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Abstract: Intestinal microbiota and their metabolites are strongly associated with host physiology.
Developments in DNA sequencing and mass spectrometry technologies have allowed us to obtain
additional data that enhance our understanding of the interactions among microbiota, metabolites,
and the host. However, the strategies used to analyze these datasets are not yet well developed. Here,
we describe an original analytical strategy, metabologenomics, consisting of an integrated analysis
of mass spectrometry-based metabolome data and high-throughput-sequencing-based microbiome
data. Using this approach, we compared data obtained from C57BL/6J mice fed an American diet
(AD), which contained higher amounts of fat and fiber, to those from mice fed control rodent diet.
The feces of the AD mice contained higher amounts of butyrate and propionate, and higher relative
abundances of Oscillospira and Ruminococcus. The amount of butyrate positively correlated with the
abundance of these bacterial genera. Furthermore, integrated analysis of the metabolome data and
the predicted metagenomic data from Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States (PICRUSt) indicated that the abundance of genes associated with butyrate
metabolism positively correlated with butyrate amounts. Thus, our metabologenomic approach is
expected to provide new insights and understanding of intestinal metabolic dynamics in complex
microbial ecosystems.

Keywords: metabologenomics; microbiome; metabolome; intestinal microbiota; next-generation
sequencing; CE-TOFMS; multi-omics; American diet
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1. Introduction

Intestinal microbiota, which consists of a large number of bacteria, archaea, viruses, and fungi,
inhabit the gastrointestinal tracts of animals, including humans [1]. These microbial communities have
been shown to contribute to food digestion, nutrient absorption, and development of the host immune
system. Recent rapid advances in DNA sequencing technology have allowed researchers to conduct
in-depth studies of the structures of intestinal microbiota and their effects on host physiology. Previous
studies have reported that intestinal microbial dysbiosis could be a risk factor for several diseases,
including colon cancer [2,3], hepatic cancer [4], obesity [5–7], diabetes [8–10], atherosclerosis [11–13],
immune system disorders [14,15], and brain function disorders [16–20].

On the other hand, recent studies have found that intestinal microbiota produces a range of
low-molecular-weight metabolites such as short-chain fatty acids (SCFAs) [21,22], trimethylamine [12],
indole metabolites (e.g., indole propionate, indole-3-acetaldehyde) [23,24], vitamins [25,26],
polyamines [27,28], and secondary bile acids [29]. These molecules play direct and/or indirect
roles in maintaining good health and suppressing various diseases. For example, intestinal
microbiota-produced acetate that is secreted into the systemic circulation after absorption from the
intestinal lumen has been shown to suppress asthma [15]. Additionally, it has been reported that
acetate produced by probiotic Bifidobacterium improves intestinal defense and protects the host from
enteropathogenic infection [30]. In another case, acetate-mediated activation of G-protein-coupled
receptor (GPCR) 43 suppresses insulin signaling in adipocytes, and regulates energy balance by
suppressing accumulation of excess energy and promoting fat consumption [31]. Furthermore, butyrate,
one of the most abundant SCFAs produced by intestinal microbiota, induces the differentiation of naïve
T cells to colonic regulatory T cells; these Treg cells play a pivotal role in suppressing inflammatory and
allergic responses, thereby attenuating colonic inflammation in mice [32]. These studies indicate that
intestinal microbiota-derived metabolites are as important as the composition of intestinal microbiota;
characterization of these metabolites is needed to fully understand the relationship between the
intestinal ecosystem and human health.

We therefore inferred that we could obtain novel knowledge by combining the metabolome and
microbiome analysis of the intestinal environment. A multi-omics approach could be a valuable
tool for understanding the entire intestinal ecosystem, including the relationships among microbiota,
metabolites, and host. Additionally, it is considered that a multi-omics approach can provide new
knowledge about the mechanisms underlying the key roles the microbiota plays in the varying
conditions of the intestinal environment. To gain new insight and knowledge from omics data, the data
analysis process is highly important. For example, there are some analytical methods or pipelines for
analyzing DNA sequence datasets obtained from microbiota. Quantitative Insights into Microbial
Ecology (QIIME) [33] and mothur [34] are used for processing raw sequence datasets to microbiome
profiles and comparing these profiles. Linear Discriminant Analysis (LDA) Effect Size (LEfSe) [35] is
used for finding factors that explain the differences between microbial communities. Phylogenetic
Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) [36] is used for
predicting the function of the microbial communities from 16S rRNA encoding gene sequence dataset.
Analytical methods or pipelines for metabolome dataset such as MetaboAnalyst [37] and MetaCore
(GeneGo, Inc.) pick up factors that might explain the differences between sample groups. However,
analytical pipelines for multi-omics dataset are not well developed. Therefore, it is necessary to
combine existing methods, or develop original methods to comprehensively analyze the relationships
between the intestinal microbiome and metabolome. Complicated computational analysis is a potential
barrier for scientists utilizing a multi-omics approach in this field. For that reason, although there have
been studies that investigated microbial structure and/or intestinal metabolome profiles [38–40], there
have been only a limited number of studies that performed a comprehensive analysis of multi-omics
datasets using correlation and network analysis [41,42]. Therefore, to obtain novel information and
further clarify entire intestinal microbial ecosystems, it is highly important to develop easy-to-use
analytical systems for multi-omics datasets.
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Here, we describe our original analytical strategy, metabologenomics, an integrated analysis
of mass spectrometry-based metabolome data and high-throughput-sequencing-based microbiome
data that seeks to understand the intestinal ecosystem. In the present study, we utilized the
metabologenomic approach to clarify the relationships between the intestinal metabolome and
microbiome profiles of mice fed control or American diet (AD). Our metabologenomic approach
can detect detailed information regarding changes to the profiles of the intestinal metabolome and
microbiome, and regarding the interactions among metabolite concentrations, microbiome abundance,
and microbiome gene sets in the gut of mice maintained on AD. This approach provides new insights,
facilitating our understanding of intestinal metabolic dynamics in complex microbial ecosystems.

