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Abstract: Osteoarthritis (OA) is the most prevalent joint disease in older people and is characterized
by the progressive destruction of articular cartilage, synovial inflammation, changes in subchondral
bone and peri-articular muscle, and pain. Because our understanding of the aetiopathogenesis of
OA remains incomplete, we haven’t discovered a cure for OA yet. This review appraises novel
therapeutics based on recent progress in our understanding of the molecular pathogenesis of OA,
including pro-inflammatory and pro-catabolic mediators and the relevant signalling mechanisms.
The changes in subchondral bone and peri-articular muscle accompanying cartilage damage are
also reviewed.
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1. Introduction

Osteoarthritis (OA) is the most prevalent joint disease in older people and is characterized by the
progressive destruction of articular cartilage, synovial inflammation, changes in subchondral bone and
peri-articular muscle, and pain. The progression of OA is usually slow. Nevertheless, it ultimately
leads to joint disability because of the poor repair capacity of cartilage [1,2]. Although various risk
factors associated with OA are known, including genetic predisposition, aging, obesity, mechanical
stress, and traumatic joint injury, the exact aetiology of OA remains largely unknown [3,4] and we
have not discovered a cure for it. Therefore, it is important to appreciate the multi-factorial pathology
of OA.

This review appraises novel therapeutics based on recent progress in our understanding of the
molecular pathogenesis of OA.

2. Molecular Pathology of Cartilage Destruction

In healthy cartilage, chondrocytes respond to their microenvironment to maintain a delicate
balance between synthesis and degradation of the extracellular matrix (ECM), the major components
of which are type II collagen and aggrecan [5]. When the normal physiological mechanism that
maintains the matrix equilibrium fails, ECM components are lost, expanded chondrocytes cluster in
the depleted regions, an oxidative state is induced in the stressed cellular environment, and ultimately
chondrocyte apoptosis occurs [6,7]. Failure of matrix equilibrium is due to the increased expression
of matrix-degrading enzymes [8], inhibition of matrix synthesis [9], and excessive production of
pro-inflammatory mediators, including cytokines, chemokines, and matrix degradation products [9].
Subchondral bone changes lead to osteophyte formation and sclerosis; loosening and weakness of the
peri-articular muscles accompanies the articular cartilage destruction [10,11].
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2.1. Pro-Inflammatory Cytokines

Osteoarthritis was once considered the prototypical non-inflammatory arthropathy distinct from
rheumatoid arthritis (RA), a systemic autoimmune disease characterized by chronic inflammation.
However, current research has demonstrated that inflammation is one of the key factors leading to
the destruction of cartilage in OA. In the OA synovium, inflammatory cell infiltration is frequently
observed, sometimes to a similar degree to that seen in RA. However, it is unclear whether this
inflammation is the cause or consequence of cartilage destruction. Among inflammatory mediators,
the role of cytokines has been studied the most, and many cytokines have been found in OA joints,
in correlation with the severity of inflammation, and these play various roles in disrupting the balance
of catabolic and anabolic activity in joint tissues [12]. IL-1β, IL-6, and TNF-α cytokines play the most
important roles in pathogenesis and disease severity of OA [13], while IL-15, IL-17, IL-18, IL-21 [14],
and chemokines and their receptors, such as MCP-1/CCL2, IL-8/CXCL8, and GRO-α/CXCL1,
have also been implicated [15]. IL-1β is produced by several cell types in joints, including chondrocytes,
immune cells infiltrating the synovium, osteoblasts, adipocytes, and synoviocytes; IL-1β expression
is elevated in OA synovial fluid and membranes during the development of OA [16]. IL-1β strongly
induces the expression and release of proteolytic enzymes, such as matrix metalloproteinases (MMPs)
and aggrecanases, and suppresses the expression of ECM components, including type II collagen
and aggrecan [17,18]. It also acts synergistically with other cytokines, IL-6 and chemokines including
IL-8, MCP-1, and CCL5, to further increase inflammation [14]. Nevertheless, the elimination of IL-1β
in a mouse model of traumatic joint injury aggravated OA, indicating a more complex role for this
cytokine in maintaining cartilage metabolism [19]. TNF-α is also elevated in OA joint tissues and
synovial fluid compared with healthy individuals [12]. Expression of the p55 TNF-α receptor has
been localized in cells at sites of focal loss of cartilage proteoglycans in human OA [20]. TNF-α
suppresses the synthesis of proteoglycan and type II collagen in chondrocytes [21] and stimulates
pro-inflammatory and pro-catabolic mediators such as MMP-1, -3, and -13, IL-6, IL-8, and chemokines
such as MCP-1 and CCL5 [22]. Furthermore, TNF-α promotes the production of nitric oxide (NO),
a potent catabolic and pro-apoptotic mediator, in the synovial tissue, while blockade of the TNF-α
receptor results in the inhibition of NO production in human cartilage tissue [23].

