulated anion channel; MAC, maxi-anion channel.



Int. J. Mol. Sci. 2018, 19, 808 3 of 26

Another channel, the P2X7 receptor which is a trimeric ATP-gated cation channel, is known to
progressively generate a large membrane pore that allow passage of molecules <900 Da following
exposure to ATP [31]. There is accumulating evidence of P2X7-dependent ATP release [32–35].
PANX1 that associates with P2X7 has been proposed to form the large pore [36,37], but normal P2X7
activation-dependent uptake of 375 Da dye observed in PANX1 KO macrophages [38] has challenged
the involvement of PANX1, suggesting that P2X7 itself or an unknown protein constitutes the dye
uptake pathway. Intriguingly, a very recent study [39] demonstrated that a truncated form of P2X7
lacking both of its amino and carboxyl termini, when reconstituted in proteoliposomes, is sufficient
to form a dye-permeable pore. Thus, although it is not discussed in this review, P2X7 is a promising
candidate in the family of ATP-release channels.

2. Connexin Hemichannels

Connexins are the subunits of vertebrate gap junction channels. More than 20 connexins have been
identified in humans and they are widely distributed in various tissues [40,41]. Each connexin protein
is named after its predicted molecular weight. For example, connexin 43 (Cx43) is a 43-kDa protein
composed of 382 amino acids. Connexin monomers homo- or hetero-hexamerize to form a connexon,
also referred to as a hemichannel, which is transported to the plasma membrane. Two hemichannels
from two adjacent cells come together and dock end-to-end to form a homo- or heterotypic gap
junction that functions as an intercellular pathway connecting the cytoplasms of the two cells both
electrically and chemically, and thus it is known as a cell-cell or intercellular channel [40,42,43].
One of the many important biological functions of gap junctions is cell-cell electrical coupling
that allows the transfer of action potentials from one cell to a neighboring cell, as seen in cardiac
muscles [44]. Human diseases caused by mutations in connexins include X-linked Charcot-Marie-Tooth
disease [45], skin diseases [46], non-syndromic deafness [47], and developmental abnormalities [48–50],
revealing their broad significance. Beyond their roles in gap junctions, the extra-junctional roles
of connexins as undocked hemichannels expressed in unapposed plasma membranes are now
widely recognized in a variety of tissues [40,51,52]. Most, if not all, connexin hemichannels are
activated by positive membrane potentials and their gating is robustly suppressed at physiological
concentrations of extracellular Ca2+ [53–55], and phosphorylation and the redox state as well as
a reduction in the extracellular Ca2+ concentration ([Ca2+]o) are known as hemichannel function
modulators in physiolgical/pathological contexts [56,57]. Although each connexin subunit confers
different permeability properties to the pore of a resulting hemichannel, as demonstrated by different
single-channel conductances (15–350 pS [56]), charge selectivities (anion, cation, or no selectivity),
and tracer permeabilities, the functionally characterized pores of connexin channels are generally
wide (~1.2 nm) enough to allow the passage of a variety of small, soluble, second-messenger
molecules, including amino acids and nucleotides [58]. The crystal structure of the human Cx26 gap
junction channel [59] revealed that each Cx26 monomer has four transmembrane-spanning domains
with cytosolic amino- and carboxyl-termini and homo-hexamerizes to form a Cx26 hemichannel.
The amino-terminal helixes of the six subunits line the intracellular pore entrance to form a funnel,
the narrowest region of the pore with a diameter of 1.4 nm. Thus, it is suggested that the size and
electrical characteristics of the side chains in this funnel region have a marked influence on both the
molecular size restriction and charge selectivity of connexin hemichannels. The roles of connexin
hemichannels are mainly associated with the release of small signaling molecules into the extracellular
space through their pores, and ATP is one of the important permeants of hemichannels [60].

2.1. ATP Permeation through Connexin Hemichannels

The first evidence for the involvement of connexin hemichannels in cellular ATP release was
derived from stably Cx43- and Cx32-transfected clones of C6 glioma cells that originally lack
gap junctions [61]. The Cx43+ and Cx32+ C6 clones released ~10-fold more ATP compared with
wild-type and mock-transfected C6 cells in response to the stimulation of purinergic receptors by UTP.
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The potentiation of ATP release associated with connexin expression was also noted in other cells
including Cx43-, Cx32-, Cx26-, and mutated Cx30-overexpressing HeLa cells and Cx32-overexpressing
U373-MG human glioblastoma cells [61]. Lowering [Ca2+]o simultaneously triggered the release
of ATP and uptake of fluorescent dye tracers (<1 kDa) in Cx43+ C6 cells and cells endogenously
expressing connexins, such as human and rat astrocytes, human bronchial epithelial cells, and human
umbilical vein endothelial cells [62]. Similarly, the heterologous expression of Cx46 or Cx50 enhanced
ATP release in Xenopus oocytes [63,64]. However, the primary evidence linking connexins with
ATP release had been ATP release and tracer uptake associated with connexin expression and their
pharmacological sensitivities, and there remained a possibility that connexins are not the conduit
for ATP but their expression modulated other ATP-release pathways. ATP permeability of connexin
hemichannels was directly demonstrated in Cx43 hemichannels [65]. ATP influx through an excised
inside-out membrane patch detected by the luciferase/luciferin-based luminescence assay coincided
with single-channel openings of Cx43 hemichannels recorded by patch-clamp recordings. Furthermore,
under the inside-out patch-clamp configuration with 130 mM Na2ATP in the pipet solution and 280 mM
sucrose in the bath, unitary outward currents carried by the influx of ATP anions were observed at
positive potentials in the patches obtained from Cx43+ C6 cells. The ratio of PNa to PATP was calculated
as 1:2.5. These direct observations of ATP permeation through Cx43 hemichannels, together with
their large pores (Cx43 forms the largest known pore among connexins), have established Cx43 as
an ATP-permeable channel. Thus, despite the lack of direct evidence, other putative ATP-release
hemichannels are also considered to function as conductive pathways for ATP anions based on their
functional and structural similarities with Cx43.