2. Results

2.1. Development of the Metabologenomic Approach

First, to obtain novel information regarding the whole intestinal microbial ecosystem, we designed
an original approach, Metabologenomics, for analysis of the multi-omics dataset. This system consists
of separate analyses of the intestinal metabolome and microbiome, as well as an integrated analysis of
the combined intestinal metabolome and microbiome datasets. An overview of the study design is
depicted in Figure 1; details of these computational analyses are presented schematically in Figure
S1. For this first example of the use of our metabologenomic approach, we obtained fecal samples
from mice maintained on a control diet or AD, and these specimens were used for the extraction of
metabolites and DNA.

For the metabolome approach, amounts and/or relative abundances of metabolites could be
measured comprehensively using mass spectrometry and/or NMR. In the present study, Capillary
Electrophoresis Time-Of-Flight Mass Spectrometry (CE-TOFMS) was used to obtain the metabolome
dataset. CE-TOFMS is a tool that can measure polar and ionic low-weight metabolites. It has been
reported that CE-TOFMS can detect 179 metabolites from mice feces [43], and 214 fecal metabolites
from school-aged children [44]; the detected compounds include SCFAs, amino acids, some vitamins,
and polyamines. To clarify the differences in metabolites between the control and AD groups, principal
component analysis (PCA), discriminant analysis, and statistical analysis were used. Additionally,
Metabolite Set Enrichment Analysis (MSEA) [37] was used to evaluate pathways that differed between
the two dietary groups.

For microbiome analysis, V1–V2 regions of 16S rRNA-encoding genes were sequenced by MiSeq
(Illumina). Sequence reads that passed the quality filters were clustered into Operational Taxonomic
Units (OTUs) based on a cut-off of 97% similarity and assigned to the taxonomy using QIIME. To clarify
the differences in microbiota components between the control and AD groups, UniFrac principal
coordinate analysis (PCoA), discriminant analysis, and statistical analysis were used. Furthermore,
to consider not only the microbiome structure but also the microbiome function, we utilized PICRUSt
to predict the metagenome profiles based on 16S rRNA gene sequence data. To demonstrate the
relationships between the intestinal metabolome and microbiome, Procrustes analyses were used
to visualize and compare the two datasets. We conducted correlation analyses to obtain detailed
information about relationships among the metabolome, microbiome, and predicted metagenome
profiles. To simplify the complex interactions between metabolites and microbes, hierarchical clustering
of autocorrelation maps was used to identify clusters that share the same patterns of changes,
and hundreds of significant correlations were visualized in a network graph.
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Figure 1. Overview of metabologenomic analysis workflow. Steps used for evaluation of 
metabolome profiles are summarized in the top row (yellow shading). This process starts with 
measurement of the amount of fecal metabolites to obtain profiles for the 100–200 metabolites. These 
metabolome profiles then are compared using Principal Component Analysis (PCA), discriminant 
analysis, and pathway analysis. Steps used for evaluation of microbiome profiles are summarized in 
the bottom row (pink shading). This process starts with the sequencing of the community’s 16S 
rRNA-encoding genes to clarify the relative abundance of operational taxonomic units (OTUs). 
Microbial memberships and structures are compared using UniFrac principal coordinate analysis 
(PCoA) and discriminant analysis. Additionally, Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States (PICRUSt) is used to predict metagenomic profiles. Steps for 
metabologenomic analysis are summarized in the central part of the figure (middle row; orange 
shading). The PCoA and/or PCA plots are used for Procrustes analyses. The relative abundances of 
microbial taxonomy and/or metagenome profiles and amounts of metabolites then are used for 
correlation analysis and network analysis. 

2.2. AD Consumption Alters Intestinal Metabolome Profiles 

Fecal samples were obtained from male C57BL/6J mice fed control diet or AD (control diet: n = 
6, AD: n = 5) from weaning at 8, 12, 24, 36, and 52 weeks (Figure S2A). Previous studies have 
reported that consumption of Western diets or food containing high concentrations of fat and/or 
carbohydrate can lead to intestinal microbial imbalance and induce diseases like colon cancer [2,3], 
hepatic cancer [4], obesity [5–7], diabetes[8–10], and atherosclerosis [11–13].  
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Figure 1. Overview of metabologenomic analysis workflow. Steps used for evaluation of metabolome
profiles are summarized in the top row (yellow shading). This process starts with measurement of
the amount of fecal metabolites to obtain profiles for the 100–200 metabolites. These metabolome
profiles then are compared using Principal Component Analysis (PCA), discriminant analysis, and
pathway analysis. Steps used for evaluation of microbiome profiles are summarized in the bottom
row (pink shading). This process starts with the sequencing of the community’s 16S rRNA-encoding
genes to clarify the relative abundance of operational taxonomic units (OTUs). Microbial memberships
and structures are compared using UniFrac principal coordinate analysis (PCoA) and discriminant
analysis. Additionally, Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt) is used to predict metagenomic profiles. Steps for metabologenomic analysis are
summarized in the central part of the figure (middle row; orange shading). The PCoA and/or PCA plots
are used for Procrustes analyses. The relative abundances of microbial taxonomy and/or metagenome
profiles and amounts of metabolites then are used for correlation analysis and network analysis.

2.2. AD Consumption Alters Intestinal Metabolome Profiles

Fecal samples were obtained from male C57BL/6J mice fed control diet or AD (control diet: n = 6,
AD: n = 5) from weaning at 8, 12, 24, 36, and 52 weeks (Figure S2A). Previous studies have reported
that consumption of Western diets or food containing high concentrations of fat and/or carbohydrate
can lead to intestinal microbial imbalance and induce diseases like colon cancer [2,3], hepatic cancer [4],
obesity [5–7], diabetes [8–10], and atherosclerosis [11–13].

In this study, we used a laboratory chow formulated to match the daily human nutritional content
in the United States [45]; the nutritional contents of AD and the control chow are summarized in
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Table S1. AD contains 15.5% fat and 5.3% fiber, whereas the control diet contains 5.0% fat and 3.5%
fiber. AD represents a relatively moderate-fat diet compared to the other high-fat diets (which can
contain 30–35% fat) that have been used as in previous studies [46–48].

