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Abstract: HD-Zip proteins are unique to plants, and contain a homeodomain closely linked to a
leucine zipper motif, which are involved in dimerization and DNA binding. Based on homology in
the HD-Zip domain, gene structure and the presence of additional motifs, HD-Zips are divided into
four families, HD-Zip I–IV. Phylogenetic analysis of HD-Zip genes using transcriptomic and genomic
datasets from a wide range of plant species indicate that the HD-Zip protein class was already present
in green algae. Later, HD-Zips experienced multiple duplication events that promoted neo- and
sub-functionalizations. HD-Zip proteins are known to control key developmental and environmental
responses, and a growing body of evidence indicates a strict link between members of the HD-Zip II
and III families and the auxin machineries. Interactions of HD-Zip proteins with other hormones
such as brassinolide and cytokinin have also been described. More recent data indicate that members
of different HD-Zip families are directly involved in the regulation of abscisic acid (ABA) homeostasis
and signaling. Considering the fundamental role of specific HD-Zip proteins in the control of key
developmental pathways and in the cross-talk between auxin and cytokinin, a relevant role of these
factors in adjusting plant growth and development to changing environment is emerging.

Keywords: Arabidopsis; developmental pathways; environmental responses; HD-Zip transcription
factors; hormones

1. The HD-Zip Class of Proteins

The homeodomain-leucine zipper (HD-Zip) class of proteins appears to be present exclusively in
the plant kingdom and is characterized by the presence of a homeodomain closely linked to a leucine
zipper motif [1]. The Arabidopsis genome codes for 48 HD-Zip proteins that, on the basis of sequence
homology in the HD-Zip domain, the presence of additional conserved motifs, and specific intron and
exon positions, have been grouped into four families: HD-Zip I (17 members), HD-Zip II (10 members),
HD-Zip III (5 members) and HD-Zip IV (16 members) [2–7].

HD-Zip genes are evolutionary highly conserved and there is evidence that they were already
present in green algae [8–11]. Later in evolution, the HD-Zip class experienced multiple duplication
events that promoted neo- and sub-functionalizations for terrestrial life [11].

Experimental work has demonstrated that the HD-Zip domain, but not the HD by itself,
interacts with DNA [12], and it has been shown that a correct spatial relationship between the HD
and the leucine zipper motif is crucial for DNA binding [12]. Binding-site selection analysis and
subsequent chromatin immunoprecipitation sequencing (ChIP-seq) experiments have determined
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that the HD-Zip proteins recognize pseudo-palindromic DNA elements [3,12–14]. HD-Zip I proteins
interact with the CAAT(A/T)ATTG motif [12,15,16] whereas HD-Zip II proteins preferentially bind
the CAAT(C/G)ATTG motif [12,13]. Binding-site selection analysis identified GTAAT(G/C)ATTAC as
the sequence preferentially recognized by HD-Zip III proteins [3]; however, more recent genome-wide
binding-site experiments suggest that the AT(G/C)AT central core is sufficient for DNA binding [14].
For HD-Zip IV proteins, the CATT(A/T)AATG motif was shown to be required for DNA binding [13]
and found in the promoters of true target genes [17–19]. Interestingly, the identified cis-elements are
very similar, particularly the HD-Zip II and III binding sites which share the same core sequence
[AAT(G/C)ATT] [3,12], thus suggesting that members of the different families of HD-Zip proteins may
regulate common target genes [20,21].