2.2. Physiological Roles of Connexin Hemichannel-Mediated ATP Release

Accumulating evidence has demonstrated the roles of connexin hemichannels as ATP-release
channels in a variety of tissues under both physiological and pathological conditions including
intercellular Ca2+ signaling (Cx43, Cx26/30) [66,67], retinal development (Cx43) [68], renal epithelial
ion transport (Cx30) [69,70], central respiratory chemosensitivity in the medulla oblongata (Cx26) [71],
and immune responses during inflammation (Cx43) [72]. In the brain, Cx30 and Cx43 are highly
expressed in astrocytes but not neurons. ATP released through astrocyte Cx43 has been proposed
as a major gliotransmitter for neuron-glia interactions [73,74]. Although many studies investigated
the activity of hemichannels in the presence of pathological conditions including ischemic brain
injury [75] and inflammation [76], the uptake of ethidium bromide (314 Da) by astrocytes was observed
in wild-type but not Cx43 knockout (KO) hippocampal slices [73] under physiological basal conditions,
and it was sensitive to pharmacological Cx43 inhibition. Also, the basal extracellular ATP level in the
hippocampus was reduced by Cx43 inhibition, indicating that the basal Cx43 activity in astrocytes
contributes to the basal ATP level in this brain region [73]. Furthermore, ATP tonically released from
astrocytes through Cx43 was demonstrated to act on P2 receptors on CA1 pyramidal neurons to
modulate the excitatory synaptic strength [73]. In the olfactory bulb, astrocyte Cx43 opening as well as
ATP release depends on neuronal (mitral cell) activity, possibly through a local decrease in extracellular
Ca2+, and the ATP from astrocytes, in turn, controls spontaneous neuronal activity by acting on A1
receptors following conversion to adenosine [74].

In the auditory cochlea, Cx26 and Cx30 are expressed in supporting cells of the sensory epithelium
and in the lateral wall but not in hair cells [77,78]. Mutations of GJB2 and GJB6, encoding Cx26 and
Cx30, respectively, are associated with hearing loss [79]. Roles of connexin-mediated ATP release
through the interaction of the nonsensory supporting cells with sensory hair cells have been proposed
in the developing and mature cochleae [80]. For example, mechanical stimuli induce ATP release
from non-sensory supporting cells through hemichannels, and the released ATP acts on P2 purinergic
receptors on outer hair cells to reduce their electromotility, which amplifies basilar membrane vibration
and consequently enhances hearing sensitivity [81]. Thus, ATP-releasing hemichannels regulate
hearing sensitivity. In the prehearing cochlea, the functional maturation of inner hair cells requires
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spontaneous spiking activity [82], and ATP released from supporting cells through hemichannels
plays a role in modulating the spiking pattern in inner hair cells [83,84]. The genetic deletion of Cx30,
accompanied by a marked reduction of Cx26 expression, led to the impaired maturation of inner hair
cells [84]. Recently, however, another ATP-release channel, PANX1, was found to be widely expressed
in nonsensory cells of the cochlear [85], and play roles in cochlear ATP release and hearing based
on conditional PANX1 deletion in the cochlea [86,87] (however, a more recent report challenges the
involvement of PANX1 in hearing [88]).

3. Pannexin 1 (PANX1)

The pannexin (PANX) gene family was discovered as homologs of invertebrate innexin
gap junction channels, which are evolutionarily unrelated to vertebrate gap junction-forming
connexins [89]. The family consists of three members: PANX1, PANX2, and PANX3, and none of them
demonstrably form gap junctions. Rather, their functions as nonjunctional membrane channels have
been well-established [90]. Among them, PANX1 has been drawing more attention than PANX2 and
PANX3. PANX1 is expressed in various excitable and non-excitable cells including the brain, various
epithelial and endothelial cells, erythrocytes, and lymphocytes, whereas the expression of PANX2
and PANX3 is restricted to the brain [91] and skin/bone [92], respectively. In contrast to debates over
the functions of PANX2 and PANX3 as plasma membrane channels [93–95], there is ample evidence
to support the function of PANX1 as a plasma membrane channel. ATP permeability has been most
comprehensively established in PANX1 among ATP-release channels and ATP released through PANX1
mediates extracellular auto- and paracrine purinergic signaling in diverse physiological systems. It has
yet to be determined whether PANX2 and PANX3 are permeable to ATP. Therefore, this section
focuses on PANX1. PANX1 is an N-glycosylated protein that has four transmembrane domains with
cytosolic amino- and carboxyl-termini. PANX1 monomers homo-oligomerize to form a functional
plasma membrane channel. Chemical cross-linking and single-molecule photobleaching approaches
suggested a hexameric subunit stoichiometry of a PANX1 channel [96,97]. It is noteworthy that,
despite a lack of evolutionary relationships, PANX1, connexins, CALHM1, and LRRC8 share structural
features including a membrane topology with four transmembrane domains and hexameric subunit
stoichiometry [98].