There were no significant differences in body weights between control and AD mice (Figure S2B).
A total of 184 fecal metabolites were detected by CE-TOFMS. These metabolites corresponded to
various pathways, including the metabolism of carbohydrates, energy, lipids, and amino acids
(Figure 2A). Of these 184 fecal metabolites, 84 metabolites were significantly different between the
control and AD groups, as assessed by the Mann-Whitney U test (Table S2). Of these 84 metabolites,
74 showed decreased levels in the AD group (Table S2). To evaluate pathways that are involved in the
84 metabolites with significantly changed, MSEA was conducted. MSEA calculates whether a specific
pathway is over-represented by chance within an arbitrary list of metabolites. MSEA showed that
metabolites related to methionine metabolism were significantly changed between the control and
AD groups (Table 1). To investigate whether metabolites contributed to the differences between the
control and AD groups, multivariate analyses were conducted. PCA plots and analysis of similarities
(ANOSIM) showed that the fecal metabolome profiles clustered into 2 groups depending on host
diet (Figure 2B). However, the Euclidean distances were not significantly different based on host age
or individual variability (Figure S3). According to the PC2 coefficients of the PCA, the amounts of
butyrate, propionate, and amino acids such as Asp, Glu, Arg, Leu, Ile, and Met were higher, and the
amounts of creatinine, 3-hydroxybutyrate, taurine, thiamine, and nucleosides were lower, in the AD
group (Figure 2C). Additionally, orthogonal partial least squares discriminate analysis (OPLS-DA)
showed results similar to those of PCA. According to the OPLS-DA covariance scores, higher amounts
of butyrate and propionate, and lower concentrations of creatinine, 3-hydroxybutyrate, thiamine, Ala,
and taurine in AD contributed to the separation of the two groups (Figure 2D). The metabolites for
which the absolute amount values exceeded the threshold in both PC2 coefficients and OPLS-DA
covariances are shown in the box plots in Figure 2E.

Table 1. Metabolic pathways significantly changed in AD compared to control as assessed by MSEA.

Pathway Total 1 Hits 2 Expect 3 Fold
Change 4 p Value Hit Metabolites

Methionine
Metabolism 43 11 3.44 3.20 <0.001

AMP, Adenosine,
N,N-Dimethylglycine, Choline,

Gly, Ser, Met, Homoserine,
Sarcosine, Putrescine,
Methionine sulfoxide

Glycine and
Serine

Metabolism
59 11 4.72 2.33 0.005

AMP, Creatine,
N,N-Dimethylglycine, Gly, Ala,

Thr, Ser, Sarcosine,
O-Phosphoserine, Met, ADP

Purine
Metabolism 74 11 5.93 1.85 0.028

Adenine, AMP, Adenosine, Gly,
Guanine, Guanosine,

Hypoxanthine, Xanthine, dAMP,
ADP-ribose, ADP

Thiamine
Metabolism 9 3 0.72 4.16 0.029 AMP, Thiamine, ADP

Alanine
Metabolism 17 4 1.36 2.94 0.041 AMP, Gly, Ala, ADP

1 Total numbers of metabolites that corresponded in each pathway. 2 Observed numbers of metabolites that derived
from given dataset in each pathway. 3 Expected observed numbers of metabolites that are calculated by given
dataset in each pathway. 4 Hits/expect.
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Figure 2. AD consumption alters intestinal metabolome profiles in mouse. (A) Heatmap showing the
concentrations of quantified metabolites using a rainbow scheme. Gray indicates the concentrations of
metabolites that fell below the detection limit. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways that each metabolite belongs to are shown to the right of the heatmap. Labels at the top of the
panel indicate dietary group and mouse age (in weeks); (B) PCA of the intestinal metabolome profiles
normalized by Pareto and analysis of similarity (ANOSIM). The ellipse denotes the 95% significance
limit of the model, as defined by Hotelling’s t-test; (C) Bar graph showing PC2 values for metabolites
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that had |PC2 coefficients| > 0.11 in loading of PCA; (D) Bar graph showing OPLS-DA covariance
values for metabolites that had |OPLS-DA covariance| > 0.16 based on OPLS-DA of metabolome
profiles of control and AD mice. The model resulted in one predictive and one orthogonal four
components with the cross-validated predictive ability Q2 (cum) = 0.863 and the total explained
variance R2X (cum) = 0.791; (E) Box plots indicating fecal amounts of metabolites that had |PC2
coefficient values| > 0.11 in PCA, |OPLS-DA covariance values| > 0.16 in OPLS-DA, and false
discovery rate (FDR) < 0.05 based on Mann–Whitney U test and Benjamini-Hochberg correction when
comparing between the control and AD groups. Significant differences are indicated by * FDR < 0.05,
** FDR < 0.01.

2.3. AD Consumption Alters Intestinal Metagenome Profiles

To evaluate the impact of AD consumption on intestinal microbial composition, 16S rRNA-
encoding genes were sequenced by MiSeq. A total of 880,770 reads of filter-passed 16S rRNA gene
sequences were clustered into 1666 OTUs based on a minimum similarity of 97%. Genus-level microbial
structures are shown as a bar graph in Figure 3A. Of 106 genera, 15 differed significantly in abundance
between the control and AD groups (Table 2). Unweighted and weighted UniFrac principal coordinate
analyses (PCoAs) and ANOSIM were conducted to compare the microbial membership and structure.
The results of UniFrac PCoA and ANOSIM indicated the separation between control and AD in both
unweighted and weighted analyses (Figure 3B,C). The distances between samples within the same
dietary group were significantly shorter than the distances between different dietary groups, based on
both unweighted and weighted UniFrac distances (Figure S4A). However, there was no significant
difference in the distances between samples within the same age and of different ages, and samples
within the same subject and of different subjects (Figure S4B,C). These results indicated that dietary
condition has a bigger impact on intestinal microbial membership and structure than host age and
individual variability. To identify the bacterial taxa that may contribute to this separation, OPLS-DA
was performed [49–51]. The bacterial taxa that contribute to the separation are shown in Figure 3D.
Additionally, as another method of discriminant analysis, we also conducted LEfSe analysis [35].
LEfSe results showed that 39 taxa contributed to the separation between the control and AD groups
(Figure S5A). The taxa that were present at higher proportions in the AD group were distributed
across a wide range of taxa that included the Bacteroidetes, Firmicutes, and Proteobacteria; in contrast,
the taxa that were present at higher proportions in the control group were only belonging to Firmicutes
(Figure S5B). The relative abundance of the taxa which the absolute amount values exceeded the
threshold in both PC2 coefficients and OPLS-DA covariances are shown in the box plots in Figure 3E.
These results indicated that microbial memberships and structure differed between the control and AD
groups; however, there were no significant differences in alpha diversity scores between the microbiota
present in the two dietary groups (Figure S5C).
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Figure 3. AD consumption alters intestinal microbiome profiles. (A) Bar graph showing the relative
abundance of top 10 most-abundant genera (average abundance in all samples >1%) in control and
AD mice; (B) Unweighted and (C) weighted UniFrac PCoA and ANOSIM comparing the intestinal
microbiome profiles of control and AD mice; (D) Bar graph showing bacterial genera that had
|OPLS-DA covariance| > 0.11 based on OPLS-DA of the microbiome profiles of control and AD mice.
The model resulted in one predictive and one orthogonal four components with the cross-validated
predictive ability Q2 (cum) = 0.832 and the total explained variance R2X (cum) = 0.918; (E) Box plots
indicating relative abundance of genera that have |LDA score| > 2.0, |OPLS-DA covariance| > 0.11 in
OPLS-DA, and FDR < 0.05 based on Mann–Whitney U test and Benjamini-Hochberg correction between
the control and AD groups. Significant differences are indicated by * FDR < 0.05, ** FDR < 0.01.
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Table 2. Relative abundance of microbial taxa that differ significantly between control and AD mice.

