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Abstract: Although the involvement of the extracellular signal-regulated kinases 1 and 2 (ERK1/2)
pathway in the regulation of cytostatic factor (CSF) activity; as well as in microtubules organization
during meiotic maturation of oocytes; has already been described in detail; rather less attention has
been paid to the role of ERK1/2 in the regulation of mRNA translation. However; important data
on the role of ERK1/2 in translation during oocyte meiosis have been documented. This review
focuses on recent findings regarding the regulation of translation and the role of ERK1/2 in this
process in the meiotic cycle of mammalian oocytes. The specific role of ERK1/2 in the regulation
of mammalian target of rapamycin (mTOR); eukaryotic translation initiation factor 4E (eIF4E) and
cytoplasmic polyadenylation element binding protein 1 (CPEB1) activity is addressed along with
additional focus on the other key players involved in protein translation.
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1. Introduction

Animal female germ cells—oocytes—are used as a convenient research model in cellular and
developmental biology. Maturation of vertebrate oocytes into haploid gametes relies on two
consecutive meiotic divisions without intervening DNA replication. During the growth period,
the oocytes in ovarian follicles are kept in the prophase of meiosis I and accumulate constituents such
as organelles, RNAs and proteins. When oocytes reach their full size, they undergo striking changes in
nuclear morphology due to large-scale chromatin condensation. Histone marks associated with active
chromatin are replaced by repressive histone modifications in the nucleus of the fully grown oocyte
and the nucleus becomes transcriptionally inactive [1]. In the absence of transcription, the completion
of meiosis and early embryo development rely on maternally synthetized mRNAs [2,3]. Thus, meiotic
maturation of oocytes is dependent on the translational activation of stored maternal mRNAs which
are translated later during oocyte maturation [4,5]. RNAs accumulated in oocytes are highly stable but
more than 90% of these mRNAs are degraded after the first embryo division [6,7].

Thereafter specific stimuli cause the oocytes to resume meiosis and undergo meiotic maturation,
before being arrested again during later stages of meiosis (in metaphase II) in preparation for
fertilization (Figure 1) [8].
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Figure 1. Time-sequence of meiotic maturation. The oocytes of most animal species are arrested in 
meiotic prophase I in so-called germinal vesicle (GV) stage, i.e., with an intact nuclear membrane. 
When oocytes begin meiotic maturation, the nuclear envelope breaks down (NEBD), the chromatin 
condenses and the first meiotic spindle forms (metaphase I, MI). Subsequently, oocytes pass through 
meiosis I, when the first polar body is extruded, and they are arrested in metaphase of meiosis II (MII) 
awaiting fertilization. Chromatin/chromosomes are depicted in blue, tubulin/spindle in green. 

Meiotic maturation of oocytes involves a sequence of events—meiotic resumption, transitions of 
oocytes from G2 arrest to M-phase and then to meiosis II controlled by the interplay between cyclin-
dependent kinases and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). When 
transcription is inhibited many maternal mRNAs are translationally activated during this process [9–
12]. These temporally translated proteins play key roles in the principal meiotic events, such as 
reorganization of microtubules, meiotic spindle assembly, condensation and segregation of 
chromosomes, as well as meiosis II (MII) arrest [13,14]. The development of high-quality oocytes 
plays a pivotal role in determining the outcome of sexual reproduction. The quality of oocyte meiotic 
maturation is to a large extent dependent on protein synthesis as the regulation of gene expression at 
the transcription level at the meiosis stage is halted. 

During oocyte maturation both the 7-methylguanylate (m7G) cap structure and the 
polyadenylated poly(A) tail are involved in repression and activation of protein translation. The m7G 
cap structure and the activities of its direct and indirect binding proteins, including the eIF4E binding 
protein 1 (4E-BP1), contribute to the regulation of maternal mRNA translation in the mouse oocyte. 
The m7G cap is present on the majority (80%) of mRNA molecules from unfertilized mouse oocytes 
and activities of m7G cap binding proteins are implicated in the regulation of maternal mRNA 
translation [15]. It has been postulated that translation of maternal mRNAs depends on the dynamic 
modulation of the poly(A) tail located at the 3′ end of the mRNA where the polyadenylation of 
dormant mRNAs induces translation [16,17]. 

2. MAP Kinases 

Mitogen-activated protein (MAP) kinases, evolutionarily conserved Ser/Thr kinases 
ubiquitously expressed in eukaryotes [18,19] regulate important cellular processes such as gene 
expression, proliferation, metabolism, apoptosis and immune defence [20,21]. The MAP kinase 
cascade is activated by consecutive phosphorylations—i.e., when stimulated, each MAP kinase is 
phosphorylated by an upstream MAP kinase. A MAP kinase cascade comprises of a MAP kinase 
(MAPKKK) activating a MAP kinases kinase (MAPKK) which then activates a MAP kinase (Figure 
2) [18,22]. Phosphorylation of MAP kinase can be blocked by MAP kinase protein phosphatases 
(MKPs), which can dephosphorylate both the phosphotyrosine and phosphothreonine residues on 
MAP kinases [20,23]. 

The three most extensively studied MAP kinases in mammalian cells are the p38 MAP kinase α, 
β, γ, and δ isoforms; the c-JUN N-terminal kinase 1, 2 and 3 (JNKs); and the ERK1/2 [24–26]. 

Figure 1. Time-sequence of meiotic maturation. The oocytes of most animal species are arrested in
meiotic prophase I in so-called germinal vesicle (GV) stage, i.e., with an intact nuclear membrane.
When oocytes begin meiotic maturation, the nuclear envelope breaks down (NEBD), the chromatin
condenses and the first meiotic spindle forms (metaphase I, MI). Subsequently, oocytes pass through
meiosis I, when the first polar body is extruded, and they are arrested in metaphase of meiosis II (MII)
awaiting fertilization. Chromatin/chromosomes are depicted in blue, tubulin/spindle in green.

Meiotic maturation of oocytes involves a sequence of events—meiotic resumption, transitions
of oocytes from G2 arrest to M-phase and then to meiosis II controlled by the interplay between
cyclin-dependent kinases and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2).
When transcription is inhibited many maternal mRNAs are translationally activated during this
process [9–12]. These temporally translated proteins play key roles in the principal meiotic events,
such as reorganization of microtubules, meiotic spindle assembly, condensation and segregation of
chromosomes, as well as meiosis II (MII) arrest [13,14]. The development of high-quality oocytes
plays a pivotal role in determining the outcome of sexual reproduction. The quality of oocyte meiotic
maturation is to a large extent dependent on protein synthesis as the regulation of gene expression at
the transcription level at the meiosis stage is halted.