3.1. ATP Permeation through PANX1

The most direct evidence of ATP permeability of the PANX1 channel was obtained in excised
inside-out patch membranes of Xenopus oocytes injected with human PANX1 cRNA [99]. When 10:1
outside-to-inside gradients of K2ATP were applied to single PANX1 channels, the reversal potential
of recorded unitary currents was more negative (~+25 mV) than the equilibrium potential of K+

(~+60 mV), suggesting that ATP partly carried the currents. This same study [99] also demonstrated
enhanced ATP release induced by high K+ exposure from PANX1-expressing oocytes compared
with uninjected oocytes. Numerous subsequent studies observed ATP release and the uptake of
large molecules <1 kDa associated with PANX1 activation using pharmacological sensitivities and
knockdown (KD) and KO of Panx1 in a variety of native tissues, cell lines, and heterologous expression
systems [100–102]. Thus, there is firm evidence that PANX1 is an ATP-permeable channel. However,
PANX1 does not always allow the passage of ATP. Depolarization-induced whole-cell PANX1 currents
were not accompanied by detectable levels of ATP release [103]. A review of the literature reveals
marked diversity in the ion permeability and unitary properties of PANX1 [100]. A recent study [63]
proposed a compelling model whereby PANX1 forms two open channel conformations depending
on the mode of activation: a large-conductance, non-selective, ATP-permeable conformation and
an intermediate-conductance, anion-selective, ATP-impermeable conformation. Many physiological
stimuli including extracellular K+ (K+

o), intracellular Ca2+ (Ca2+
i), low oxygen, and mechanical stress

(see below) induce both non-selective non-rectifying unitary currents with a large conductance of
~500 pS and permeability to negatively and positively charged molecules larger than ATP. In contrast,
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exclusively depolarization-activated PANX1 generates outwardly rectifying anion-selective unitary
currents with ~75 pS at positive potentials and ~15 pS at negative potentials [63,103,104]. Remarkably,
this intermediate-conductance conformation of the channel does not confer ATP permeability. Different
reactivities of the terminal cysteine to thiol reagents and single-particle electron microscopic analysis
suggested two distinct channel structures associated with the two different biophysical channel
properties. Thus, the high-level conductance may be an essential requirement for the ATP permeability
of the channel [63]. However, a more recent study [97] challenged this conclusion. PANX1 activated by
truncation of the carboxyl-terminal auto-inhibitory region exhibited outwardly rectifying intermediate
conductance currents (~90 pS and ~15 pS at positive and negative potentials, respectively) associated
with ATP release and TO-PRO-3 uptake. In summary, the ATP permeability of PANX1 depends on the
mode of activation, and its electrophysiological fingerprints remain unclear.

3.2. Physiological Roles of PANX1-Mediated ATP Release

PANX1 can be reversibly and irreversibly activated by diverse mechanisms (comprehensively
reviewed in [100,101]) to release ATP and play many important physiological and pathophysiological
roles by mediating extracellular purinergic signaling. (i) It is currently controversial whether the
channel-gating is voltage-dependent. While depolarization-induced increases in the open probability
(Po) were reported in basally-active PANX1 channels [103,104], the Po of the caspase-activated channels
was unaffected by a membrane voltage between −80 and +80 mV [97]. PANX1 does not possess
the canonical voltage sensor domain. A recent study [104] that assumed the anion selectivity of the
channel proposed an unusual gating mechanism whereby the mean open time of unitary PANX1
currents depends on the direction and amplitude of anion flux through the channel, leading to the
apparent voltage-dependent gating. The voltage or current direction/amplitude sensitivity may also be
activation mode-dependent. Nevertheless, the membrane voltage may not be a physiological stimulus
of PANX1 as an ATP-release channel [63] because the high positive membrane voltages required
to activate PANX1 occur only in excitable cells and, more importantly, voltage-activated PANX1 is
not permeable to ATP. (ii) PANX1 channels are mechanically activated. The Po of human PANX1
expressed in Xenopus oocytes increased when stressed mechanically by suction applied to cell-attached
and excised membrane patches [99]. Mechanically-activated PANX1 contributes to ATP release from
airway epithelia induced by air-puff stimulation [105], from erythrocytes induced by hypotonic cell
swelling [106], from metastatic breast cancer cells induced by mechanical deformation [107], and from
distended urothelial cells [108]. The physiological roles of mechanically-stimulated ATP release
from PANX1 include airway defense [105], local blood-flow regulation [106], and micturition [108].
During metastatic progression, most circulating cancer cells die from microvasculature-induced
cell deformation at end organs. A recent study [107] identified a channel-activating mutation
encoding a truncated form of PANX1, PANX1–89, in metastatic breast cancer cells that promoted
cancer cell survival following mechanical trauma and thereby metastasis by enhancing the release
of ATP, an autocrine suppressor of deformation-induced apoptosis. Thus, PANX1 is a potential
target for anti-metastatic drug development. (iii) Ca2+

i can directly open PANX1, as demonstrated
by increased channel activity in response to the application of Ca2+ to the cytoplasmic face of
the channels in inside-out patch membranes [109]. ATP release following the activation of P2Y
receptors [109], AT1 receptors [110], and thrombin receptors [111,112] is attributed to Ca2+

i-activated
PANX1 following Ca2+ release from the endoplasmic reticulum. However, Ca2+

i activation of PANX1
was not observed in PANX1-transfected HEK293 cells [113], suggesting that Ca2+

i activates the channel
only under certain conditions. Unlike most connexin hemichannels and CALHM1, PANX1 gating
is not affected by extracellular Ca2+ [114]. (iv) K+

o is also known as a strong activator of PANX1.
Increased K+

o, which can occur under pathological conditions such as ischemic injury, activates
PANX1 channels in a depolarization-independent manner [63,115,116]. Similarly to Ca2+

i activation,
this K+

o activation was not observed in PANX1-transfected HEK293T cells [100]. (v) Extracellular
ATP activates PANX1 through the activation of P2X7 [37] or P2Y receptors [109,117]. Whereas
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the P2Y-mediated PANX1 activation involves Ca2+
i [109,117], the P2X7-mediated activation is not

dependent on Ca2+
i [36] but through their close association [37]. Remarkably, extracellular ATP also