Taxon
Control AD

p Value FDR
Fold Change

Mean ± S.D. Mean ± S.D. (AD/Control)

Unclassified Erysipelotrichaceae 0.339 ± 0.302 0.042 ± 0.056 0.0020 0.0190 0.13
[Eubacterium] 0.007 ± 0.009 0.002 ± 0.003 0.0022 0.0196 0.24

Unclassified Clostridiaceae 0.681 ± 0.279 0.173 ± 0.109 <0.0001 <0.0001 0.25
Unclassified RF39 0.149 ± 0.074 0.038 ± 0.026 <0.0001 <0.0001 0.26

Clostridium 0.055 ± 0.056 0.018 ± 0.013 0.0004 0.0048 0.32
Prevotella 2.043 ± 1.070 1.006 ± 0.661 0.0003 0.0037 0.49

Unclassified S24-7 38.452 ± 13.486 27.053 ± 13.126 0.0050 0.0336 0.70
Unclassified Prevotellaceae 3.059 ± 1.890 4.913 ± 2.817 0.0044 0.0336 1.61

Oscillospira 1.840 ± 1.258 3.559 ± 1.631 0.0002 0.0026 1.93
Unclassified Clostridiales 0.536 ± 0.409 1.052 ± 0.561 0.0006 0.0066 1.96

Ruminococcus 0.389 ± 0.309 0.832 ± 0.728 0.0044 0.0336 2.14
Coprococcus 0.221 ± 0.135 0.609 ± 0.305 <0.0001 <0.0001 2.75

Unclassified Bacillaceae 0.001 ± 0.002 0.015 ± 0.031 0.0049 0.0336 23.62
Bacillus 0.000 ± 0.000 0.007 ± 0.011 0.0002 0.0026 -

Lactococcus 0.000 ± 0.000 0.093 ± 0.086 <0.0001 <0.0001 -

Furthermore, to investigate the functions of the microbial community, predicted metagenome
profiles were generated by PICRUSt [36] based on the observed 16S rRNA gene sequences. PICRUSt
showed that several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly
different between the control and AD groups (Table S3), although the overall compositions were
similar (Figure S6).

2.4. The Relationships between Fecal Metabolites and Microbes

To clarify the relationship between intestinal metabolome and microbiome profiles in the control
and AD groups, Procrustes analysis combining PCA of the metabolome profiles and weighted UniFrac
PCoA of the microbiome profiles were conducted to co-visualize the data. Procrustes analyses revealed
that plots of both the metabolome and microbiome separated into 2 groups depending on dietary
conditions (Figure 4A). This result suggested that both metabolome and microbiome profiles are
affected by dietary components, consistent with the results shown in Figures 2B and 3C. Additionally,
Procrustes analyses showed the similarity between the metabolome and microbiome plots, suggesting
that there were some associations between intestinal microbial structure and metabolome profile.

We next performed correlation and network analysis to comprehensively understand the crosstalk
between microbes and metabolites. To simplify the complex relationships among intestinal microbiome
abundance, gene sets, and metabolites, autocorrelation maps and hierarchical clustering analysis
(HCA) were used to construct clusters that had the same patterns of changes. The metabolites,
genera, and gene sets were clustered into 7 (cluster M1–M7), 5 (cluster G1–G5), and 3 (cluster
P1–P3) clusters, respectively (Figure 4B–D and Table S4). Cluster M1 consisted of several metabolites
that had higher amounts in AD mice and included molecules such as propionate, tartrate, cysteine,
and diethyl-2-phenylacetamide. Cluster M2 included nucleotides (cytosine and guanine), and cluster
M4 included methionine metabolism-associated metabolites (sarcosine, carnitine, and methionine
sulfone); for both M2 and M4, metabolites were observed at higher amounts in control mice.
Metabolites in cluster M3 (butyrate, creatine, Met, and N6, N6, N6-trimethyllysine) were present
at higher amounts in AD mice. Cluster M5 included metabolites that were detected at either higher
or lower amounts in AD mice. Cluster M6 included amino acids such as Tyr, Phe, Ile, Leu, and Val,
all of which were present at higher amounts in control mice. Notably, all branched-chain amino acids
(BCAA) fell within cluster M6. Cluster M7 also was composed predominantly of metabolites that
were higher amounts in control mice, including amino acids such as Asn, Pro, Ser, Thr, Gln, Gly,
Lys, Ala, and Glu. For the genera, clusters G1, G3, and G4 were composed mainly of Bacteroidales,
Clostridiales, and Bacilli, respectively. Cluster G2 consisted of 4 different phyla and contained the
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family Erysipelotrichaceae; the genera belonging to this family tended toward higher abundance
in mice fed the control diet. Cluster G5 consisted of 5 different phyla, and included most of the
Proteobacteria. For the clusters of PICRUSt-based predicted genes, clusters P1 and P2 primarily
consisted of gene sets that exhibited higher abundance in control mice. Cluster P3 constituted a large
cluster that included gene sets that were higher abundances in AD mice.