During oocyte maturation both the 7-methylguanylate (m7G) cap structure and the
polyadenylated poly(A) tail are involved in repression and activation of protein translation. The m7G
cap structure and the activities of its direct and indirect binding proteins, including the eIF4E binding
protein 1 (4E-BP1), contribute to the regulation of maternal mRNA translation in the mouse oocyte.
The m7G cap is present on the majority (80%) of mRNA molecules from unfertilized mouse oocytes
and activities of m7G cap binding proteins are implicated in the regulation of maternal mRNA
translation [15]. It has been postulated that translation of maternal mRNAs depends on the dynamic
modulation of the poly(A) tail located at the 3′ end of the mRNA where the polyadenylation of dormant
mRNAs induces translation [16,17].

2. MAP Kinases

Mitogen-activated protein (MAP) kinases, evolutionarily conserved Ser/Thr kinases ubiquitously
expressed in eukaryotes [18,19] regulate important cellular processes such as gene expression,
proliferation, metabolism, apoptosis and immune defence [20,21]. The MAP kinase cascade is
activated by consecutive phosphorylations—i.e., when stimulated, each MAP kinase is phosphorylated
by an upstream MAP kinase. A MAP kinase cascade comprises of a MAP kinase (MAPKKK)
activating a MAP kinases kinase (MAPKK) which then activates a MAP kinase (Figure 2) [18,22].
Phosphorylation of MAP kinase can be blocked by MAP kinase protein phosphatases (MKPs),
which can dephosphorylate both the phosphotyrosine and phosphothreonine residues on MAP
kinases [20,23].
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Figure 2. Schematic diagram of main mammalian mitogen-activated protein (MAP) kinase signalling 
pathways. Extracellular stimuli activate the MAP kinase pathways through mechanisms mediated by 
GTPases. Once MAP kinase kinase kinases (MAPKKKs), such as RAF proto-oncogene 
serine/threonine-protein kinase (Raf), mitogen-activated protein kinase kinase kinase 1 (MEKK1/3) 
and TAK (transforming growth factor β (TGFβ)-activated kinase) are activated, they phosphorylate 
MAP kinase kinases (MAPKKs) which then phosphorylate and activate the extracellular signal-
regulated kinases 1 and 2 (ERK1/2), c-JUN N-terminal kinases (JNKs) and p38 kinases. Activated MAP 
kinases can translocate to the nucleus to phosphorylate a number of transcription factors. The ERK1/2 
pathway is predominantly activated by growth factors, whereas stress and inflammatory cytokines 
preferentially activate the JNKs and p38 pathways. Arrows indicate direct stimulatory modification. 
UV: ultraviolet. 

Activation of p38 MAP kinase isoforms is induced by chemical and physical stimuli such as 
oxidative stress and ultraviolet (UV) irradiation (Figure 2). p38 MAP kinase is also activated by 
cytokines and in some cases, also by mitogen-activated protein kinase kinase 4 (MKK4), a kinase that 
is described as an activator of JNK [23]. Activated p38 MAP kinases can translocate from the cytosol 
to the nucleus where they phosphorylate the serine/threonine residues of the many substrates 
implicated in stress responses, growth inhibition and apoptosis [26]). 

JNKs, also referred to as stress-activated kinases (SAPKs), were initially characterized by their 
activation in response to cell stressors such as UV irradiation. JNKs are involved in proliferation, 
differentiation, apoptosis and inflammation, and when dysregulated contribute to many diseases 
involving neurodegeneration, chronic inflammation, birth defects, cancer and ischemia/reperfusion 
injury [27]. 

ERK1/2 activation is initiated by the binding of a ligand to a receptor tyrosine kinase (RTK) at 
the cell plasma membrane followed by the activation of the small G-protein Rat sarcoma virus 
oncogene (Ras). Subsequently, Ras recruits and activates the RAF proto-oncogene serine/threonine-
protein kinase (Raf), a MAPKKK, which activates the MEK (MAPKK), that then phosphorylates 

Figure 2. Schematic diagram of main mammalian mitogen-activated protein (MAP) kinase
signalling pathways. Extracellular stimuli activate the MAP kinase pathways through mechanisms
mediated by GTPases. Once MAP kinase kinase kinases (MAPKKKs), such as RAF proto-oncogene
serine/threonine-protein kinase (Raf), mitogen-activated protein kinase kinase kinase 1 (MEKK1/3) and
TAK (transforming growth factor β (TGFβ)-activated kinase) are activated, they phosphorylate MAP
kinase kinases (MAPKKs) which then phosphorylate and activate the extracellular signal-regulated
kinases 1 and 2 (ERK1/2), c-JUN N-terminal kinases (JNKs) and p38 kinases. Activated MAP kinases
can translocate to the nucleus to phosphorylate a number of transcription factors. The ERK1/2 pathway
is predominantly activated by growth factors, whereas stress and inflammatory cytokines preferentially
activate the JNKs and p38 pathways. Arrows indicate direct stimulatory modification. UV: ultraviolet.

The three most extensively studied MAP kinases in mammalian cells are the p38 MAP kinase α,
β, γ, and δ isoforms; the c-JUN N-terminal kinase 1, 2 and 3 (JNKs); and the ERK1/2 [24–26].

Activation of p38 MAP kinase isoforms is induced by chemical and physical stimuli such as
oxidative stress and ultraviolet (UV) irradiation (Figure 2). p38 MAP kinase is also activated by
cytokines and in some cases, also by mitogen-activated protein kinase kinase 4 (MKK4), a kinase that
is described as an activator of JNK [23]. Activated p38 MAP kinases can translocate from the cytosol to
the nucleus where they phosphorylate the serine/threonine residues of the many substrates implicated
in stress responses, growth inhibition and apoptosis [26]).

JNKs, also referred to as stress-activated kinases (SAPKs), were initially characterized by their
activation in response to cell stressors such as UV irradiation. JNKs are involved in proliferation,
differentiation, apoptosis and inflammation, and when dysregulated contribute to many diseases
involving neurodegeneration, chronic inflammation, birth defects, cancer and ischemia/reperfusion
injury [27].