inhibits PANX1 at concentrations higher than those required for activation [118,119], possibly through
direct binding to the putative binding site located in the first and second extracellular loops [120].
Extracellular ATP-induced activation and inhibition of PANX1 are proposed to provide mechanisms
underlying ATP-induced ATP release (i.e., positive-feedback amplification) and its negative feedback
regulation at lower and higher extracellular ATP concentrations, respectively. (vi) Post-translational
modifications also modulate channel activity. Src kinase-mediated tyrosine phosphorylation following
the activation of NMDA receptors [121–123], TNFα receptors [124], and P2X7 receptors [125] activates
PANX1, whereas nitric oxide inhibits the channel through S-nitrosylation [126] and PKG-mediated
phosphorylation [127]. (vii) Adding to the above that are all reversible, other reversible activation
mechanisms include low oxygen stress [106,128] and the activation of other receptors including
thromboxane receptors [129], α1 adrenergic receptors [130], and insulin receptors [131]. In adipocytes,
insulin receptor activation causes PANX1 opening to release ATP, which supports insulin-induced
glucose uptake [131]. (viii) PANX1 is irreversibly activated by the caspase 3/7/11-mediated cleavage
of its carboxyl-terminal tail, which acts as an auto-inhibitory region [97,132–134]. Apoptotic cells
release ATP and UTP as “find-me” signals through caspase 3/7-activated PANX1 channels to recruit
phagocytes for the clearance of dying cells [132,135]. Lipopolysaccharide-induced pyroptosis involves
the activation of caspase 11 and cleavage activation of PANX1, which leads to ATP release and
ultimately cell death [134]. (ix) Interaction of PANX1 with other membrane proteins such as P2X7 [37],
KVβ3 [136], and CaV1.2 [137] has been identified. Interaction with P2X7 and KVβ3 respectively links
the extracellular purinergic signaling to PANX1 activation [37], and changes the pharmacological
sensitivities of PANX1 [136], whereas PANX1 changes the pharmacological sensitivities of a splice
variant of CaV1.2 to clevidipine [137]. In rats, naloxone-induced withdrawal from morphine was
found to activate PANX1 in microglia of the spinal cord, possibly following the activation of P2X7,
and induce PANX1-mediated release of ATP, which is a key substrate for the aversive symptoms of
opiate withdrawal [138]. Importantly, the clinically used PANX1 blockers, mefloquine and probenecid,
suppressed ATP release and the severity of withdrawal without affecting opiate analgesia [138],
suggesting PANX1 as a potential therapeutic target for alleviating withdrawal symptoms.

4. Calcium Homeostasis Modulator 1 (CALHM1)

In 2008, CALHM1, previously termed FAM26C, was discovered in a bioinformatics search for
human genes preferentially expressed in the hippocampus and located in the susceptible loci of
Alzheimer’s disease [139]. CALHM1 encodes a 346-amino acid N-glycosylated plasma membrane
protein that regulates plasma membrane Ca2+ permeability. A nonsynonymous polymorphism
in the CALHM1 gene, P86L, was found to influence the age at onset of Alzheimer’s disease,
possibly by altering amyloid beta peptide levels [139,140]. Subsequent studies established CALHM1
as a pore-forming subunit of a plasma membrane voltage-gated non-selective ion channel with
an ion-conducting pore wide enough to accommodate ATP molecules [27,141,142]. Its unitary currents
show a linear, non-rectifying current-voltage relationship with single-channel conductance of ~24 pS.
At a physiological [Ca2+]o, CALHM1 is closed at the resting membrane voltage and needs strong
depolarization to open (V1/2 ~82 mV at 5 mM [Ca2+]o), whereas in the absence of extracellular
divalent cations, CALHM1 can be opened at more negative membrane voltages (V1/2 ~−76 mV),
demonstrating that CALHM1 gating is activated by both Ca2+

o reduction and depolarization [141].
Recently, S-palmitoylation, a reversible attachment of palmitate to Cys residues, at two intracellular
Cys adjacent to the third and fourth transmembrane domains was demonstrated to modulate both
the voltage sensitivity and lipid-raft association of the channel [143]. Other modes of CALHM1
activation remain to be identified. To date, among six members (CALHM1–6) of the CALHM family,
only CALHM1 is known to form a functional ion channel. It has been suggested to be involved in
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a number of physiologically important ATP-release phenomena in taste buds and airway epithelial
and urothelial cells.

4.1. ATP Permeation through CALHM1

A CALHM1 monomer exhibits the membrane topology of four transmembrane domains,
intracellular amino- and carboxyl-termini, one intracellular loop, and two extracellular loops.
Single-molecule photobleaching and non-denaturing Blue Native-PAGE experiments suggested
that the functional CALHM1 channel is a homohexameric complex of the monomers [142].
The CALHM1 channel pore exhibits weak ion selectivity with PNa/PK/PCa/PCl of human
CALHM1 = 1:13.8:1.14:0.52 [141,142,144]. It is notable that both cations and anions permeate through
the channel. The weak ion selectivity is thought to be due to its wide permeation pore. By measuring
the relative permeabilities of various tetraalkylammonium ions, the functional diameter of the pore
of CALHM1 was estimated to be approximately 1.42 nm at its narrowest region [142]. Independent
optical analyses of fluorescent dye uptake using dyes of the same valence and similar structure with
different sizes confirmed this pore size estimate. Thus, the permeation pore of CALHM1 is large
enough to accommodate ATP molecules (1.14–1.22 nm).

Although direct electrophysiological measurements of ATP currents through CALHM1 are
lacking, ATP release associated with CALHM1 expression and function has been demonstrated
by measurements of ATP release from CALHM1-expressing cells in vitro and in vivo [27,105,145].
Heterologous expression of CALHM1 in HeLa cells, COS cells, and Xenopus oocytes led to the cell
plasma membranes showing ATP permeability. CALHM1-transfected HeLa cells released ATP into
the extracellular milieu in response to stimuli that can activate CALHM1 gating, including reduction
of [Ca2+]o and membrane depolarization. Inhibitory effects of Ca2+

o on CALHM1 gating and ATP
release are similar with apparent half-maximum inhibitory [Ca2+] (IC50) of ~220 and 490 µM and Hill
coefficients of 2.1 and 1.9, respectively [27,141]. The CALHM1-associated ATP release is sensitive
to ruthenium red, a CALHM1 channel blocker, but not to inhibitors of other cellular ATP-release
pathways, including connexins, PANX1, and VRAC. Also, ATP release was abolished in type II taste
bud cells [27] and nasal epithelial cells [105] in Calhm1 KO mice. Together with the characteristics
of the CALHM1 permeation pore, including the notable anion permeability and size larger than
ATP, these observations strongly suggest that ATP can permeate through the pores of activated
CALHM1 channels.