To obtain more detailed information about the entire interactions between each bacterial taxon,
gene set, and metabolite, especially those that differed significantly between the control and AD groups,
Spearman’s rank correlation coefficients were calculated, and significantly correlated pairs (FDR < 0.05)
were plotted in the form of a network graph (Figure 4E). The genera belonging to cluster G2 tended
to show positive correlation with clusters P1, M2, M4, M5, M6, and M7 (containing parameters that
were more abundant in control mice), and to show negative correlations with clusters M1, M3, and
P3. Similar correlation patterns were observed for the genera in cluster G1 and clusters P1 and P3,
however there were a few positive correlations with metabolites. Clusters G3 and G4 consisted
predominantly of taxa that were present at higher proportions in the AD group, and these clusters
typically exhibited positive correlations with metabolites of cluster M1, and negative correlations with
metabolites of clusters M2, M5, and M6 However, clusters G3 and P3 showed positive correlations
with M3; in contrast, cluster G4 showed negative correlations with M4 and M7. While a large number
of potential pairs yielded significant correlations, we first focused on relationships between amount
of choline and relative abundance of bacterial genera. Since the amount of choline was significantly
lower in AD compared to control mice. Choline is known to be converted to trimethylamine (TMA)
by intestinal microbiota [52] and it has been reported that the order Clostridiales and the genus
Ruminococcus could be possibly associated with converting choline to TMA [13]. The amount of choline
in present study negatively correlated with the abundance of Coprococcus, Lactococcus, Oscillospira,
and Ruminococcus (Figure S7A), suggesting that these genera may be involved in metabolizing choline
to TMA. We next focused on the relationships between the microbiome and butyrate, a metabolite that
is known to be produced by intestinal microbiota [32]. In the present work, the amount of butyrate
showed significant positive correlation with the relative abundances of bacteria belonging to the genus
Oscillospira and Ruminococcus (Figure 4F). Additionally, the result of PICRUSt showed that predicted
abundances of genes associated with butyrate metabolism correlated significantly with the proportion
of Oscillospira and Ruminococcus, and with fecal butyrate concentration (Figure 4G,H). Moreover, there
was significant positive correlation between amount of butyrate and predicted gene abundance of
butyryl CoA:acetate CoA transferase that converts between butyryl-CoA and butyrate (Figure S7B).
It has been reported that some bacterial genera belonging to the Clostridiales, including Oscillospira,
produce butyrate from dietary fiber [53], suggesting that our metabologenomic approach could be
used for the detection of the metabolic activity of intestinal microbiota.
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Figure 4. Metabologenomic approach reveals the interactions among abundances of microbial genus,
predicted gene set, and metabolite concentration. (A) Procrustes analysis combining PCA of intestinal
metabolome profiles (end of white line) and weighted UniFrac PCoA of microbiome profiles (end of
orange line). The fit of Procrustes transformation over the first three dimensions is reported as the
M2 value; Autocorrelation maps of (B) metabolites, (C) bacterial genera, and (D) predicted bacterial
gene sets (KEGG pathway) based on Spearman’s rank correlation coefficients. Red and blue indicate
positive and negative correlation, respectively. Hierarchical clustering based on Euclidean distance
was used to separate each metabolite/genus/gene set into clusters shown as side bars (to the right
of the respective panels); (E) Bacterial genera, predicted gene sets, and metabolites that differed
significantly between control and AD were assessed by network analysis. The pairs that yielded
significant correlation between each bacterial genus, predicted gene set, and metabolites based on
Spearman’s rank correlation coefficients (FDR < 0.05) are portrayed in this network graph. Node shapes
denote the type of dataset (circle, metabolites; triangle, genera; square, predicted gene set). Green and
red outline colors of nodes denote significantly higher abundance in control or AD group, respectively.
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Inside color of nodes indicate the clusters defined in Figure 4B–D. Pink and light blue lines denote
positive and negative correlation, respectively. Positive correlations (F) between relative abundances
of Oscillospira/Ruminococcus and butyrate amount (r = 0.638, FDR < 0.001 for Oscillospira; r = 0.622,
FDR < 0.001 for Ruminococcus), (G) between relative abundance of Oscillospira/Ruminococcus, and
abundance of genes associated with butyrate metabolism (r = 0.894, FDR < 0.001 for Oscillospira;
r = 0.805, FDR < 0.001 for Ruminococcus), and (H) between abundance of genes associated with butyrate
metabolism and butyrate concentration (r = 0.587, FDR < 0.001).

3. Discussion

In this study, the intestinal environments of mice fed control diet or AD were compared by using
metabologenomic analysis, our novel approach. Although there were no significant differences
observed in body weight between animals maintained on control and AD diets, the results of
metabologenomic analyses showed the potentially relations between pairs of metabolites, microbes,
and bacterial gene sets.

CE-TOFMS-based metabolome analysis of murine feces indicated that SCFAs such as butyrate
and propionate were higher amounts in the AD group than in the control group. It has been reported
that commensal microbes digest dietary fibers in the colon, resulting in the production of SCFAs [22].
In the present study, the amount of fiber in the AD chow was approximately 50% higher than that
in the control diet. SCFAs are sensed by GPCRs expressed by host intestinal epithelial cells such as
enteroendocrine cells [54]. Propionate is taken up by the liver and used as a substrate for lipogenesis
and gluconeogenesis [55]. On the other hand, butyrate induces the differentiation of colonic regulatory
T cells and has been reported to exert anti-inflammatory effects [32]. Although mice fed with a high-fat
diet have been reported to exhibit decreased fecal SCFA level in mice [56] and rats [57], our findings
indicated that animals maintained on AD (which contained higher levels of fat and fiber than the
control diet) showed higher fecal amounts of SCFAs. This observation suggested that high fiber
intake may facilitate the production of SCFAs even with the ingestion of a high-fat diet. Furthermore,
this result suggested that CE-TOFMS-based metabolome analysis may be able to detect the changes in
SCFA amount resulting from a mere 1.5-fold difference in the amount of dietary fiber intake.