Beside the homeodomain-leucine zipper motif, HD-Zip I proteins have no other established
functional domain; conversely, most of the HD-Zip II transcription factors contain an LxLxL type of
ERF-associated amphiphilic repression (EAR) motif [7,22] (Figure 1), and there is evidence that they
function as negative regulators of gene expression [7,20,23–25]. Furthermore, it was recently shown
that HOMEOBOX ARABIDOPSIS THALIANA (HAT) 1 and HAT22, two members of the HD-Zip II
protein family, interact with the TOPLESS (TPL) co-repressor protein via the EAR motif [26]. In addition
to the HD-Zip domain, HD-Zip III and HD-Zip IV proteins contain a steroidogenic acute regulatory
protein-related lipid-transfer (START) domain motif with putative lipid-binding capability and a
Small body size–mothers against decapentaplegic homolog 4 (Smad4) activation domain (SAD) [27,28]
(Figure 1). Finally, HD-Zips III, and not HD-Zips IV, share a MEKHLA domain (Figure 1). A region
within this domain contains a region homologous to the PAS (Per-Arnt-Sim)-domain known to act
as intracellular sensor of light, oxygen, or redox-potentials [28]. Consistently, it has been reported
that REVOLUTA (REV), a member of the HD-Zip III family, acts as a redox-sensitive transcription
factor [29]. Furthermore, it has also been shown that the MEKHLA domain is involved in the
dimerization of HD-Zip III proteins with DORNROSCHEN (DRN) and DORNROSCHEN-like (DNRL),
two APETALA2 (AP2) transcription factors involved in embryo patterning [30].
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Figure 1. Schematic representation of the protein domains possessed by each HD-Zip family. ATHB1,
ATHB2, ATHB8, and GLABRA2 were chosen as representative members of the HD-Zip I, II, III and IV
families, respectively. N-term, N-terminus consensus; EAR, LxLxL type of ERF-associated amphiphilic
repression; HD, Homeodomain; Zip, Leucine zipper; START, steroidogenic acute regulatory
protein-related lipid-transfer domain; SAD, Small body size–mothers against decapentaplegic homolog
4 (Smad4) activation domain; MEKHLA, named after the identification of the highly conserved amino
acids Met, Glu, Lys, His, Leu, Ala. Adapted from Ariel et al (2007) [6].

HD-Zip proteins are known to control key developmental and environmental responses [21,31–33].
In particular, a large body of evidence indicates that HD-Zip I and HD-Zip II proteins are involved
in environmental responses whereas HD-Zip III and HD-Zip IV proteins act as core developmental
factors. However, several recent studies have led to review this conclusion. Indeed, evidence is
accumulating that, on one hand, key developmental regulators (members of HD-Zip III and IV
families) play an important role in abiotic stress responses and, on the other hand, environmental
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factors (members of the HD-Zip I and II families) have relevant functions in developmental pathways,
thus suggesting that HD-Zip transcription factors may be crucial in adjusting development to changing
environment. Here we report recent advances on the understanding of the complex interactions of
HD-Zip transcription factors between themselves and with hormone signaling networks, including
those involved in abiotic and biotic stress responses.

2. HD-Zips I

Sequence comparison and phylogenetic analysis indicated that members of the HD-Zip I
protein family can be classified into six different clades, I to VI, and that the presence and
the position of conserved sequences may be related to specific function(s) [4,34]. Genome-wide
expression studies revealed that several Arabidopsis HD-Zip I genes show transcriptional changes
in response to treatments with abscisic acid (ABA) [4], and there is evidence that members of
clades I and II of the HD-Zip I family have roles related to drought stress and ABA signaling in
different plant species [35–41]. For example, ARABIDOPSIS THALIANA HOMEOBOX (ATHB) 7
and ATHB12 (belonging to the clade I) [34] are both strongly induced by water deficit and ABA.
Chromatin immunoprecipitation (ChIP) and gene expression analyses have demonstrated that ATHB7
and ATHB12 positively regulate the expression of five genes encoding clade A protein phosphatases
type 2C (PP2C), acting as central negative regulators of ABA signaling [42–44]. Furthermore,
it has also been shown that ATHB7 and ATHB12 act to repress the transcription of two members
of the PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL) gene family, encoding the ABA
receptors [45–47]. Together the data indicate that ATHB7 and ATHB12 function as negative regulators
of the ABA response in Arabidopsis [48]. Evidence exists that HOMEOBOX (HB) 6 (also known as
ATHB6, clade II) may also act as a negative regulator of ABA signaling [49].

The HELIANTHUS ANNUUS HOMEOBOX4 (HAHB4) gene, encoding a protein homologous
to ATHB7 and ATHB12, is also regulated by ABA and drought, as well as by methyl-jasmonic acid
(MeJa) or ethylene (ET) or biotic stresses [50,51]. The ectopic expression of HAHB4 in Arabidopsis
negatively affects the synthesis of ET and resulted in plants more resistant to drought [50]. In addition,
functional analysis of transgenic Arabidopsis and maize plants constitutively expressing HAHB4
suggested that this HD-Zip I protein acts as an integrator of MeJa and ET pathways [51].