ERK1/2 activation is initiated by the binding of a ligand to a receptor tyrosine kinase (RTK) at the
cell plasma membrane followed by the activation of the small G-protein Rat sarcoma virus oncogene
(Ras). Subsequently, Ras recruits and activates the RAF proto-oncogene serine/threonine-protein
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kinase (Raf), a MAPKKK, which activates the MEK (MAPKK), that then phosphorylates ERK1/2 on
both threonine and tyrosine residues [28,29]. The Ras/Raf/MEK/ERK1/2 pathway can be deactivated
by dual-specificity MAP kinase phosphatases [20,26].

ERK1 and ERK2 kinases (also called MAPK3 and MAPK1) are functionally redundant as they
share all known substrates [30]. ERK1/2 phosphorylates and activates downstream kinases and other
substrates, which influences the regulation of translation. This includes p90 ribosomal S6 kinase (RSK)
and MAPK-interacting protein kinases MNK1 and MNK2 (MNKs) [31–33]. It has been shown that
RSK and MNKs are implicated in the regulation of mRNA translation [34,35] as they phosphorylate
and regulate a number of downstream targets—components of the translational machinery [33,36].
In human cells, RSK (downstream of the ERK1/2 pathway) and p70 S6 kinase (S6K; downstream of
the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB)/mammalian target of rapamycin
(mTOR) pathway phosphorylate the eukaryotic translation initiation factor 4B (eIF4B) at Ser422 [37,38].
Activated eIF4B enhances the activity of eukaryotic initiation complex 4F (eIF4F) by stimulating the
eukaryotic translation initiation factor 4A (eIF4A), a RNA helicase that unwinds secondary structures
on the 5′ untranslated region (5′ UTR) [39].

3. Role of MAPK in Regulation of Meiosis

In the past years an intense effort has been made to elucidate the roles of the ERK1/2 cascade in the
regulation of meiosis progression in oocytes but the identities of the ERK1/2 substrates in mammalian
oocytes are yet to be fully revealed. In Xenopus oocytes ERK1/2 appears to be indispensable for the
regulation of meiotic progress [40]. Although the involvement of ERK1/2 in the resumption of meiosis
in mouse and porcine oocytes has not yet been confirmed [41,42], experiments with ERK1/2 inhibition
and mouse oocyte knockouts produced severe impairment of microtubule organization and meiotic
spindle assembly [43,44] (Figure 3).
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downstream ERK1/2 effector p90 ribosomal S6 kinase (RSK) participates in maintaining the CSF arrest 
since RSK is involved in anaphase-promoting complex/cyclosome (APC/C) inhibition. Inhibitory 
modification of the kinases to APC/C is depicted as a blunt end line. 

When ERK1/2 or their upstream kinase MOS (Oocyte Maturation Factor Mos) were deleted, a 
precocious separation of sister chromatids and parthenogenetic activation of mouse oocytes occurred 
[45,46]. Efforts have been made to identify the ERK1/2 phosphorylation substrates present in the 

Figure 3. A role of the ERK1/2 in regulation of meiosis. During meiotic maturation ERK1/2 activity
is essential for microtubule organization and meiotic spindle assembly (spindle depicted in green,
chromosomes in blue). ERK1/2 is also an important component of the so-called cytostatic factor (CSF)
protein complex, which prevents the exit of the oocytes from metaphase II stage via prevention of cyclin
B destruction by anaphase-promoting complex/cyclosome (APC/C) complex. Moreover, downstream
ERK1/2 effector p90 ribosomal S6 kinase (RSK) participates in maintaining the CSF arrest since RSK is
involved in anaphase-promoting complex/cyclosome (APC/C) inhibition. Inhibitory modification of
the kinases to APC/C is depicted as a blunt end line.
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When ERK1/2 or their upstream kinase MOS (Oocyte Maturation Factor Mos) were deleted,
a precocious separation of sister chromatids and parthenogenetic activation of mouse oocytes
occurred [45,46]. Efforts have been made to identify the ERK1/2 phosphorylation substrates present in
the regulation of these processes. ERK1/2 substrates MISS (MAPK Interacting and Spindle Stabilizing)
and DOC1R (Deleted in Oral Cancer 1 Related) have been identified as regulating microtubule
organization in mouse oocytes in metaphase MII (MII oocytes) [47,48]. There is clear evidence that
ERK1/2 is a part of the so-called cytostatic factor (CSF), a protein complex which prevents the exit
of oocytes from the metaphase II stage via the stabilization of cyclin B (Figure 3) [45,46]. CSF is
responsible for the establishment and persistence of the metaphase of MII (MII arrest) of unfertilized
vertebrate oocytes. CSF activity occurs during meiosis II and ceases after fertilization [49]. It was
found that MOS is required for CSF activity in oocytes [50]. The oocytes from MOS-deficient mice
did not arrest at MII but instead underwent spontaneous parthenogenetic activation and abortive
development [51]. Moreover, ERK1/2 did not become activated during the maturation of such oocytes
and maturation promoting factor (MPF) activity declined prematurely at MII [52]. CSF arrest at MII is
mediated by a sole ERK1/2 target, the protein kinase RSK [53,54]. Inhibition of the anaphase-promoting
complex/cyclosome (APC/C) is required in order to maintain CSF arrest. APC/C is an M-phase
E3 ubiquitin ligase that targets M-phase B type cyclins and securin (regulator of sister chromatid
cohesion) for degradation at the metaphase/anaphase transition [55]. During MII arrest, APC
activation is blocked by the prevention of the binding of the APC activator Cdc20/Fizzy protein [56,57].
Inhibition of Cdc20/Fizzy binding to APC is mediated by products of the Bub and Mad genes [58].
RSK phosphorylates and activates the budding uninhibited by benzimidazoles (BUB1) protein kinase,
which may cause metaphase arrest due to the inhibition of the APC/C by a direct binding of BUB1 to
Cdc20/Fizzy, a conserved mechanism defined genetically in yeast and mammalian cells. CSF arrest
in vertebrate oocytes induced by RSK provides a link between the ERK1/2 pathway and the spindle
assembly checkpoint in the meiotic cell cycle [59,60]. It has been evidenced that ERK1/2 is important
player in cytoplasmic maturation of oocytes. Impairment of cytoplasmic maturation in sheep oocytes
was revealed if ERK1/2 activity was inhibited during in vitro maturation resulting in a subsequent
decrease of cleavage rate and blastocyst development [61]. The level of ERK1/2 activity plays an
important role during aging of MII-oocytes. When the in vitro culture of porcine oocytes was prolonged
up to 72 h to induce aging of oocytes a significant decrease of the ERK1/2 activity occurred during
the first 12 h of aging with following decrease during prolonged culture. It has been suggested that a
premature decrease of ERK1/2 activity in aged MII porcine oocytes negatively influenced subsequent
early embryo development as proportions of oocytes with abnormal anaphase II were significantly
increased after parthenogenic activation of aged oocytes [62,63].