4.2. Physiological Roles of CALHM1-Mediated ATP Release

The physiological significance of CALHM1 had remained elusive until the discovery of its
ATP-releasing function. CALHM1 has been reported to be expressed in the brain [139,141,146],
taste buds [27,143,147], nasal epithelium [105], bladder [145], other tissues [139]. In the human and
mouse brains, its expression has been detected in hippocampal and cortical neurons, where it has been
suggested to be involved in the [Ca2+]o regulation of neuronal excitability by modulating membrane
conductance [141], and in memory flexibility by modulating long-term synaptic potentiation via the
phosphorylation of NMDA and AMPA receptors mediated by Ca2+ influx through the channel [148].
It is currently unknown whether CALHM1 plays roles as an ATP-release channel in the brain.

The physiological contribution of CALHM1 as a cellular ATP conduit is best described in the
taste buds primarily located on the tongue. Each taste bud typically composed of 50–100 cells contains
three cell types: type I, II, and III. Type II cells mediate the sensation of sweet, umami, and bitter
(and high salt) tastes. Gustatory stimulation leads to type II cell excitation, i.e., action potential firing.
ATP released from taste bud cells has been established as a signaling compound essential for the
perception of all taste qualities. Genetic deletion and pharmacological blockade of ATP-gated P2X2/3
receptor cation channels expressed in the afferent gustatory nerves led to mice lacking responses
to all taste qualities [149,150]. ATP release in response to taste stimuli has been detected from
type II cells, whereas it is still unclear whether the other cell types release ATP [151–153]. Thus,
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ATP currently fulfills the requirements as a neurotransmitter in type II cells: (1) its presence (ATP is
the universal currency in all cells); (2) its release; and (3) the presence of specific receptors in the
afferent nerve fibers (P2X2/3 receptors). Notably, type I cells that wrap around other cell types have
been demonstrated to express ectonucleotidase NTPDase2 and play significant roles in the effective
removal of released ATP to maintain appropriate neurotransmission [154]. Because type II cells do
not possess conventional synaptic contacts with afferent nerves, they had been suggested to utilize
a non-exocytotic, ion channel-mediated mechanism for the release of ATP [151,153,155]. In the primate
and murine taste buds, Calhm1 mRNA was found to be exclusively expressed in type II cells [27,147].
Cre recombinase expression was confined to type II cells in Calhm1V5-ires-Cre mice that express Cre
under the control of the Calhm1 promoter [143]. Furthermore, CALHM1 currents were detected almost
exclusively in type II cells [27]. Collectively, despite a lack of evidence of protein expression these
findings suggest that CALHM1 expression is restricted in type II cells in taste buds. In mice, Calhm1
KO markedly reduced a voltage-gated outward current recorded in isolated type II cells that mediates
ATP release [151,156] and abolished gustatory stimuli-evoked tetrodotoxin-sensitive ATP release from
taste buds. Consequently, Calhm1 KO mice specifically lacked responses to sweet, umami, bitter,
and high-salt tastes [26,27,157]. These observations established CALHM1 as an essential component of
the type II cell ATP-release channel (Figure 2).
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However, the ATP release channel complex in type II cells remains unknown. In the presence of
physiological concentrations of extracellular Ca2+, the activation of heterologously-expressed CALHM1
(τ ~3 s at +60 mV) is too slow to be activated by rapid action potentials [141,158], and the native ATP
channels activate much faster (τ ~10 ms at +60 mV) [141,156,158]. The type II cell ATP release but
not the expressed CALHM1 channel is blocked by carbenoxolone [141,152,153,159]. Furthermore,
there is also evidence for the Ca2+

i dependency of taste-evoked ATP release from type II cells [160],
but CALHM1 is insensitive to Ca2+

i [141]. PANX1 was proposed as a prime candidate for the
taste cell ATP channel [153] because it is activated by depolarization and Ca2+

i [109], inhibited by
carbenoxolone [114], and insensitive to extracellular Ca2+ [114]. However, normal type II cell ATP
release and taste perception in PANX1 KO mice [103,161,162] indicate that PANX1 is not necessary.
Although connexin hemichannels have also been proposed as the ATP conduit in type II taste cells,
their involvement is unclear [151]. Taken together, CALHM1 is a necessary subunit of the native
ATP-release channel but it needs to be associated with other proteins and/or undergo modifications
to gain the specific biophysical and pharmacological properties of the native channel [26,163].
Thus, whereas CALHM1 by itself can form an ATP-release channel, its regulatory mechanisms
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likely play indispensable roles to facilitate its physiological functions. S-palmitoylation that was
detected on CALHM1 proteins in taste cells is suggested to be involved, but this post-translational
modification alone cannot fully bridge the gap between CALHM1 function in vitro and in vivo [143].
A compelling hypothesis proposes that CALHM1 and PANX1 associate each other to form an ion
channel in salt-sensing taste cells in fungiform taste buds [164]. In rat fungiform salt-sensing taste
cells identified by the presence of both an amiloride-sensitive current and a voltage-gated Na+

current, a “CALHM1-like” current identified by pharmacological sensitivities and slow activation
and deactivation kinetics similar to those of CALHM1 was reported [164], suggesting the presence of
CALHM1. This “CALHM1-like” current was augmented by drugs that inhibit PANX1 (carbenoxolone,
probenecid, and BzATP), which led to the above hypothesis [164]. However, more studies are clearly
required to support this hypothesis. For example, molecular evidence of CALHM1 and PANX1
expression and interaction in salt-sensing fungiform cells is lacking. Despite the actions of inhibitors,
PANX1 currents were not detected in those cells. Note that carbenoxolone, probenecid, and BzATP
are specific to PANX1 only among connexins, PANX1, and CALHM1, but they all have been shown
to affect other ion channels/transporters. It is also unclear whether the “CALHM1-like” channel is
permeable to ATP or why the proposed CALHM1-PANX1 interaction only occurs in salt-sensing cells
because probenecid does not enhance CALHM1 current in type II cells [27] which express PANX1 [153].