It is worth mentioning that in some plants there is evidence that ABA synthesis and
signaling is relevant to fully activate defense responses against insect herbivores and, in general,
hormonal interactions are important for regulating plant responses to abiotic stresses and
growth-defense tradeoffs [52]. Of interest is the finding that the ATHB13 (clade V) gene, positively
regulated by low temperature, drought, and salinity, can confer cold, drought and broad-spectrum
disease resistance when overexpressed [39,53,54]. The results point to a role of some HD-Zip I proteins
as integrators of internal and external signals in the regulation of abiotic and biotic stresses.

Together with the effects on stresses described above, the overexpression of HD-Zip I proteins
very often resulted also in alterations of the shape and growth of the plant, including cotyledon,
leaf and supporting organs [55,56], suggesting a role of some HD-Zip I proteins in specific growth
and/or developmental pathways. It is worth mentioning that at least ATHB12 and some ABA signaling
components are regulated by KANADI1 (KAN1) [57], a factor controlling organ polarity, including
the patterning of leaf primordia in Arabidopsis [58]. Furthermore, evidence strongly suggests that
ATHB12 acts as a positive regulator of endoreduplication and cell growth during leaf development [59].
In addition, it has been reported that the Medicago truncatula HB1, highly related to ATHB7 and ATHB12,
interacts with both ABA and auxin signaling in the regulation of organ development. The MtHB1
gene is strongly regulated by salt, osmotic and ABA stresses. There is evidence that MtHB1 controls
the emergence of lateral roots likely by repressing the auxin-regulated LOB-Binding Domain 1 (LBD1)
gene [60], a member of a family of plant-specific transcription factors involved in lateral organ
development [61].
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In the post-embryonic development, ATHB5 (a.k.a. HB5, clade II) behaves as a growth-promoting
transcription factor of the hypocotyl. In particular, it promotes the gibberellin acid (GA)-mediated
expansion of the epidermal and cortex cells by a positive direct modulation of the expression of
EXPANSIN3 (EXP3), a gene involved in cell wall extension [62]. ATHB1 (Clade III) is a direct target of
PHYTOCHROME INTERACTING FACTOR 1 (PIF1), a basic helix-loop-helix (bHLH) transcription
factor involved in the regulation of light responses downstream of phytochromes [63] and plays a role in
hypocotyl growth under short-day regime likely through a positive regulation of genes involved in cell
elongation [64]. Interestingly, ATHB1 expression is positively regulated by ethylene in Arabidopsis [65],
known to regulate the elongation of the hypocotyl in low light and shade [66], whereas the tomato
ortholog HB1 directly regulates the expression of 1-AMINOCYCLOPROPANE-1-CARBOXYLATE
OXIDASE (ACO) gene encoding a key enzyme in ethylene biosynthesis [67].

Very recent work implicated three related HD-Zip I proteins belonging to clade VI [34] in the
control of shoot branching [68]. Indeed, it was found that TEOSINTE BRANCHED1, CYCLOIDEA,
PCF (TCP) transcription factor BRANCHED1 (BRC1), that functions inside axillary buds to prevent
constitutive branch outgrowth [69], binds to and positively regulates the transcription of the ATHB21,
ATHB40 and ATHB53 (a.k.a. HB21, HB40 and HB53) genes, all belonging to clade VI. These HD-Zip
I proteins are necessary and sufficient to enhance the expression of 9-CIS-EPOXICAROTENOID
DIOXIGENASE 3 (NCED3), a key ABA biosynthesis gene, and for ABA accumulation inside axillary
buds in conditions of low Red/Far-Red (R/FR) ratio light or short photoperiod. This, in turn,
causes suppression of bud development. Relevantly, the BRC1/ATHB21/40/53 regulatory module
appears to be conserved in monocot and dicot species [69].