The results of MSEA and the Mann–Whitney U test indicated that the amounts of metabolites
associated with methionine metabolism (including AMP, adenosine, N,N-dimethylglycine, choline,
Gly, Ser, homoserine, sarcosine, putrescine, and methionine sulfoxide) were significantly lower, and the
amount of Met was significantly higher, in AD mice compared to control mice. Choline that is derived
from dietary phosphatidylcholine (e.g., as provided by eggs and meat) is known to be converted to
TMA by intestinal microbiota [52] and TMA is further metabolized to trimethylamine-N-oxide (TMAO)
by the flavin monooxygenase system in the host liver. Recent studies reported that TMAO is a risk
factor for cardiovascular disease [12]. In this study, the amount of choline negatively correlated with
the abundance of Coprococcus, Lactococcus, Oscillospira and Ruminococcus that were significantly higher
in AD-fed mice. It has been reported that the order Clostridiales and the genus Ruminococcus were
positively correlated with both plasma TMA and TMAO levels in apolipoprotein E knockout mice [13],
and several Clostridiales species have been reported to cleave choline [58]. Therefore AD consumption
led to increased relative abundance of the genera belonging to Clostridiales such as Ruminococcus,
and these genera possibly associated with converting choline to TMA.

PCA and OPLS-DA showed that the concentrations of taurine, thiamine, 3-hydroxybutyrate,
and creatinine were significantly lower in AD-fed mice (compared to the control group). Taurine is
a semi-essential amino acid and it is known that intestinal microbiota associated with removal of
taurine from conjugated bile acids [59]. Additionally, dietary taurine may have anti-inflammatory
effects against dextran sulfate sodium-induced colitis in mice [60]. Thiamine, also known as vitamin
B1, is produced by some members of the intestinal microbiota such as Bacteroides thetaiotaomicron,
which can both synthesize and import this compound [61]. It also has been reported that Acetobacter
pomorum provides thiamine to its host, Drosophila melanogaster [62]. 3-Hydroxybutyrate, one of the



Int. J. Mol. Sci. 2018, 19, 4079 13 of 21

ketone bodies, has been reported to increase in the serum of mice fed a high-fat/low-carbohydrate
ketogenic diet, although the host serum concentration of this compound is unaffected by antibiotic
treatment [20]. Therefore, while host levels of this metabolite may be affected by dietary intervention,
the effects do not appear to be due to the function of the intestinal microbiota. Creatinine is among
the molecules associated with methionine metabolism. It has been reported that the amounts of fecal
creatinine and creatine are higher in germ-free mice than in mice colonized with a human intestinal
microbiota [38], suggesting that the amounts of intestinal creatinine and creatine may be affected by
the intestinal microbiota.

UniFrac analysis revealed that both the intestinal microbial membership and structure were
altered by AD consumption. However, although several previous studies have reported that high-fat
or Western diet induces a loss of microbial diversity [63–65], AD consumption did not affect the
α-diversity of the microbiota in the present study. This apparent conflict may reflect the fact that the
AD chow in the present study included a relatively moderate fat content (15.5%) and higher fiber
content (5.3%) compared to those of the high-fat diets used in previous studies. According to our
microbiome analysis, bacterial taxa belonging to the Clostridiales (including the genera Oscillospira,
Ruminococcus, and Coprococcus) were more abundant in the AD group than in the control group.
In contrast, unclassified Clostridiaceae were depleted in the AD group compared to the control.
These results suggested that bacteria within the same taxonomic order are differentially affected by
dietary nutrients. The present work revealed a similar phenomenon for unclassified Prevotellaceae
and members of the genus Prevotella. Previous studies comparing microbial composition between
developed and developing countries reported that high fiber and high carbohydrate consumption
yielded elevated proportions of Prevotella within the fecal microbiota [66,67]. For example, the intestinal
microbiome profiles of Bangladeshi children exhibited high proportions of Prevotella and Oscillospira,
and low proportions of Bacteroides, compared to those of American children [66,67]. Similar results
were observed for a comparison of the microbial composition of children living in Burkina Faso
(Africa) to that of children living in Europe, such that children in Burkina Faso had greater amounts
of Prevotella, lower amounts of Bacteroides, and higher levels of SCFA production. On the other hand,
it also has been reported that the proportion of the Prevotellaceae is increased in the feces of obese
humans [68]. These results support the hypothesis that various bacteria have different responses to
dietary nutrients despite phylogenetic similarities.

In both metabolome and microbiome analysis, there was no significant difference in the distances
between samples within the same age and of different ages, although previous studies have reported
that the structure of the gut microbiota was affected by host aging [69]. The age of mice used in this
study was 8 to 52 weeks old. In contrast, previous studies used 8–24 weeks old mice as the young
group, and mice over 18 months as the elderly group [69–73], suggesting that mice aged 52 weeks old
might be too young to observe the significant differences on gut environment due to host aging.

Correlation analyses of integrated metabolome and microbiome datasets reveal large networks
within the intestinal environment and numerous potentially related pairs of metabolites, microbes,
and gene sets. Autocorrelation maps and hierarchical clustering were used to divide the dataset
into clusters that exhibited similar patterns of change, thereby providing a simplified view of the
networks and potentially facilitating improved understanding of the complex intestinal ecosystem.
According to the network graph, both clusters G3 and G4 consisted of genera that were more abundant
in AD mice. Cluster G3 positively correlated with cluster M3 and negatively correlated with cluster
M2 and P1, but cluster G4 positively correlated with clusters M1 and M3, and negatively correlated
with cluster M2, M4, M5, M6, and M7. These results suggested that these bacteria have different
functions, although members of these clusters of organisms had similar responses to the distinct
diets. Thus, this analysis potentially supports our understanding of bacterial activity in the intestine,
providing information that could not obtained from analysis of only using either metabolome or
microbiome. Notably, our results showed that the amount of butyrate exhibits significant positive
correlation with the proportions of Oscillospira and Ruminococcus, an inference that is consistent