Other possible roles of CALHM1 as an ATP-release channel have recently been reported in the
urinary bladder [145] and nasal epithelial cells [105]. In the urinary bladder, the distension of urothelial
cells caused by bladder filling leads to the release of ATP, which activates P2X2/3 receptors on the
suburothelial sensory nerves and thereby controls pain responses and afferent pathways controlling
voiding reflexes [165–168]. In addition, released ATP also binds to P2 receptors on the umbrella cells
to stimulate membrane insertion at the apical membrane of these cells, resulting in an increase in
the apical surface area and thereby a reduction in the epithelial membrane tension [169]. However,
the mechanisms underlying distension-induced urothelial ATP release are largely unknown. CALHM1
expression was identified in the urothelium as well as the suburothelium and detrusor muscle of
the porcine bladder by RT-PCR and immunohistochemistry [145]. Both hypotonic stress and the
depletion of Ca2+

o induced ATP release from cultured urothelial cells that were significantly inhibited
by ruthenium red, a nonspecific CALHM1 blocker, and a specific CALHM1 antibody [145], suggesting
roles for CALHM1 in urinary bladder purinergic signaling along with other ATP-release mechanisms
including exocytosis, connexins, and PANX1 that are also present in urothelial cells [108,170]. However,
because the immunogen of the CALHM1 antibody used in this study (HPA018317, SIGMA-ALDRICH)
is a region in the intracellular carboxyl terminus of CALHM1, the inhibitory effects of this antibody on
urothelial ATP release when added to the extracellular solution are difficult to interpret. As Gd3+ can
block other ion channels, further studies using Calhm1 KO animals are required to validate the roles of
CALHM1 in urothelial ATP release. In the airway epithelium, effective mucociliary clearance achieved
by ciliary beating is a major defense mechanism of the respiratory tract [171–174]. Although mechanical
forces [175–179] are known to stimulate ATP release from the airway epithelium, which leads to
an increase in the ciliary beat frequency as autocrine/paracrine signaling [180], the ATP-release
mechanisms remain elusive. CALHM1 transcripts were detected in mouse nasal septal epithelial
cells grown at an air-liquid interface, and apical ATP release following an air puff or membrane
depolarization was significantly reduced in Calhm1 KO cells. Notably, carbenoxolone, a PANX1 blocker,
completely inhibited the remaining air puff-induced ATP release from Calhm1 but not Panx1 KO
cultures, suggesting that CALHM1 and PANX1 both work to mediate mechanically-stimulated apical
ATP release. Intriguingly, these two studies involving the urothelium and airway epithelium suggest
the mechanical activation of CALHM1 channel gating, which has not been directly demonstrated.
As CALHM channel research is still in its infancy, future studies will likely elucidate more physiological
roles of CALHM1 as a cellular ATP-release pathway in other tissues.
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5. Volume-Regulated Anion Channels (VRACs)

Regulation of the cell volume is of marked importance for most cell types. Hypotonic stress,
i.e., a reduction in extracellular osmolarity, causes cellular swelling via the influx of water across
the plasma membrane. In response to hypotonic cell swelling, cells activate several mechanisms
to restore the normal cell volume, termed regulatory volume decrease [181]. Although various
effectors are involved in the regulatory volume decrease depending on cell types, the major
mechanism is the conductive exit of organic and inorganic osmolytes through ion channels called
VRACs, also known as VSOR anion channels. The functional characteristics, regulation, and roles
of VRACs have been extensively studied for decades [182–185], but the molecular identification of
VRACs (LRRC8 heteromers) was only recently accomplished [28,30]. VRAC currents exhibit anion
selectivity with the permeability sequence of I− > Br− > Cl− > F−, moderate outward rectification,
inactivation at positive membrane potentials, and an intermediate unitary conductance with a slope
conductance at 0 mV of 30–75 pS [186,187]. Intracellular ATP, probably through direct binding to
the channels, is required for their activity [188,189]. VRACs are ubiquitously expressed in many cell
types [190]. Hypotonic cell swelling triggers VRAC activation via a reduction in the cytoplasmic
ionic strength [191,192], whereas they can also be activated via a reactive oxygen species-mediated
mechanism by pro-apoptotic compounds such as cisplatin [193] and by the activation of plasma
membrane receptors, including purinergic [194], metabotropic glutamate [195], epidermal growth
factor [196] and bradykinin [197] receptors.