2.2. Pro-Catabolic Factors

Biomechanical stress, genetic factors, and inflammation contribute to the development of OA by
interfering with metabolic responses in chondrocytes that maintain matrix integrity [24]. A series of
pro-catabolic and anti-anabolic factors have been identified in the destruction of articular cartilage in
OA. In the early phase, anabolic activity is increased, but this response fails to repair the cartilage due
to both quantitative and qualitative insufficiency [25], as well as the intrinsic limitation of cartilage
repair. During the development of OA, catabolic activity is triggered by pro-inflammatory cytokines,
including IL-1β, IL-6, IL-17, and TNF-α. Elevated inducible nitric oxide synthase (iNOS) levels in
OA chondrocytes result in an excess of NO, which suppresses proteoglycan and collagen synthesis in
chondrocytes [26] and mediates the induction of matrix-degrading MMPs by accelerating the catabolic
cascade induced by IL-1β or TNF-α. Chondrocyte-derived MMPs are the main enzymes involved in
the breakdown of cartilage collagens and proteoglycans, while pro-inflammatory cytokines up-regulate
the expression of MMPs via sequential activation of the catabolic cascade. MMP-13 effectively degrades
type II collagen and MMP-13 knockout (KO) mice are protected from cartilage destruction in a surgical
OA model [27], while constitutive expression of MMP-13 in transgenic mice induced spontaneous
cartilage degradation [28]. MMP activity is partially inhibited by the tissue inhibitors of MMPs
(TIMPs), whose synthesis is low compared with MMP production in OA cartilage. The importance
of TIMPs in the development of cartilage degradation was demonstrated by elevated serum levels
of type II collagen cleavage products in TIMP-3 KO mice [29]. Aggrecan is a large proteoglycan
and a critical component of the ECM, along with type II collagen. It is degraded by aggrecanases,
particularly ADAMTS-4 and ADAMTS-5, both of which are expressed in human OA cartilage. IL-1 and
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TNF-α up-regulate ADAMTS-4, but not ADAMTS-5, in human synovial cells [30]. In contrast to
humans, in mice, IL-1 elevates ADAMTS-5 expression [31] and ADAMTS-5 KO mice are resistant to
cartilage erosion in a surgical OA model, suggesting that ADAMTS-5 is the predominant aggrecanase
responsible for the development of OA in mice [32].