The function of ERK1/2 during meiotic maturation of mammalian oocytes, which has been
up-to-now described, include: regulation of microtubules and spindle assembly [45,64], stabilization
of MPF [65,66] involvement in so-called cytostatic which is responsible for the block of oocytes in MII
prior fertilization by the sperm [45–67].

4. Translational Regulation at 5′ End of mRNA (Cap-Dependent Initiation of Protein Translation)

The initiation of protein translation is likely to be the most important step in the regulation of
translation and a number of eukaryotic initiation factors (eIFs) are involved in this process. Transcribed
eukaryotic messenger RNAs (mRNAs) have the 7-methylguanylate (m7G) cap structure at the 5′ end
and are posttranscriptionally modified by the addition of ~250 adenine residues to form the poly(A) tail
at the 3′ end [68]. Both m7G cap structure and poly(A) tail are implicated in the concerted repression
and activation of protein translation [69,70] (Figure 4). Additionally, the interaction of factors bound
to the m7G cap and poly(A) tail mediates mRNA circularization enhancing the efficiency of protein
translation [17]. Protein interaction with both 5′ and 3′ ends of mRNA and mRNA circularization will
be discussed further with regards to protein translation in oocytes and the involvement of the ERK1/2
pathway in these events.
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Figure 4. Scheme of a polyadenylation-induced translation. The cytoplasmic polyadenylation
element (CPE) attaches to the cytoplasmic polyadenylation element binding protein 1 (CPEB1).
Activated CPEB1 stabilizes the binding of activated cytoplasmic polyadenylation specific factor
(CPSF) to the hexanucleotide sequence. Subsequently, CPSF recruits poly(A) polymerase (PAP)
to the end of mRNA, where PAP catalyses poly(A) addition. eIF4E binding protein 1 (4E-BP1),
when hyperphosphorylated by mammalian target of rapamycin (mTOR), dissociates from eukaryotic
translation initiation factor 4E (eIF4E) and the formation of the eukaryotic translation initiation
complex 4F (eIF4F) complex is enabled. Elongated poly(A) tail associates with a cytoplasmic poly(A)
binding protein (PABP), which in turn stabilizes the cap binding eIF4F consisting of the mRNA
cap-binding protein eIF4E, scaffolding protein eIF4G1 and RNA helicase (eIF4A). PABP binds poly(A)
binding protein interacting protein 1 (PAIP1), which can bind eIF4A and the ribosome recruiting
eukaryotic translation initiation factor 3 (eIF3). The closed loop complex enhances translation by
increasing eIF4A and eIF3 recruitment. This leads to enhanced translation mediated by the poly(A) tail.
Factors associated with cap-dependent translation initiation are depicted in green, poly(A) tail factors
in blue, and kinases in red.

When mRNA is transported from the nucleus to the cytoplasm the 5′ m7G cap structure is
recognised by eIF4F, a trimeric protein complex composed of eukaryotic translation initiation factor 4E
(eIF4E), which binds to the m7G cap; eIF4A, a helicase necessary for unwinding the secondary structure
of mRNA; and a bridging protein eukaryotic initiation factor 4G1 (eIF4G1) [69,71] (Figure 4). eIF4G1,
the largest component of eIF4F, is responsible for the integrity of the eIF4F complex, as well as providing
binding sites for eIF3, MNKs and the poly(A)-binding protein [36,72]. eIF4B supports eIF4F activity
by enhancing eIF4A RNA helicase activity [71,73]. eIF4G1 also bridges the mRNA with the ribosome
through its interaction with the eukaryotic translation initiation factor 3 (eIF3) [74,75], which has
been observed to interact directly with eIF4B [76,77]. The availability of eIF4E for binding the mRNA
cap structure is regulated by eIF4E binding proteins (4E-BPs), which, in their hypophosphorylated
state, inhibit protein translation by binding to eIF4E and preventing its association with cap and
eIF4G1 [78]. The most studied 4E-BP is 4E-BP1 which, when hyperphosphorylated, dissociates from
eIF4E and the formation of the eIF4F complex is enabled, resulting in stimulation of cap-dependent
translation initiation. 4E-BP1 activity is regulated by the mTOR dependent phosphorylation [79]
(Figure 4). At low mTOR activity, 4E-BP1 is hypophosphorylated and binds to eIF4E preventing the
initiation of translation. When mTOR is activated, 4E-BP1 becomes phosphorylated on several serine
and threonine amino acid residues and the release of 4E-BP1 from eIF4E enables the commencement
of cap-dependent translation. A maximal hyperphosphorylation of 4E-BP1 is necessary however,
in order to disrupt the association with eIF4E [80]. Also, mTOR can directly activate S6K which
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then activates a downstream target, ribosomal protein S6 (RPS6), leading to the initiation of protein
synthesis [81]. Apart from the main role of mTOR in the positive regulation of protein translation
by 4E-BP1, the above-mentioned implication of mTOR in eIF4B phosphorylation in somatic cells
reveals more complex mTOR involvement. However, the role of eIF4B in translation during meiotic
maturation of oocytes is yet to be fully described.

Another level of regulation of cap-dependent translation by phosphorylation is the
phosphorylation of eIF4E itself. It has been assumed that phosphorylation of eIF4E at Ser209
stabilizes the binding of eIF4E to the m7G cap structure [82,83], however, it has been also revealed that
phosphorylation of eIF4E reduces its affinity for the m7G cap [84,85]. eIF4E phosphorylation may be
required for the release of eIF4F from the cap complex during the initiation process. Alternatively,
phosphorylation of eIF4E may be involved in reprogramming translation by releasing the eIF4F
complex to promote the chance of less abundant mRNAs to bind to ribosomes [84,86,87].