Besides the multiple links found between HD-Zip I proteins and ABA, evidence of a direct
interaction between HD-Zips I and auxin also exists [70]. Auxin has a central role during embryogenesis
and post-embryonic development. The transcriptional auxin response is regulated by AUXIN
RESPONSE FACTOR (ARF) transcription factors and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA)
proteins. In the absence of auxin, AUX/IAAs act as repressors by forming heterodimers with
ARFs; the auxin-mediated degradation of AUX/IAAs releases the inhibition on ARF transcription
factors [71,72]. MONOPTEROS (MP)/ARF5 and its interacting AUX/IAA partner BODENLOS
(BDL)/IAA12 play an important role during the embryonic and post-embryonic development. Both a
dominant mutant of (BDL)/IAA12 and a loss-of-function mutant of MP/ARF5 lack a seedling root
and display cotyledon defects [73–76]. Interestingly, it was found that the ATHB5 protein (clade II)
directly negatively regulates BDL/IAA12 expression. Overexpression of ATHB5 during embryogenesis
transcriptionally suppresses the expression of BDL/IAA12 and rescues the rootless phenotype of the
bdl/iaa12 dominant mutant. Together the data lead to the hypothesis that ATHB5 may contribute to
spatially restrict BDL/IAA12 expression during embryogenesis [70]. Evidence that ATHB6, a close
homolog of ATHB5, may act redundantly with ATHB5 in the negative regulation of BDL/IAA12 have
also been provided [70].

Finally, the cross-talk between ethylene and auxin in the control of root elongation mediated by
ATHB52 has been recently uncovered. It is very well established that root elongation is inhibited by
ethylene in Arabidopsis and other species through the action of auxin [77–80]. The ATHB52 gene is
positively regulated by ETHYLENE-INSENSITIVE3 (EIN3), a key transcription factor of the ethylene
signal transduction pathway. A molecular and genetic analysis has shown that ATHB52 binds the
promoters of PIN FORMED2 (PIN2), coding for a polar auxin carrier, and of WAVY ROOT GROWTH1
(WAG1) and WAG2, encoding PIN polarity regulators. The positive modulation by ethylene of the
PIN2/WAG1/WAG2 module exerted through ATHB52 could affect the local polar auxin transport in
the root tip resulting in the inhibition of primary root elongation [81].

3. HD-Zips II

The HD-Zip II protein family contains ten members which can be divided into four clades (α-δ) [7].
Remarkably, all the HD-Zip II γ (ATHB2, HAT1, HAT2) and δ (HAT3, ATHB4) genes are rapidly induced
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by changes in the R/FR ratio light that promote shade avoidance in the Angiosperms [7,82] and several
evidence exist that HD-Zip II γ and δ proteins act as positive regulators of this response [7,23,25,83–87].

Interestingly, evidence demonstrates that, besides their function in shade avoidance, HD-Zip
II γ and δ transcription factors play a crucial role in embryo apical development and essential
developmental processes in sunlight, including shoot apical meristem (SAM) activity, organ polarity
and gynoecium development [20,31,88–91].

Several links have been established between HD-Zip II γ and δ proteins and auxin. Plants with
elevated levels of ATHB2 display a constitutive shade avoidance response, and it was shown that
ATHB2-induced elongation of the hypocotyl depends on the auxin transport system, as it is abolished
by auxin transport inhibitors [23]. Furthermore, the lateral root phenotype observed in ATHB2
overexpressing seedlings is rescued by IAA [23]. Finally, it was found that both auxin synthesis
and transport are affected in hat3 athb4 and hat3 athb4 athb2 mutant embryos [20,31].