2.3. Transcription Factors

The role of signalling pathways, including the Notch, HIF-2 α, and NF-κB pathways, has been
studied in the pathogenesis of OA. The increased expression and activation of Notch signalling
components, such as Notch-1 and 2 receptors, Notch ligand, Jag1 and the downstream effector
Hes1, have been identified in human OA and a mouse surgical OA model [33,34]. Although several
downstream effectors mediate the effect of Notch signalling, including Hes1, 5, 7, Hey 1, 2, and HeyL,
only Hes1 expression has been demonstrated in articular chondrocytes and its overexpression induced
MMP 13 expression [34]. Furthermore, Hes1 KO mice were resistant to cartilage destruction and
showed decreased MMP13 expression in a mouse surgical OA model [34], suggesting that Hes1
mediates the catabolic effect of Notch signalling. However, the role of the Notch signalling pathway in
the homeostasis of articular cartilage and OA remains controversial, since transient Notch activation
promotes ECM synthesis and helps to maintain articular cartilage under physiological conditions [35].
Articular cartilage is avascular and maintained in a low-oxygen environment with an oxygen
gradient in cartilage that ranges from around 6% at the joint surface to 1% in the deep layers [36].
The hypoxia-inducible factor (HIF) protein family permits chondrocytes to adapt to hypoxic conditions.
In mice, cartilage-specific HIF-1α deletion leads to articular chondrocyte death, whereas inhibition
of HIF-1α degradation increases accumulation of the ECM [37,38]. Mice heterozygous for HIF-2α
(or endothelial PAS domain-containing protein 1, EPAS-1) are resistant to developing OA [39].
HIF-2α induces numerous catabolic mediators, including MMPs (MMP1, MMP3, MMP9, MMP12 and
MMP13), ADAMTS4, nitric oxide synthase-2 (NOS2), and prostaglandin-endoperoxide synthase-2
(PTGS2) [40]. Therefore, HIF-2 α is believed to be a central transactivator that causes cartilage
destruction by regulating key catabolic genes. NF-κB is activated by inflammatory cytokines, elicits the
secretion of many degradative enzymes, including MMPs and ADAMTSs, and suppresses ECM
synthesis molecules such as Sox9, thereby down-regulating the ECM components type II collagen
and aggrecan [30]. NF-κB also acts in a positive feedback loop to augment the catabolic process
by stimulating NF-κB-mediated inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, and the
chemokine IL-8, and receptor activator of NF-κB (RANK) ligand (RANKL), leading to ECM breakdown
and subsequent cartilage destruction [41]. In support of this, knockdown of NF-κB signalling by siRNA
has been shown to inhibit cartilage degradation in a mouse model of OA [42]. Adenoviral gene delivery
of the NF-κB inhibitor IκBa protects against cartilage loss by suppressing the expression of several
MMPs and aggrecanases [43,44], which indicates that the NF-κB signalling plays a central role in
degenerative cartilage disease. A recent study showed that the Zn2+ transporter ZIP8 was upregulated
in OA cartilage of humans and mice, and the ZIP8-mediated Zn2+ influx upregulated the expression
of matrix-degrading enzymes in chondrocytes [45]. Metal-regulatory transcription factor-1 (MTF1)
was identified as an essential transcription factor in the mediation of Zn2+/ZIP8-induced catabolic
factor expression, and Ad-Mtf1 injection in mice caused osteophyte formation and subchondral bone
sclerosis with more severe cartilage destruction, suggesting that the zinc-ZIP8-MTF1 axis is a major
catabolic regulator of the pathogenesis of OA.

2.4. Inherent Changes in Chondrocytes: Senescence, Apoptosis, Autophagy

OA is a disease prevalent in advanced age, characterized by reduction of repair mechanism of
cell damage. Cellular senescence is considered a signal transduction process that results in cells entering
a stable state of growth arrest, and ultimately results in the loss of cellular replication [46]. Senescent cells
are identified by a constellation of characteristics, such as absence of proliferation markers,
increase in cell volume, an activated DNA damage response and expression of senescence-associated
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β-galactosidase (SA-Bgal) [47]. In addition to reduction of tissue regenerative potential, senescent cells
chronically secrete proteases and pro-inflammatory mediators, (senescence-associated secretory
phenotype (SASP)), which may perturb tissue structure and create a tissue microenvironment
promoting proliferation of neoplastic cells [48]. Aged chondrocytes display a number of characteristics
detrimental to cartilage integrity: they are more susceptible to cell death induced by an NO donor
and less responsive to growth factors, such as insulin-like growth factor(IGF)-1 and osteogenic
protein-1 [49]. When compared to cells isolated from young donors, chondrocytes from older adults
secrete more MMP-13, IL-1 and IL-7, which are characteristics of SASP [50,51]. Application of cell
senescence regulation in the treatment of OA is at its early phase. A recent study using p16-3MR
transgenic mouse, which allows selective removal of senescent cells, showed that selective elimination
of these cells attenuated the development of cartilage destruction after anterior cruciate ligament
transection (ACLT), reduced pain and increased cartilage development [52]. Intra-articular injection of
a senolytic molecule that selectively kills senescent chondrocytes led to attenuation of articular cartilage
degeneration and amelioration of pain in ACLT-induced OA in C57BL mice as well, suggesting that
regulation of senescence may serve as a therapeutic target for OA.