Strictly eIF4E-dependent mRNAs, so-called eIF4E sensitive transcripts, often possess long,
highly structured 5′ UTR or 5′-terminal oligopyrimidine (TOP) tracts [88] and encode mostly
regulatory proteins. Ref [89] show that mTOR almost entirely regulates the translation of transcripts
with established TOP tracts. The cap-dependent translation is allowed to occur when 4E-BP1,
hyperphosphorylated by mTOR is released from eIF4E. Hence it is not surprising that both the
increase and decrease of global mRNA translation correlates with mTOR activity [80–91].

5. Translational Regulation at the 3′ End of mRNA

Poly(A) tail elongation following the export of an mRNA to the cytoplasm is called cytoplasmic
polyadenylation and was first discovered in frog oocytes and embryos. Polyadenylation of the
3′ UTR in the cytoplasm is largely correlated with mRNA stability and translational activation
of mRNA. The stored mRNAs have short poly(A) tails, which must be elongated by poly(A)
polymerase (PAP) before translation. Cytoplasmic polyadenylation requires the hexanucleotide
polyadenylation signal (AAUAAA) and a U-rich cytoplasmic polyadenylation element (CPE).
In maturing Xenopus oocytes CPE hexanucleotid UUUUA(A)U is implicated in translation [92,93].
The CPE is attached to the cytoplasmic polyadenylation element binding protein 1 (CPEB1) [94,95])
(Figure 4). When phosphorylated and activated, CPEB1 stabilizes the binding of activated cytoplasmic
polyadenylation specific factor (CPSF) to the hexanucleotide sequence [96,97]. Subsequently, CPSF
attracts PAP to catalyse poly(A) elongation. The polyadenylation of mRNA finally results in the
initiation of protein translation at the mRNA 5′ cap.

When mRNA is transported from the nucleus to the cytoplasm the m7G cap structure is specifically
recognized by the eIF4E (and as such with eIF4F) and the poly(A) tail at the 3′ end of mRNA binds
to cytoplasmic poly(A)-binding proteins (PABPs). Both eIF4E and PABPs interact also with eIF4G1
creating a protein bridge between the two transcript ends (Figure 4). The pseudo-circularized structure
of mRNA enhances the affinity of eIF4E to the cap and hence translation is initiated (Figure 4). 3′ UTR
polyadenylation is essential for the regulation of translation initiation as circularization of mRNA
is only possible when the mRNA is polyadenylated [16,17]. Circularization of mRNA promotes
translation by enhancing the affinity of eIF4E to the m7G cap and also by enabling the ribosome to be
used again when a translation run is completed [98].

6. eIF4E Activity in Oocytes

As documented in somatic cells, hypophoshorylated eIF4E binding proteins (4E-BPs) sequester
eIF4E and prevent its association with eIF4G1 [78]. Similarly, 4E-BP1 reduces its affinity to the m7G cap
structure [99]. It has been shown that 4E-BP1 becomes phosphorylated during the meiotic maturation
of pig, bovine and mouse oocytes [100–103]. 4E-BP1 at the level of protein is the only member of
the 4E-BP family present in maturing mouse oocytes [103]. The main effector kinases of 4E-BP1
phosphorylation/inactivation are mTOR and cyclin-dependent kinase 1 (CDK1) (Figure 5) which
become highly active after the resumption of meiosis in mouse, human and bovine oocytes [103–105].
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4E-BP1 is phosphorylated by mTOR kinase and CDK1 suggesting that these two kinases stimulate
cap-dependent translation during the course of meiosis [99,102,103]. It has been found that polo-like
kinase 1 (PLK1) partially regulates 4E-BP1 phosphorylation at the MI and MII spindles in mouse
oocytes and inhibition of PLK1 activity leads to the disruption of normal spindle formation and
function [106]. The activity of mTOR is decreased at the cessation of meiosis after fertilization which
is followed by the activation of 4E-BP1 as a repressor of cap-dependent translation [102]. Similarly,
experiments with starfish oocytes revealed that dissociation of the eIF4E/4E-BP complex is transitory
and the heterodimeric complex is restored before the first polar body emission and remains unchanged
during the completion of meiosis [107]. This reinforces the theory that mTOR activity is highly
regulated by cell cycle progression. In mouse oocytes disruption of mTOR/eIF4F signalling does not
affect the progress of oocyte meiosis to the MII stage, although defects in spindle morphology and
chromosome alignment were observed, suggesting that the synthesis of specific proteins is required
for proper spindle formation and correct distribution of chromosomes during meiosis I [102].
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In oocytes, CDK1 phosphorylates mTOR at Ser2448. This reinforces proposals that mTOR activity is
highly regulated by CDK1 activity during cell cycle progression. Stimulatory modification is depicted
as an arrow, inhibitory modification as a blunt end line. Dashed line with arrow indicates tentative
stimulatory modification.

7. Role of ERK1/2 in eIF4E Activation in Meiotic Cells

MNKs, downstream effectors of ERK1/2, regulate in somatic cells the assembly of eIF4F on
the m7G cap and mRNA translation through direct phosphorylation of eIF4E [33,108,109]. Here, in
response to both stress and proliferation signals, MNK1 and MNK2 directly phosphorylate eIF4E at
the single site (Ser209 residue) localized at the carboxyl terminus [33,109,110]. Small interfering RNA
mediated knockdown of protein phosphatase 2A (PP2A) or pharmacological inhibition of PP2A result
in an increased phosphorylation of its target MNK1 and subsequently elevated phosphorylation of
eIF4E [111]. The eIF4E phosphorylation of Ser209 residue is considerably enhanced when MNKs are
bound to eIF4G1 [72,112].

A similar mechanism was also found to operate in mammalian oocytes during meiotic maturation.
In bovine oocytes eIF4E phosphorylation is under the control of ERK1/2 and closely correlates with
ERK1/2 activation [101]. Also, in porcine oocytes MNK1 activated by the ERK1/2 signalling cascade
has been shown to directly phosphorylate eIF4E [113] (Figure 6). Here, phosphorylation of eIF4E
occurs approximately at the same time or just prior to metaphase of MI and tightly correlates with the
activation of both MNK1 and ERK1/2 (but not p38 MAP kinase) [113].