Int. J. Mol. Sci. 2018, 19, 4079 14 of 21

with a recent study that reported that butyrate is produced primarily by member of the microbial
order Clostridiales [32]. Notably, Oscillospira have been predicted as a potential butyrate producers
based on their genome sequences [53]. Moreover, the results of PICRUSt analysis in the present
work showed that abundance of predicted genes associated with butyrate metabolism significantly
correlated with the relative abundances of Oscillospira and Ruminococcus, and with fecal butyrate
concentration. Moreover, there was also significant positive correlations between butyrate amount and
predicted gene abundance of butyryl CoA:acetate CoA transferase that converts between butyryl-CoA
and butyrate. These results demonstrated that our metabologenomic approach has the potential to
clarify the activity of bacteria in the intestine based on analyses of metabolome, microbiome, and
metagenome datasets. Furthermore, we could integrate a shotgun metagenome dataset from intestinal
microbiome instead of predicted metagenome profiles from 16S rRNA-encoding gene sequences.
Additionally, for metabolome datasets, other technologies such as liquid chromatography and/or gas
chromatography mass spectrometry could be utilized as a complementary tool to obtain in-depth
profiles of metabolites that are known to be associated with the function of gut microbiota such as
lipids, bile acids, and sugars. Our original integrated approach has the potential to be expanded by
including other powerful analytical techniques to yield more detailed and comprehensive information
about the intestinal environment. Therefore, the metabologenomic approach is expected to provide
new insights into the function of the intestinal microbiota, especially for the investigation of the effects
of small alterations in the intestinal environment.

4. Materials and Methods

4.1. Animal Experiment

Starting from three weeks of age, male specific-pathogen-free C57BL/6J mice housed at the
Central Institute for Experimental Animals (CIEA; Kawasaki, Kanagawa, Japan) were fed ad libitum
with either a control diet (n = 6) or American diet (AD) (n = 5). CA-1 chow (CLEA Japan, Inc., Meguro,
Tokyo, Japan) was used as the control diet. AD chow was manufactured at CIEA. The nutritional
composition of the American diet was defined based on daily human nutritional content in the United
States, as described in a report distributed by National Research Council of United States; a diet of
equivalent nutritional composition then was formulated as laboratory chow by CIEA [45]. Details of
the dietary composition of the control and AD diets are provided in Table S1. Murine fecal samples
were obtained from each animal at 8, 12, 24, 36, and 52 weeks of age, and the body weight of each mouse
was measured each week during the in-life interval (Figure S2A). Fecal samples were snap-frozen in
liquid nitrogen and stored at −80 ◦C; the resulting specimens were shipped frozen to the Institute for
Advanced Biosciences, Keio University, Yamagata, Japan, for metabolome and metagenome analysis.
All in-life animal procedures were carried out in accordance with the Institutional Guidelines for
Experimental Animal Welfare (Ethics numbers: 09043 (9 October 2009)).

4.2. Metabolite Extraction and CE-TOFMS Measurements

Fecal metabolites were extracted from fresh thawed fecal samples (about 10 mg) suspended in
400 µL of 50% methanol in Millli-Q water supplemented with the internal standards (20 µM each of
methionine sulfone and D-camphor-10-sulfonic acid (CSA)). The mixture was combined with two 3-mm
zirconia beads (BioSpec Products, Bartlesville, OK, USA) and about 100 mg of 0.1-mm zirconia/silica
beads (BioSpec Products, Bartlesville, OK, USA) and subjected to 3 min of vigorous shaking using a
Micro Smash (TOMY, Nerima, Tokyo, Japan). The suspension was centrifuged at 4600× g for 15 min
at room temperature, and the resulting supernatant was transferred to a 5-kDa-cutoff filter column
(Ultrafree MC-PLHCC 250/pk for Metabolome Analysis, Human Metabolome Technologies, Tsuruoka,
Yamagata, Japan). The flow-through was dried under vacuum and the residue then was dissolved
in 40 µL of Milli-Q water containing reference compounds (200 µM each of 3-aminopyrrolidine and
trimesate). The levels of extracted metabolites were measured in both positive and negative modes
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by CE-TOFMS as previously described [74]. All CE-TOFMS experiments were performed using an
Agilent capillary electrophoresis system (Agilent Technologies, Santa Clara, CA, USA).

4.3. Metabolome Data Processing and Analysis

Raw data were analyzed using our proprietary automatic integration software MasterHands (ver.
2.16.0.15) [74]. Annotation tables were produced from measurements of standard compounds and
were aligned with the datasets according to similar m/z value and normalized migration time. Then,
peak areas were normalized against those of the internal standards methionine sulfone and CSA for
cationic and anionic metabolites, respectively. Concentrations of each metabolite were calculated based
on their relative peak areas and the concentrations of the standard compounds. Metabolites that were
detected in at least 4 samples per group were subjected to further data analysis. The amounts of each
metabolite were portrayed using a heatmap. HCA was performed by Spearman’s rank correlation.
These analyses were performed using Mev TM4 software (ver. 4.8.1; Dana-Farber Cancer Institute) [75].
PCA and orthogonal partial least squares discriminate analysis (OPLS-DA) were run with the SIMCA
15 software (Sartorius Stedim Biotech, Umeå, Sweden) [76,77]. To identify and interpret features of the
metabolome profiles, Metabolome Enrichment Set Analysis with Over Representation Analysis mode
was conducted using a web-based application [78].

4.4. DNA Extraction

Fecal DNA isolation was performed as described previously with some modifications [79].
In short, half to one pellet of murine feces were washed with TE buffer (10 mM Tris-HCl and 1
mM EDTA, pH 8.0). Next, fecal samples were lyophilized for approximately 18 h using a VD-800R
lyophilizer (TAITEC, Nagoya, Aichi, Japan). Each freeze-dried fecal sample was combined with four
3.0-mm zirconia beads, approximately 100 mg of 0.1-mm zirconia/silica beads, 400µL DNA extraction
buffer (TE containing 1% (w/v) sodium dodecyl sulfate), and 400µL of phenol/chloroform/isoamyl
alcohol (25:24:1) and subjected to vigorous shaking (1500 rpm. for 15 min) using a Shake Master
(Biomedical Science, Shinjuku, Tokyo, Japan). The resulting emulsion was subjected to centrifugation
at 17,800× g for 10 min at room temperature, and bacterial genomic DNA was purified from the
aqueous phase by a standard phenol/chloroform/isoamyl alcohol protocol. RNA was removed from
the sample by RNase A treatment; the resulting DNA sample then was purified again by another
round of phenol/chloroform/isoamyl alcohol treatment.