Apoptosis is a highly regulated process of cell death involving specific sets of intracellular
signalling pathway. During the late phase of OA, cartilage becomes hypocellular with numerous
empty lacunae, and the rate of apoptotic chondrocytes has been reported as high as 20% [53]. While it
is intuitive that the death of chondrocytes, the only cell residing in cartilage, would result in the failure
to appropriately maintain the structure of articular cartilage, a high rate of apoptosis in cartilage would
result in matrix degradation within a short period of time, which is not compatible with the chronic
course of OA [54]. Chondrocyte apoptosis may lead to reduction of ECM, and decrease of ECM may in
turn result in further chondrocyte apoptosis because of the loss of matrix–cell interaction and anchorage
dependence, eventually causing a viscous cycle [55]. Attempts at employing apoptosis modulators
for treatment of OA has been hampered by potential harmful effects such as cancer, and inhibitors
of apoptosis have been tested mostly in pre-clinical studies. For example, caspase inhibitor, the key
regulator of apoptosis, was used in canine and rabbit model of OA, and found to suppress chondrocyte
apoptosis as well as cartilage degradation [56–58]. Recently, autophagy, an adaptive response to protect
cells from stresses, has been gaining interest as a regulatory mechanism of chondrocyte apoptosis [59].
Autophagy is induced by a variety of stimuli, including metabolic stress and hypoxia, and regulates
catabolic processes of energy recycling in eukaryotic cells [60]. Autophagy has been shown to have
a complex cross-talk with apoptosis and is induced by common upstream signals. Previous reports
have shown that autophagy is decreased in OA cartilage and in an animal OA model, and autophagy
activation protected chondrocytes from death, suggesting that autophagy is protective in cartilage
degradation [61]. Chondrocyte autophagy is activated by hypoxia inducible factor-1 (HIF-1)-dependent
AMP activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), while HIF-2α
inhibits HIF-1α-induced autophagy [62] [63]. Resveratrol (3,4′,5-trihydroxystilbene) is an active food
ingredient from grapes and peanuts, which was found to extend life span in nematodes, and ameliorate
the fitness of human cells undergoing metabolic stress. Resveratrol was found to prevent cartilage
destruction in a mouse model of OA by activating Sirtuin 1 and suppressing the expression of HIF-2α
and catabolic mediators such as MMP 13 and ADAMTS5 [64]. Interestingly, a recent study showed
that intra-articular injection of resveratrol led to an increase in autophagy markers such as Unc-51-like
kinase1, Beclin1, and microtubule-associated protein light chain 3, and delayed articular cartilage
degradation in DMM-induced OA. These results indicate that autophagy regulators such as resveratrol
may be therapeutic targets for OA.

3. Molecular Pathology of Bone and Peri-Articular Muscle

Bone remodelling is thought to play an important role in the pathophysiology of OA and
numerous studies have revealed that changes in cartilage and bone are tightly coupled to the
progression of OA. The subchondral bone underneath the articular cartilage is organized into
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the subchondral cortical plate and a layer of cancellous bone [65]. In the early stage of OA,
subchondral bone remodelling increases. Cellular signalling for microdamage repair, stimulation of
vascular invasion by angiogenic factors, and the disruption of cartilage crosstalk via pathological
microcracks are responsible for this increased subchondral bone remodelling [66]. In the late stage
of OA, bone remodelling decreases and subchondral bone sclerosis increases, along with thickening
of the cortical plate. Despite this thickening, the stiffness of the subchondral bone decreases due to
decreased mineralization [67]. In addition, new bone formation characterized by osteophytes [68] and
increased osteoblastic activity, dominate the late phase of OA [69], and subchondral bone cysts and
bone marrow lesions are present [70].

In addition to cartilage, subchondral bone is also exposed to catabolic factors, such as MMPs and
ADAMTSs, chemokines, and inflammatory cytokines secreted by hypertrophic chondrocytes, and these
factors have been implicated in the altered biochemical and functional abilities of osteoblasts [71].
For instance, osteoblasts switch from the normal phenotype to a sclerotic phenotype on exposure to
IL-6 in combination with other cytokines, such as IL-1β [71]. The penetration of vessels into articular
cartilage exposes chondrocytes to cytokines and growth factors from subchondral bone, such as
vascular endothelial growth factor (VEGF), nerve growth factor (NGF), IL-1, IL-6, hepatocyte growth
factor (HGF), and insulin-like growth factor (IGF)-1 [69].

Several signalling pathways have been implicated in the changes in subchondral bone that
contribute to the progression of OA, including Wnt, TGF-β/BMP, and MAPK signalling. Of these,
the Wnt/β-catenin signalling pathway has emerged as a key regulator of bone remodelling.
For example, activation of Wnt signalling was observed in osteocytes in subchondral bone, and altered
Wnt activation, either by knockdown of Wnt antagonists or overexpression of β-catenin, resulted in
increased bone formation in an animal model, leading to thicker and stiffer bones [72–74]. More recently,
Zhong et al. [75] provided a possible cross-talk between IL-1b and Wnt signalling in OA. Their findings
revealed that IL-1b decreased the expression of Wnt antagonist, Dickkopf-1 (DKK1) and Frizzled
related protein (FRZB), through upregulation of iNOS/NO, thereby activating the transcription of
WNT target genes in human chondrocyte [75].