Recently, two groups independently identified proteins responsible for VRACs through
genome-wide RNAi screening [28,30]. Heteromers of LRRC8A and other LRRC members (LRRC8B,
C, D, and E) are crucial VRAC components. KO [30] and KD [28,30] of LRRC8A expression
ablated VRAC currents, establishing LRRC8A as an essential component of VRACs. In cells
engineered to lack all five LRRC8 members (LRRC8A to LRRC8E), VRAC currents were not
restored by LRRC8A transfection alone, whereas cotransfection of LRRC8A and one of the other
LRRC8 homologs restored VRAC currents [30], demonstrating that LRRC8A and at least one other
LRRC8 homolog are required to form functional VRACs. Importantly, point mutations in LRRC8A
cause changes in the anion selectivity of VRAC currents [28], and the reconstitution of LRRC8
complexes in bilayers is sufficient to form anion channels activated by osmolality gradients [192],
demonstrating that LRRC8 proteins form the VRAC pore. Three or more different LRRC8 subunits
may be contained in individual VRACs [198,199]. The subunit composition of LRRC8 heteromers
determines the inactivation kinetics [30], unitary conductance [192], sensitivity to oxidative stress [200],
and substrate selectivity [198,199,201,202]. LRRC8 proteins have four membrane-spanning domains
with cytosolic amino- and carboxyl-temini [30]. Their carboxyl-termini contain up to 17 leucine-rich
repeats. The sequence homology between LRRC8 and PANX1 also suggests that LRRC8 proteins
form hetero-hexameric channels [203]. Recently, the single-molecule photobleaching approach was
employed to estimate the number of each subunit in the LRRC8A/E heteromer in Xenopus oocytes
injected with fluorescently-tagged LRRC8A and E [198]. The number of bleaching steps of each subunit
showed a broad distribution that fits well with the Poisson but not binominal distribution, indicating
variable subunit stoichiometry. Also, the average numbers of LRRC8A and E within heteromers were
calculated to be ~3 and ~2.5, respectively, suggesting that the average total number of subunits is more
than 5. However, it remains unknown whether the total number of subunits in LRRC8 channels is fixed.
Considering the various LRRC8 combinations and variable stoichiometry within a channel complex,
LRRC8 proteins can potentially form numerous VRACs with both shared and distinct functions.
It should also be noted that LRRC8s are essential but not sufficient components for the generation of
VRAC currents, and additional factor(s) remain to be identified [204].

ATP Permeation through VRACs

VRACs are permeable to organic osmolytes such as taurine and glutamate. Independent
measurements of release from voltage-dependent permeating block of VRAC currents by calixarenes
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of different sizes at high membrane voltages [205,206] and the partitioning of non-electrolytes
(tri- and poly-ethylene glycols) into the pore of VRACs [207] led to an estimated VRAC pore
diameter of 1.2–1.4 nm, which is similar to the size of ATP [208], suggesting ATP permeation.
Indeed, like the permeating block by calixarenes, VRAC currents induced by hypotonic stress are
blocked by extracellular ATP in a voltage-dependent manner in bovine aortic endothelial cells [209]:
inhibition of outward but not inward currents through VRACs (i.e., anion influx) progressively
strengthens as the membrane voltage increase, reaches a maximum at ~40 mV, and weakens at
higher positive potentials. This phenomenon can be explained by the permeating blocker model,
where ATP can act as a blocker and permeant at moderate and more depolarized membrane voltages,
respectively. Recently, although direct electrophysiological measurements of ATP currents through
VRACs are lacking, the ATP permeability of VRACs was assessed by luciferine/luciferase-based
measurements of ATP release from Xenopus oocytes injected with cRNAs of LRRC8 subunits [198].
Hypotonic exposure promoted ATP release from oocytes expressing untagged LRRC8A/8E in
an osmolarity-dependent manner. Further, by employing carboxyl-terminal tagging that enhances
the activity of reconstituted VRAC currents, hypotonic stress-induced ATP release was detected
from oocytes expressing LRRC8A-VFP/8E-mCherry and 8A-VFP/8C-mCherry but not from oocytes
expressing LRRC8A-VFP/8B-mCherry and 8A-VFP/8D-mCherry. Although it is unclear whether the
differences in ATP release among LRRC8 heteromers are due to variations in their ATP permeability
or simply channel density in the plasma membrane, these observations provide strong evidence
for the ATP permeability of VRACs. Although VRACs were originally proposed as a conduit for
swelling-induced ATP release [209], accumulating pharmacological evidence [210–214] does not
support their involvement. Thus, despite their ATP-releasing function and ubiquitous expression,
the roles of ATP released through VRACs remain to be identified.

6. Maxi-Anion Channels (MACs)

Since their first description in cultured rat muscle cells in 1983 [215], voltage-dependent,
large-conductance, ATP-permeable anion channels, also known as MACs, have been detected in
essentially every cell type. However, until the recent discovery of SLCO2A1 as the core subunit
of MACs [29], the molecular identity of MACs had remained unknown [216], and they have been
functionally defined by a large anion-selective single-channel conductance of 300–500 pS with the
permeability sequence of I− > Br− > Cl− > F−, a linear current-voltage relationship, voltage-dependent
inactivation at positive and negative membrane potentials (i.e., the maximum open probability
occurs at ~0 mV), and pharmacological sensitivities distinct from those of other anion channels [217].
MACs are unique among anion channels in their sensitivity to Gd3+ [210,218]. MACs are basally silent
in resting cells but exhibit multimodal activation due to the presence of various stimuli, including
osmotic swelling [210,218,219], salt stress [220], high glucose [221], ischemia [218,222], hypoxia [218],
GPCR activation [223–225], and excision of a patch membrane [217]. Although it is unclear how MACs
are activated by those stimuli, tyrosine phosphorylation [226] and intracellular Ca2+ [223] have been
suggested to be involved in the regulatory mechanisms.

Recently, Okada and his team [29] discovered SLCO2A1 as the core, pore-forming component of
MACs. Among 15 genes that encode proteins with multiple transmembrane-spanning domains yielded
by a nano-LC-MS/MS analysis on total bleb-membrane proteins isolated from mouse mammary
C127 cells that endogenously express a high level of functional MACs, they identified Slco2a1 as
the gene responsible for MAC activity by siRNA screening. The siRNA- or miRNA-mediated KD
targeting of three different sites of Slco2a1 caused a significant reduction in MAC currents of C127
cells, which could be rescued by the overexpression of a miRNA-insensitive variant of Slco2a1, and KO
of the gene eliminated the currents. Furthermore, in HEK293T cells lacking SLCO2A1 expression
and MAC activity, the exogenous expression of SLCO2A1 generated MAC currents similar to those
observed in C127 cells. Importantly, a charge-neutralizing mutation, K613G, reduced the single-channel
conductance from 386 to 205 pS and made the channel more selective to cations, suggesting that the
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residue K613 plays roles in determining the pore properties of the channel. Together with the fact that
SLCO2A1 proteins exhibited the activity of MACs when reconstituted into giant proteoliposomes,
it was strongly suggested that SLCO2A1 constitutes the pore-forming component of MACs. However,
it remains unknown how many SLCO2A1 subunits are contained in a MAC and, thus, how the pore
is constructed. Other unknown regulatory components have also been suggested to be involved
because MACs formed solely by SLCO2A1 proteins were constitutively active, unlike the basally
silent endogenous MACs. Since SLCO2A1 is also known as a prostaglandin transporter, it can switch
functions between a channel and transporter.