Furthermore, inhibition of either mTOR or MNKs activity reduces protein synthesis in pachytene
spermatocytes but not in round spermatids suggesting that the mTOR and MNK pathways regulate
eIF4F assembly in meiotic male germ cells [110]. These results indicate that in these cells, mRNA
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translation is differentially dependent on the mTOR and MNK pathways in meiotic and post-meiotic
male germ cells.Int. J. Mol. Sci. 2018, 19, x 9 of 20 

 

 
Figure 6. ERK1/2 and mTOR regulate protein translation in oocytes. MAPK-interacting kinase 
(MNK1), a downstream target of ERK1/2 stabilizes the binding of eIF4E to the m7G cap by 
phosphorylation eIF4E at the Ser209 residue. The eIF4E phosphorylation on Ser209 is considerably 
enhanced when MNK1 and MNK2 (MNKs) are bound to eIF4G1. Although downstream members of 
both ERK1/2 and mTOR pathways phosphorylate eIF4B in somatic cells, involvement of ERK1/2 in 
eIF4B phosphorylation was not reported in oocytes. In Xenopus oocytes ERK1/2 phosphorylates 
CPEB1 at four residues but not on Ser174, a key residue for activation of CPEB1. In mouse, a role of 
ERK1/2 in CPEB1 phosphorylation was confirmed only in cumulus-enclosed oocytes. Factors 
associated with cap-dependent translation initiation are depicted in green, poly(A) tail factors in blue, 
and kinases in red. Stimulatory modification is depicted as an arrow, inhibitory modification as a 
blunt end line. Dashed line with arrow indicates tentative stimulatory modification. 

8. Cytoplasmic Polyadenylation of mRNA in Oocytes 

The polyadenylation of the poly(A) tail occurs during the main events that control mRNA 
translation in vertebrate germ cells and early embryos [114]. Cytoplasmic polyadenylation regulates 
the translation of maternal mRNAs containing a cytoplasmic polyadenylation element (CPE) that 
binds specific trans-acting proteins [9]. CPEs are present at the 3′ UTR of many maternal mRNAs and 
they are implicated in the regulation of poly(A) tail length. CPEB1 belongs to the key oocyte factors 
that regulate maternal mRNA translation during oocyte maturation. In Xenopus and mouse oocytes 
CPEB1 mediates cytoplasmic polyadenylation of many CPE-containing mRNAs [115]. Although 
CPEB1 and the target maternal mRNAs are present in germinal vesicle (GV) stage oocytes (G2 phase), 
the majority of these mRNAs are polyadenylated and translated into proteins only after the 
resumption of meiosis [4,116]. However, it has been documented that CPEB1 is involved in 
resumption of meiosis and cyclin B translation in porcine oocytes [117]. 

In Xenopus oocytes CPE in complex with CPEB1 promotes either repression or activation of 
protein translation. CPEB1 inhibits translation by preventing the assembly of the m7G cap complex 
and by recruiting proteins that either compete for cap binding with eIF4E or compete with eIF4G1 
for an interaction with eIF4E (e.g., 4E-BP1) [118,119]. Cytoplasmic polyadenylation regulates the 
translation of proteins essential for meiotic divisions, such as MOS and cyclins [4,120]. After meiotic 
resumption phosphorylation of CPEB1 on several serine/threonine residues is essential for early 
activation of many maternal mRNAs. In mouse oocytes activation of CPEB1 triggers the translation 
of many CPE-containing key maternal mRNAs including those encoding B-cell translocation gene 4 
(BTG4), microtubule nucleation factor (TPX2) and deleted in azoospermia-like (DAZL), that are 
essential for oocyte maturation and maternal-zygotic transition [3,121,122]. However, a large fraction 
(70–90%) of CPEB1 proteins undergo a polyubiquitination-dependent degradation during meiosis, 

Figure 6. ERK1/2 and mTOR regulate protein translation in oocytes. MAPK-interacting kinase (MNK1),
a downstream target of ERK1/2 stabilizes the binding of eIF4E to the m7G cap by phosphorylation eIF4E
at the Ser209 residue. The eIF4E phosphorylation on Ser209 is considerably enhanced when MNK1
and MNK2 (MNKs) are bound to eIF4G1. Although downstream members of both ERK1/2 and mTOR
pathways phosphorylate eIF4B in somatic cells, involvement of ERK1/2 in eIF4B phosphorylation was
not reported in oocytes. In Xenopus oocytes ERK1/2 phosphorylates CPEB1 at four residues but not on
Ser174, a key residue for activation of CPEB1. In mouse, a role of ERK1/2 in CPEB1 phosphorylation
was confirmed only in cumulus-enclosed oocytes. Factors associated with cap-dependent translation
initiation are depicted in green, poly(A) tail factors in blue, and kinases in red. Stimulatory modification
is depicted as an arrow, inhibitory modification as a blunt end line. Dashed line with arrow indicates
tentative stimulatory modification.

8. Cytoplasmic Polyadenylation of mRNA in Oocytes

The polyadenylation of the poly(A) tail occurs during the main events that control mRNA
translation in vertebrate germ cells and early embryos [114]. Cytoplasmic polyadenylation regulates
the translation of maternal mRNAs containing a cytoplasmic polyadenylation element (CPE) that binds
specific trans-acting proteins [9]. CPEs are present at the 3′ UTR of many maternal mRNAs and they are
implicated in the regulation of poly(A) tail length. CPEB1 belongs to the key oocyte factors that regulate
maternal mRNA translation during oocyte maturation. In Xenopus and mouse oocytes CPEB1 mediates
cytoplasmic polyadenylation of many CPE-containing mRNAs [115]. Although CPEB1 and the target
maternal mRNAs are present in germinal vesicle (GV) stage oocytes (G2 phase), the majority of these
mRNAs are polyadenylated and translated into proteins only after the resumption of meiosis [4,116].
However, it has been documented that CPEB1 is involved in resumption of meiosis and cyclin B
translation in porcine oocytes [117].