In addition to cartilage degradation and abnormal subchondral bone remodelling, pathological
peri-articular muscle weakness appears in OA. There is increasing evidence that the consequences of
OA, such as pain, joint instability, maladaptive postures, and defective neuromuscular communication,
are associated with decreased lower limb muscle strength or function [76]. However, it remains unclear
whether this change in peri-articular muscle is responsible for the diseased onset and progression,
or is a consequence of the degenerative joint. Although OA is defined as a loss of articular cartilage
within the joint, muscle impairment associated with the OA may be the primary underlying cause
of the functional limitations [77], and muscle dysfunction may actually lead to a further increase in
cartilage deterioration. The quadriceps, hamstrings, and hip muscles are all significantly impaired in
patients with knee OA, and the quadriceps, which is involved in functional tasks such as standing
up from a chair, going up and down stairs, and level surface walking, is a central determinant of
physical function in patients with knee OA [78,79]. Greater quadriceps strength is associated with
protection from cartilage loss in the lateral compartment of the patellofemoral joint [80]. The muscle
mass loss induced by botulinum type-A toxin injections in rabbits led to cartilage degradation
four weeks after injury, suggesting that muscle weakness can cause degenerative joint disease [81].
Proteoglycan loss occurs in the cartilage of mdx/utrophin−/− mice, which lack both dystrophin and
utrophin, two important skeletal muscle structural proteins, demonstrating that skeletal muscle plays
a crucial role in maintaining cartilage integrity [82]. A surgically induced OA mouse model exhibited
impaired muscle function, with changes in twitch and tetanic force in the tibialis anterior muscle [83].
Although the link between the molecular regulation of peri-articular muscle function and knee OA is
still under investigation, inflammation in muscles surrounding the knee may cause muscle weakness
in knee OA. Inflammatory mediators, such as monocyte chemotactic protein 1 (MCP-1), p65 NF-κB,
and JNK-1, are increased in the muscles of patients with knee OA, and were found to correlate with
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altered knee function, slower gait velocity, and greater physical disability [84,85]. These markers
also upregulate pro-inflammatory cytokines, including TNF-α, IL-1β, Il-6, and IL-8, and atrogin-1,
a muscle-specific atrophy-related E3 ubiquitin ligase [86,87]. Most studies have focused on the
inflammatory responses within the synovium and articular chondrocytes; however, these findings
suggest that the inflammatory response in patients with knee OA affects peri-articular tissues, such as
subchondral bone and skeletal muscle.

4. Novel Therapeutics Based on the Molecular Pathogenesis of OA

4.1. Anti-Inflammatory and Cytokine Blocker

4.1.1. Anti TNF-α Therapies

TNF-α blockers are very effective in inflammatory joint diseases such as RA, and TNF-α plays
a considerable role in the pathogenesis of OA. However, their effects on OA disease modification have
not been proven clinically. Adalimumab is a human monoclonal antibody bioengineered to bind to
TNF-α and prevent receptor binding [88]. A 12-month randomised, double-blind, placebo-controlled
trial evaluated the efficacy of adalimumab (subcutaneously 40 mg every two weeks) in 60 patients
with erosive hand OA [89]. Progression from palpable soft tissue swelling to joint damage
decreased ten-fold in the adalimumab group compared with the placebo group. Although fewer
adalimumab-treated patients developed erosive OA in their interphalangeal joints than the placebo arm
(26.7% vs. 40%), the difference was not significant. In a randomised, double-blind, placebo-controlled,
multicentre study, 85 patients with hand OA who were non-responders to analgesics and non-steroidal
anti-inflammatory drugs (NSAIDs) received adalimumab (40 mg) or placebo subcutaneously every
15 days, and adalimumab was not superior to placebo for alleviating pain [90]. Infliximab has been
suggested to reduce the secondary hand OA in patients with RA [91].