6.1. ATP Permeation through MACs

The permeability of MACs to ATP molecules has been comprehensively established. The first
evidence was derived from observations in C127 cells of voltage-dependent open-channel blockade of
MACs by ATP applied from either outside or inside, suggesting that ATP interacts with a site located
deep inside the pore lumen [210]. In the same study, small inward currents were detected even after
the complete replacement of bath Cl− with ATP4− in inside-out patch-clamp recordings. As ATP4−

was the only anion in the bath, the recorded unitary inward currents, which were anion-selective
and exhibited pharmacological sensitivities identical to those of MACs, had to be carried by ATP4−

efflux through a MAC pore [210], establishing MACs as ATP-permeable channels. The permeability
ratio of ATP4− to Cl− was calculated as 0.08~0.1. Such direct ATP currents have been recorded in
MACs of other cell types [218,220]. Moreover, essentially identical pharmacological profiles between
MAC currents and swelling-induced ATP release in C127 cells strongly suggested that MACs are
responsible for the swelling-induced ATP release from those cells [210]. Later, pore entrance size
estimation (2.3~2.8 nm in diameter) was conducted by the nonelectrolyte exclusion experiments to
further support the conclusion that MACs are permeable to ATP because the pore entrance must be
wide enough to accommodate ATP molecules [208]. Also, the measurements of permeability to anions
with different sizes yielded a pore diameter estimate of >1.1~1.5 nm [227]. Compared with calculated
diameters of ATP4− (1.14~1.16 nm) and MgATP2− (1.18~1.22 nm), MACs possess a pore suitable for
ATP conduction. The hypotonic cell swelling-induced ATP release was significantly reduced by RNA
interference of Slco2a1 in C127 cells and potentiated by the heterologous expression of SLCO2A1 in
HEK293T cells [29], suggesting that MACs constituted by SLCO2A1 are permeable to ATP, although
ATP currents through reconstituted SLCO2A1 channels have yet to be demonstrated.

6.2. Physiological Roles of MAC-Mediated ATP Release

In addition to its roles in cell-volume regulation and fluid secretion via the transport of Cl− and
other small anions, the MAC has also been proposed as a pathway for physiologically important cellular
ATP release in specific tissues [217]. In the kidney, changes in the luminal NaCl concentration modify
ATP release from the basolateral membranes of macula densa cells located within the thick ascending
limb. The released ATP acts on adjacent mesangial cells and possibly on afferent arteriolar smooth
muscle cells, and serves as a mediator of tubuloglomerular feedback, which regulates the vascular
tone of the afferent arteriole depending on the distal tubule NaCl concentration. ATP-permeable MAC
currents were recorded in the basolateral membranes of rabbit macula densa cells and found to be
activated by increases in the luminal NaCl concentration, which actually induced basolateral ATP
release [220]. Thus, MACs have been suggested to be essential for tubuloglomerular feedback as
an ATP-release channel. However, studies using Slco2a1 KO animals are necessary to support the
conclusion. It also remains elusive how macula densa cells sense and transduce changes in the luminal
NaCl concentration to MAC activity. Swelling of macula densa cells in response to an increase in the
luminal NaCl concentration [228] might be involved. In the ischemic-reperfused heart, the ATP released
following reperfusion is known to be cardioprotective [229]. siRNA-mediated KD of Slco2a1 expression
significantly suppressed cardiac ATP release to the coronary effluent following oxygen-glucose
deprivation/reperfusion in the Langendorff-perfused adult mouse heart [29], suggesting that MACs
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play a cardioprotective role as ATP-release channels. In astrocytes, ischemic [222] and hypotonic [230]
stresses activate MACs to release ATP, a gliotransmitter linking glial and neuronal cells. The discovery
of SLCO2A1 may facilitate the identification of new roles of MACs as physiologically important
ATP-release pathways at other sites.

7. Concluding Remarks

The five groups of ATP-release channels described above mediate the non-exocytotic, conductive
cellular release of ATP in a variety of physiological and pathophysiological systems. As evidenced
by CALHM1 [27], ion channels can even mediate action potential-dependent fast purinergic
neurotransmission, which had previously been thought to be mediated by exocytotic release. Multiple
types of channels often jointly contribute to ATP release in many systems. Because no specific
inhibitors have been identified for any of them as yet, pharmacological characterization using
non-selective inhibitors and other forms of indirect evidence have comprised the main strategy to
assess the contribution of each channel. However, now that genes encoding core subunits of all known
ATP-release channels have been cloned, the roles of each channel will be more clearly elucidated
through genetic manipulations. Thus, previous pharmacological findings should be re-evaluated to
obtain more conclusive evidence. However, the development of specific inhibitors is still an urgent
task for drug development, as ATP-release channels have been reported to be associated with various
diseases. The regulatory mechanisms of these channels, especially those that have recently been cloned,
remain largely elusive. There are still unknown mechanisms of physiologically important ATP release.
Armed with molecular information, we now can attempt to clarify these mechanisms more strategically
than ever.
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Abbreviations

ABC ATP-binding cassette transporter
ATP adenosine triphosphate
CALHM1 calcium homeostasis modulator 1
CFTR cystic fibrosis transmembrane conductance regulator
[Ca2+]o extracellular Ca2+ concentration
K+

o extracellular K+

Ca2+
i intracellular Ca2+

KD knockdown
KO knockout
MAC maxi-anion channel
Po open probability
PANX1 pannexin 1
VRAC volume-regulated anion channel
VSOR volume-sensitive outwardly rectifying
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