In Xenopus oocytes CPE in complex with CPEB1 promotes either repression or activation of protein
translation. CPEB1 inhibits translation by preventing the assembly of the m7G cap complex and by
recruiting proteins that either compete for cap binding with eIF4E or compete with eIF4G1 for an
interaction with eIF4E (e.g., 4E-BP1) [118,119]. Cytoplasmic polyadenylation regulates the translation
of proteins essential for meiotic divisions, such as MOS and cyclins [4,120]. After meiotic resumption
phosphorylation of CPEB1 on several serine/threonine residues is essential for early activation of
many maternal mRNAs. In mouse oocytes activation of CPEB1 triggers the translation of many
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CPE-containing key maternal mRNAs including those encoding B-cell translocation gene 4 (BTG4),
microtubule nucleation factor (TPX2) and deleted in azoospermia-like (DAZL), that are essential for
oocyte maturation and maternal-zygotic transition [3,121,122]. However, a large fraction (70–90%) of
CPEB1 proteins undergo a polyubiquitination-dependent degradation during meiosis, resulting in a
changed CPEB/CPE ratio and hence enabling the activation of another class of mRNAs [96,123].

9. A Role of ERK1/2 in mRNA Polyadenylation in Oocytes

ERK1/2 plays a substantial role in the polyadenylation of mRNA in oocytes. In Xenopus oocytes
ERK1/2 phosphorylates CPEB1 in four residues (Thr22, Thr164, Ser184, Ser248) but probably not
on Ser174, a key residue for the activation of CPEB1 function [96,124]. When Xenopus oocytes are
activated by progesterone, the kinase Aurora A phosphorylates the Ser174 residue of CPEB1 and
increases the affinity of CPEB1 for cleavage [70]. However, results obtained on porcine oocytes are
contradictory as it has been suggested that Aurora A kinase is either involved [117] or not involved in
CPEB1 phosphorylation in this mammalian species [125].

In mouse oocytes, it has been shown that ERK1/2-triggered phosphorylation of Ser181 and
Ser207 residues is essential for the onset of CPEB1 phosphorylation and protein translation during
meiotic progression (Figure 6). Insufficient translation of maternal mRNAs including Dazl, Tpx2
and Btg4 is the main reason for the developmental defects detected in ERK1/2-inhibited mouse
oocytes [126]. In sea urchin oocytes inhibition of ERK1/2 activity correlated with an inhibition of
global protein synthesis and it has been suggested that ERK1/2 activity is required for synthesis
of protein(s) implicated in chromatin/microtubule attachment [127]. On the other hand, it has also
been revealed that cytoplasmic polyadenylation of cyclin B1 mRNA precedes ERK1/2 activation in
maturing cumulus-free mouse oocytes, indicating that ERK1/2 activity is not likely to be required
for the activation of cytoplasmic polyadenylation [128]. Experimental inhibition of ERK1/2 activity
in mouse cumulus-free oocytes did not affect cytoplasmic polyadenylation nor translation of cyclin
B1 mRNA. The data obtained on porcine oocytes did not confirm nor exclude the possible role of
ERK1/2 in CPEB1-mediated cytoplasmic polyadenylation (Figure 6) [128]. However, when ERK1/2
was inhibited in cumulus-enclosed mouse oocytes, a substantial reduction of cyclin B1 mRNA poly(A)
tail length was observed [128]. This finding is in accordance with the conclusion that cumulus cells
surrounding the mouse oocyte are implicated in the regulation of maternal mRNAs translation [11]. In
particular, the accumulation of TPX2 protein during the meiotic maturation of mouse cumulus-free
oocytes is markedly reduced compared to that of cumulus-enclosed oocytes [11]. The results of [128]
are in contrast with the data presented by [126] who proposed that ERK1/2 inhibition impairs cyclin
B1 mRNA polyadenylation in maturing mouse oocytes. However, it is not clear if [126] carried out the
experiments on in vitro cultured cumulus-free or cumulus-enclosed mouse oocytes.

The possible involvement of ERK1/2 in the regulation of RNA-binding protein DAZL has also
been addressed. DAZL was identified as a CPEB1 downstream translational activator in mouse
oocytes [129]. Mutations in DAZL expressed in prenatal and postnatal mouse male and female germ
cells result in infertility and sterility [130,131]. TPX2 induces microtubule nucleation and acts as an
indispensable regulator of centrosome and spindle pole assembly [132,133]. In ERK1/2-deficient
oocytes the accumulation of TPX2 is impaired as its protein translation requires DAZL [126].

10. Cross-Talk between ERK1/2 and PI3K/mTOR Pathways

The Raf/MEK/ERK1/2 and PI3K/PKB/mTOR pathways mediate cell survival, proliferation,
metabolism and motility [134,135]. PKB, also known as AKT, is a serine/threonine-specific protein
kinase activated by PI3K. PKB controls many downstream substrates including mTOR [136].
PI3K/PKB/mTOR and Raf/MEK/ERK1/2 pathways can act on the same substrate in a concerted
manner [137] (Figure 7).

Both Raf/MEK/ERK1/2 and PI3K/PKB/mTOR pathways can be activated by G-protein coupled
receptors or through receptor tyrosine kinase. Cross-talk between both pathways can occur at the
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receptor level [133,134]. Compensatory activation of PI3K and ERK1/2 signalling pathways has been
documented indicating that PI3K/PKB/mTOR and Raf/MEK/ERK1/2 signalling pathways are not
independent but interactive [135].Int. J. Mol. Sci. 2018, 19, x 11 of 20 
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Figure 7. Crosstalk of the Ras/ERK1/2 and PI3K/mTOR pathways. Ras can directly bind and activate
PI3K. Protein kinase AKT negatively regulates ERK1/2 activation by phosphorylating inhibitory sites
in the Raf N-terminus. ERK1/2 negatively attenuates growth factor-induced AKT activation probably
by GAB1-mediated recruitment of PI3K to the growth factor receptor. The Ras/ERK1/2 pathway
is also able to cross-activate PI3K/mTOR by regulating PI3K and mTOR. Intensive activation of the
Ras-ERK1/2 pathway stimulates mTOR activity. Positive regulation of the substrate protein is shown
as an arrow and negative regulation of the substrate protein is depicted as a blunt end line.

The Ras/Raf/MEK/ERK1/2 pathway cross-activates PI3K/PKB/mTOR signalling by regulating
PI3K and mTOR at several points (see also Figure 7). Ras can directly bind and allosterically activate
PI3K [136]. Intensive activation of the Ras-ERK1/2 pathway can also stimulate mTOR activity by
ERK1/2 and RSK signalling to the tuberous sclerosis complex 2 (TSC2), which is sensitive to different
growth factors and stress signals [137]. ERK1/2 and RSK can also stimulate the regulatory associated
protein of mTOR (RAPTOR), a component of mTOR signalling which promotes the phosphorylation
of 4E-BP1 by mTOR [138,139].