An open-label randomized controlled study involving 56 patients with moderate to severe knee
OA received an intraarticular injection either 10 mg adalimumab, or 25 mg hyaluronic acid [92].
The decrease in the pain visual analog scale (VAS) score, Western Ontario and McMaster Universities
Arthritis Index (WOMAC) score, Patient Global Assessment score, and Physician Global Assessment
score from baseline to week 4 were greater in the adalimumab than hyaluronic acid group. There was
no difference in adverse events between two groups except one patient who developed a pulmonary
infection in the adalimumab group. The pathology of OA is very heterogeneous, with the degree of
synovitis varying among patients. In one study, synovitis was not present in half of the patients with
early OA [93]. A study examining the benefits of TNF-α blockers in specific subgroups of patients
with higher levels of inflammation is needed.

A randomized, double-blind, placebo-controlled, multicenter study [NCT02471118], subcutaneous
injection of adalimumab for knee OA with inflammation is recruiting status in a Canadian [94].
Study designed to evaluate the clinical efficacy and safety of adalimumab versus placebo when used
to treat subjects with a diagnosis of knee OA, and with clinical features of inflammation, whose pain
persists despite receiving maximum tolerated doses of conventional therapy. A total of 130 subjects
will be entered into the study.

4.1.2. IL-1β Signalling Inhibitors

IL-1β is a key pathogenic factor in OA. Diacerein, a small-molecule IL-1β inhibitor, reduces the
number of IL-1 receptors, resulting in a reduction in functional IL-1 heterodimer receptor
complexes [95]. In a three-year randomised, double-blind, placebo-controlled trial, 507 hip OA patients
received either diacerein or placebo daily. Although the pain and functional impairment associated
with OA remained unchanged, diacerein significantly reduced joint space narrowing compared with
placebo [96]. A Cochrane review of the effect of diacerein in OA concluded that the small benefit
derived in terms of joint space narrowing was of questionable clinical relevance and has been observed
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only in hip OA [97]. In vitro and experimental models showed a reduction in cartilage destruction with
IL-1 inhibition by IL-1 receptor antagonists (IL-1Ra) [98]. Three patients with aggressive erosive hand
OA with major disability who had failed conventional treatment were treated with 100 mg anakinra
(an IL-1β receptor antagonist) daily subcutaneously; at the third month, an improvement in pain was
observed, and the NSAIDs were withdrawn [99]. A randomised, double-blind, placebo-controlled trial
involving 170 patients with painful knee OA, whose joints were injected with either 50 or 150 mg of
anakinra or placebo control, showed no improvement in the WOMAC score or cartilage turnover after
4 weeks [100].

4.1.3. NO Inhibitors

Preclinical studies have shown that iNOS KO mice are resistant to developing OA [101],
and pharmacological inhibition of iNOS reduced OA progression and pain in a monosodium
iodoacetate (MIA) rodent model of OA [102]. A recent clinical trial investigated the safety and
efficacy of a novel irreversible iNOS inhibitor on slowing OA progression in a cohort of overweight
and obese patients with knee OA [103]. The drug failed to slow the rate of joint space narrowing over
the course of 96 weeks. Withdrawn: The study stopped early, before enrolling its first participant.