4.5. 16S rRNA Gene Sequencing

16S rRNA genes in the fecal DNA samples were analyzed using a MiSeq sequencer (Illumina).
The V1-V2 region of the 16S rRNA genes was amplified from the DNA (approximately 10 ng per
reaction) isolated from feces using a bacterial universal primer set consisting of primers 27Fmod
with an overhang adapter (5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGRGTTTGATY
MTGGCTCAG-3′) and 338R with an overhang adapter (5′-GTGACTGGAGTTCAGACGTGTGC
TCTTCCGATCTTGCTGCCTCCCGTAGGAGT-3′) [32,80]. PCR was performed with Tks Gflex DNA
Polymerase (Takara Bio, Inc., Kusatsu, Shiga, Japan) and amplification via the following program:
one cycle of denaturation at 98 ◦C for 1 min; 20 cycles of amplification at 98 ◦C for 10 s, 55 ◦C for 15 s,
and 68 ◦C for 30 s; and a final extension at 68 ◦C for 3 min. The amplified products were purified
using Agencourt AMPure XP kits (Beckman Coulter, Atlanta, GA, USA). The purified products then
were further amplified using a primer pair as follows: a forward primer (5′- AATGATACGGCGA
CCACCGAGATCTACAC-NNNNNNNN-ACACTCTTTCCCTACACGACGC-3′) containing the P5
sequence, a unique 8-bp barcode sequence for each sample (indicated by the string of Ns), and an
overhang adapter; and a reverse primer (5′-CAAGCAGAAGACGGCATACGAGAT-NNNNNNNN-
GTGACTGGAGTTCAGACGTGTG-3′) containing the P7 sequence, a unique 8-bp barcode sequence
for each sample (indicated by the string of Ns), and an overhang adapter. After purification
using Agencourt AMPure XP kits, the purified products were mixed in approximately equal molar
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concentrations to generate a 4 nM library pool after which the final library pool was diluted to
6 pM, including a 10% PhiX Control v3 (Illumina) spike-in for sequencing. Finally, MiSeq sequencing
was performed according to the manufacturer’s instructions. In this study, 2 × 300-bp paired-end
sequencing was employed.

4.6. Analysis of 16S rRNA Gene Sequences Using QIIME

Analysis of 16S rRNA gene sequences was performed as described previously with some
modifications [79]. Initially, to assemble the paired-end reads, Fast Length Adjustment of SHort
reads (FLASH) (v1.2.11) [81] was used. Assembled reads with an average Q-value < 25 were filtered
out using an in-house script. A total of 16,014 filter-passed reads were randomly selected from each
sample and used for further analysis. Reads then were processed using the Quantitative Insights
into Microbial Ecology (QIIME) pipeline (ver. 1.9.1) [33]. Sequences were clustered into operational
taxonomic units (OTUs) based on 97% sequence similarity, and OTUs were assigned to Greengenes
Database (ver. 13.8) [82]. Differences in OTU abundance between groups were identified using
LEfSe [35].

4.7. Metagenome Prediction with PICRUSt

Metagenome prediction with PICRUSt was performed as described previously [36]. A synthetic
metagenome was generated based on the observed 16S rRNA gene sequences. First, 16S rRNA gene
sequences were clustered into OTUs based on a 97%-similarity threshold and OTUs were assigned to
taxonomies based on the Greengenes Database (ver. 13.5) [82]. The resultant OTU table was normalized
with inferred 16S rRNA gene copy numbers and predicted microbial metagenomes using a script
provided by PICRUSt (ver. 1.0.0) [36].

4.8. Metabologenomic Analysis

The scheme of the metabologenomic approach that integrates the metabolome and microbiome
analysis is shown in Figure S1. ANOSIM and Procrustes analysis were performed using the QIIME
pipeline (ver. 1.9.1). The two-dimensional correlation maps of abundances of genera, of predicted gene
sets, and of metabolome abundance based on Spearman’s rank correlation coefficients were drawn
using R (gplots package) (https://cran.r-project.org/web/packages/gplots/index.html). The datasets
of metabolites, genera, and gene sets were clustered into 7, 5, and 3 clusters (respectively) based on
Euclidean distance-based hierarchical clustering. The genera, predicted gene sets, and metabolomes
whose abundances differed significantly between the control and AD groups were subjected to further
network analysis. The Spearman’s rank correlation coefficients of every pair of abundance of genus,
abundance of predicted gene set, and metabolome concentration were calculated using R; pairs that
exhibited significant correlation (FDR < 0.05 based on Benjamini-Hochberg correction) were portrayed
as a network graph using Cytoscape software (ver. 3.6.1) (http://www.cytoscape.org/) [83].

4.9. Statistical Analysis

Non-parametric Mann-Whitney U test and FDR values based on Benjamini-Hochberg correction
were used for statistical evaluations of comparisons between two groups. Adjusted p values (FDR)
< 0.05 were considered statistically significant.

4.10. Nucleotide Sequence Accession Number

The microbiome analysis data have been deposited at the DDBJ Sequence Read Archive (http:
//trace.ddbj.nig.ac.jp/dra/) under accession number DRA007508.

5. Conclusions

In conclusion, our metabologenomic analysis, which integrated CE-TOFMS-based metabolome
analysis and high-throughput-sequencing-based microbiome analysis, detected changes in the murine

https://cran.r-project.org/web/packages/gplots/index.html
http://www.cytoscape.org/
http://trace.ddbj.nig.ac.jp/dra/
http://trace.ddbj.nig.ac.jp/dra/


Int. J. Mol. Sci. 2018, 19, 4079 17 of 21

intestinal environment associated with AD chow consumption. Correlation analyses of merged
metabolome and microbiome information illustrated the existence of numerous networks within the
intestinal environment and revealed many potentially related microbe-metabolite pairs. Therefore,
the novel metabologenomic approach developed here is expected to facilitate further analyses of the
metagenome in intestinal (and other) environments. The metabologenomic approach will be able to
provide more detailed information on intestinal metabolites and microbiota, and as well as elucidate
new relationships between the two. We hope that the work described here will become a model
study that can be used as a standard in the field of multi-omics, enhancing our understanding of
intestinal environments.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/12/
4079/s1.
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