Also, scaffolding proteins of the members of the ERK1/2 cascade can regulate the
mTOR-signalling pathway at several levels. MEK scaffolding protein 1 (MP1), which scaffolds MEK
and ERK1/2, can support co-localization of ERK1/2 and mTOR pathway components and promote
cross-talk between these two pathways [137,140]. The kinase suppressor of Ras (KSR) acts as a scaffold
protein and co-localizes with Raf, MEK and ERK1/2 during ERK1/2 activation [140]. It has been
documented that KSR also interacts with mTOR, RAPTOR and the TSC2-activating kinases AMPK
and GSK3 [141,142].

The ERK1/2 and PI3K/PKB/mTOR pathways can negatively regulate each other’s activity. Both
Ras/Raf/ERK1/2 and PI3K/PKB/mTOR pathways possess mechanisms that can negatively feed
onto the other [137] (Figure 7). ERK1/2 negatively attenuates growth factor-induced PKB activation
probably by GAB1-mediated recruitment of PI3K to the growth factor receptor [138]. The Ras/ERK1/2
pathway is also able to cross-activate PI3K/mTOR by regulating PI3K and mTOR. Ras can directly bind
and activate PI3K [139]. In contrast, PKB negatively regulates ERK1/2 activation by phosphorylating
inhibitory sites in the Raf N-terminus [140,141]. This inhibitory phosphorylation of Raf is blocked
during mitogen-stimulated Raf activation [142].
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The above-mentioned data suggest that cross-activation, cross inhibition and convergence of
both Raf/MEKK/ERK1/2 and PI3K/PKB/mTOR pathways probably also play important roles in the
regulation of protein translation.

It has been shown that CDK1 directly phosphorylates the key mTOR binding partner RAPTOR
during mitosis and meiosis [103]. This reinforces proposals that mTOR activity is highly regulated by
cell cycle progression.

ERK1/2, which is also able to regulate mTOR [138,139] also becomes active after the resumption
of meiosis and remains so throughout meiotic maturation [143]. Thus, it appears that both the ERK1/2
and the PI3K/PKB/mTOR pathways converge to modulate translation of maternal mRNAs.

11. Perspectives

Translational regulation promotes the fine-tuning of processes in specialized cells, especially in
cells without active transcription. Although valuable insights into the mechanism of regulation of
translation has come from Xenopus oocytes, this understanding has only been extrapolated to the
mammalian system. In order to address the dissimilarities and overlaps in transcriptome and proteome
composition which might contribute to the molecular physiology of oocytes from different organisms,
further studies are required. Comparative studies in mammalian model systems will provide important
information regarding the components and mechanisms that may play critical regulatory roles in the
physiology and pathology at specific cell stages. Consequent extrapolation of the findings from model
mammalian oocytes to human oocytes might be beneficial for clinical applications.

In the future, it will be interesting to identify in the mammalian oocyte a subset of transcripts
which translation is positively regulated through the ERK1/2 and mTOR axis. Accumulation of
translationally controlled cell cycle regulators is rapid because the transcription step has already
occurred. For many key cell cycle regulators and spindle assembly components, translational control
represents an additional mechanism to precisely adjust their abundance. It remains to be discovered
how all these different steps of translational control are integrated to temporally produce specific
proteins essential for the meiotic progression of the oocyte.

Another important challenge in the research of the molecular physiology of the oocytes will
be the genome-wide analysis of transcripts which have been translated in the oocytes from aged
females. Reproductive aging is characterized by a marked decline in oocyte quality that contributes
to infertility, miscarriages and birth defects. Surprisingly, ref. [144] show age-associated changes
of an increased number of ribosomes in the oocytes from older females. Ribosome assembly is the
process tightly connected with the initiation of translation and polyadenylation where ERK1/2 and
the PI3K/PKB/mTOR pathways play the key role. Thus, this could have implications for the influence
on oocyte quality.

Another exciting question can be addressed using the recently developed tools for detection in in
situ translation [145]. The oocyte, as a one of the largest cells in the body, might also utilize spatial
translational control which might contribute to the modulation of local events in spindle assembly or
promote asymmetric division in the meiotic division/s. The specific localization and thus function of
the key cap-dependent translation regulatory factors [102,146,147] is essential for the translation of
specific mRNAs at the spindle area to ensure errorless cell cycle progression.

Answers to the many open questions regarding the interplay between translational regulation and
meiotic progression will ultimately make a major contribution to our understanding of the molecular
machinery involved in the two meiotic divisions and are essential in order to elucidate the basis of
genetic errors.
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Abbreviations

ERK1/2 The extracellular regulated kinases 1 and 2
MAPK Mitogen activated protein kinase
MAPKK MAP kinases kinase
MAPKKK MAP kinase
RSK p90 ribosomal S6 kinase
MNKs MAPK-interacting kinases MNK1 and MNK2
S6K p70 S6 kinase
CSF Cytostatic factor
mTOR mammalian target of rapamycin
eIFs Eukaryotic initiation factors
eIF4F Eukaryotic translation initiation complex 4F
eIF4E Eukaryotic translation initiation factor 4E
eIF4B Eukaryotic translation initiation factor 4B
eIF4A Eukaryotic translation initiation factor 4A
eIF4G1 Eukaryotic initiation factor 4G1
4E-BPs EIF4E-binding proteins
4E-BP1 EIF4E
CPE Cytoplasmic polyadenylation element
CPEB CPE-binding protein
CPEB1 CPE-binding protein 1
PI3K Phosphatidylinositol 3-kinase
PKB Protein kinase B
MOS Oocyte maturation factor Mos
MISS MAPK interacting and spindle stabilizing
DOC1R Deleted in oral cancer 1 related
APC/C Anaphase-promoting complex/cyclosome
MPF Maturation promoting factor
m7G 7-methylguanylate
MI Meiosis I
MII Meiosis II
PAP Poly(A) polymerase
CPSF Cytoplasmic polyadenylation specific factor
PP2A Protein phosphatase 2A
Ras Rat sarcoma virus oncogene
Raf MEK kinase Raf
KSR Kinase suppressor of Ras
MP1 MEK scaffolding protein 1
TSC 2 Tuberous sclerosis complex 2
RAPTOR Regulatory associated protein of mTOR
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