4.2. Bone Modulators

4.2.1. Bisphosphonates

It has been suggested that the administration of antiresorptive drugs such as bisphosphonates,
which are traditionally used to treat osteoporosis, slows the bone remodelling process and could lead to
chondroprotection [104]. Zhu et al. showed that early treatment of ovariectomised rats with alendronate
significantly attenuated cartilage erosion by inhibiting subchondral bone loss [105]. Strassle et al.
demonstrated that when the bisphosphonate zoledronate was administered in a monoiodoacetate
model of painful arthritis in rats, it protected against subchondral bone loss, cartilage degradation
and, importantly, pain [106]. In a clinical setting, bisphosphonate treatment inhibits bone and cartilage
degradation based on an assessment of biochemical markers, although the joint space narrowing
observed on X-rays indicated its failure to attenuate the structural deterioration [107]. In a one-year,
placebo-controlled trial that included 59 patients with knee OA treated with zoledronic acid 5 mg
intravenously as a single infusion, a significant reduction in visual analogue pain scores versus
placebo was seen after six months, but not after 12 months; interestingly, a significant reduction
in bone marrow lesions was detected with magnetic resonance imaging (MRI) [108]. In a recent
meta-analysis of randomised controlled trials that compared bisphosphonate therapy with placebo
or conventional medication, Xing et al. assessed the efficacy of bisphosphonates in OA; 15 studies
were eligible for analysis and they included 3566 participants (1517 on bisphosphonates) [109]. It was
shown that bisphosphonate therapy leads to significant improvements in pain, stiffness and function
in OA patients assessed using the WOMAC score. Clodronate is a first-generation, non-amino
bisphosphonate, registered in Europe for the treatment of postmenopausal osteoporosis. In a recent
study, effects of clodronate in OA patients were investigated [110]. Clodronate increased SOX9
expression, the transcription factor responsible for progenitor stem cells chondrogenic commitment.
This study showed that intramuscular 200 mg clodronate weekly injection increased mesenchymal
stem cells maturation toward the chondrogenic differentiation. Clodronate also reduced pain VAS
score and improved mental and physical performance in patients. In a randomised, double-blind,
placebo-controlled trial, 80 symptomatic knee OA patients received either once weekly intraarticular
injection of 2 mg clodronate or saline placebo for 4 weeks with 12 weeks of follow-up [111].
The injection of clodronate is associated with significantly greater benefits than placebo in pain VAS,
Lequesne index (looking at pain, maximum distance walked and activities of daily living), patient and
physician Global Assessment score, WOMAC pain subscale, and acetaminophen requirement.
A 6-month randomised pilot trial of 40 patients with active erosive hand OA showed that intramuscular
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clodronate is effective on pain with a significant reduction in the consumption of anti-inflammatory or
analgesic drugs, and improvement of hands function [112]. Reduction of serum Cartilage Oligomeric
Matrix Protein (COMP), which bind type I and type II collagen fibers and catalyse fibrillar collagen
assembly, was observed after clodronate treatment.

4.2.2. Strontium Ranelate

Strontium ranelate (SR) is an antiosteoporotic drug capable of changing the balance between
bone resorption and bone formation, protecting postmenopausal women from spinal and peripheral
fractures [113,114]. It has been hypothesised to act on both subchondral bone and cartilage based on
the results of in vitro studies [115]. At a dose of 1800 mg/kg/day, SR significantly attenuated cartilage
matrix and chondrocyte loss, and decreased chondrocyte apoptosis, in a medial meniscal tear model
using Sprague–Dawley rats [116]. Subchondral bone remodelling was also significantly attenuated
in the SR-treated group, as shown by the improved microarchitecture and intrinsic mechanical
properties. Reginster et al. presented data from a large randomised clinical trial of patients with
radiographic and clinical knee OA [115] and showed that SR had a beneficial effect on the radiographic
progression of disease based on joint space narrowing after three years of treatment compared with
placebo. The effects on pain appeared to be more modest and were only significant for the 2 g group,
as assessed using the total WOMAC score and pain subscore. Serial quantitative MRI was analysed
in 330 patients to evaluate the effect of SR on cartilage volume loss and bone marrow lesions [117].
The higher-dose of SR (2 g daily) resulted in reduced cartilage volume loss at the tibial plateau versus
placebo, assessed after one and three years. In patients with bone marrow lesions in the medial
compartment at baseline, a significant decrease in the bone marrow lesion score was detected at
36 months in both treatment groups. These results suggest a beneficial effect of SR on structural
progression of primary knee OA.

4.2.3. NGF Inhibitors

Biologic agents that inhibit NGF (fasinumab, tanezumab, and fulranumab) have been tried in OA
and have shown promising results in terms of pain relief and improved functional capacity [118,119].
Individuals with knee or hip OA, according to the American College of Rheumatology criteria with
radiographic confirmation and who were receiving partial symptom relief with NSAIDs, may benefit
more from tanezumab monotherapy; adverse events were more frequent with tanezumab than with
NSAIDS, however, and were highest with both in combination [118]. Unfortunately, the rapid
progression of OA in NGF inhibitor treated group led the US Food and Drug Administration to
impose a partial clinical hold for OA [119]. Three clinical trials are currently being conducted to
evaluate the efficacy and long term safety of fasinumab in patients with pain due to osteoarthritis of
the knee or hip [NCT03161093] [120] [NCT02683239] [121], and [NCT03304379] [122].

5. Conclusions

Until recently, studies of OA have focused mostly on the inflammatory response within the
synovium and articular chondrocytes. Currently, the role of periarticular tissues such as subchondral
bone and skeletal muscle is gaining recognition and the mechanism of pain generation independent
of cartilage degradation is being increasingly pursued. Experiments using more relevant animal OA
models and large-scale clinical trials are needed to evaluate the efficacy of various therapeutic targets.
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