Recently, HAT1 has been linked to brassinosteroid (BR) signaling pathway. BRs signal through a
plasma membrane-localized receptor kinase to modulate the BES1/BZR1 (BRI1-EMS SUPPRESSOR
1/BRASSINAZOLE RESISTANT1) family of transcription factors that positively and negatively
regulate a large number of genes [92–97]. Relevantly, it was recently found through ChIP experiments
that HAT1 is a direct target of BES1 [98]. HAT1 functions redundantly with its close homolog HAT3,
as the double loss-of-function mutant hat1 hat3 displayed a reduced BR response stronger than that
of the hat1 and hat3 single mutants. Expression levels of several BR-repressed genes are increased
in hat1 hat3 double mutant and reduced in HAT1 overexpressing lines, thus strongly suggesting
that HAT1 functions to repress the expression of a subset of BR target genes. Consistently, it was
found that HAT1 binds to DNA elements in BR-repressed gene promoters and functions as a BES1
corepressor [98]. Furthermore, it was shown that GSK3 (GLYCOGEN SYNTHASE KINASE 3)-like
kinase BIN2 (BRASSINOSTEROID-INSENSITIVE 2), a negative regulator of the BR pathway, increases
the stability of HAT1 [98–101] (Figure 2).
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Figure 2. Positive and negative hormonal pathways regulated by HAT1. BR positively regulates the
expression of HAT1 through the BES1 transcription factor and stabilizes HAT1 protein through the
BIN2 kinase. HAT1 acts together with BES1 as a transcriptional repressor of BR-regulated genes. HAT1,
whose expression is negatively regulated by ABA at the transcriptional and post-transcriptional levels,
represses the expression of NCED3 and ABA3 resulting in a reduction of ABA synthesis. The SnRK 2.3
kinase, positively acting in the ABA signaling, affects both HAT1 protein stability and DNA binding
activity. The GAI interaction with HAT1 is also indicated.

Furthermore, HAT1 was identified among the transcription factors interacting with the
GIBBERELLIN INSENSITIVE (GAI) DELLA protein, a master negative regulator in gibberellin (GA)
signaling [102,103] (Figure 2). Further work is needed to establish the specific GA-response(s) in which
HAT1 is involved.

Recent work has demonstrated that HAT1, apart from its role in BR-mediated growth
responses [98], in GA signaling, and in viral defense response in a manner dependent on salicylic acid
(SA) [104], it also negatively regulates, redundantly with HAT3, ABA-mediated drought responses
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through suppression of ABA biosynthesis and signaling [105]. The expression of both HAT1 and
HAT3 is indeed repressed by ABA. Evidence have been provided that HAT1 can bind to specific DNA
sequences on the promoters of NCED3 and ABA DEFICIENT (ABA) 3, two key ABA biosynthesis genes,
and negatively regulate their expression, thus resulting in a reduction of ABA synthesis. In addition,
it was observed that HAT1 overexpressing plants display reduced sensitivity to ABA and less tolerance
to drought stress, whereas the double loss-of-function hat1 hat3 mutant show opposite phenotypes.
Finally, it was found that Sucrose non-fermenting 1-related protein kinase (SnRK) 2.3, a positive
component of ABA signaling, physically interacts with and phosphorylates HAT1, decreasing its
protein stability and binding activity [105] (Figure 2).

Relevantly, at least other two HD-Zip II proteins, ATHB17 and HAT22/ABA-INSENSITIVE
GROWTH 1 (ABIG1), are linked to ABA [106,107]. ATHB17 expression is induced by ABA,
and evidence have been provided that athb17 loss-of-function mutants are ABA-insensitive and
drought-sensitive whereas lines overexpressing ATHB17 display opposite phenotypes. Interestingly,
the effect of ATHB17 on seedling growth in the presence of ABA is stage-specific. Indeed, it is
observed exclusively during the post-germination seedling establishment stage [106]. Recent work
identified HAT22/ABIG1 as a transcription factor required for ABA-mediated growth inhibition,
but not for seed dormancy and stomatal closure. It has been proposed that drought acts through ABA
to increase HAT22/ABIG1 transcription which, in turn, inhibits new shoot growth and promotes leaf
senescence [107].

4. HD-Zips III

The HD-Zip III family contains five members: ATHB8, CORONA (CNA), PHABULOSA (PHB),
PHAVOLUTA (PHV), and REV. It is well established that HD-Zip III proteins act as master regulators
of embryonic apical fate [108], are required to maintain an active SAM and to establish lateral organ
polarity [109–111] and are necessary for xylem formation and specification [112–117]. Recent work has
also implicated HD-Zip III proteins in the regulation of the shade avoidance response [14,21,32].

The pattern of HD-Zip III expression largely coincides with that of auxin distribution [8,9,115,118–122].
Furthermore, HD-Zip III genes are regulated at the post-transcriptional level by the microRNAs miR165/166,
which negatively affect their expression through mRNA cleavage [110,123]. Relevantly, REV directly
positively regulates the HD-Zip II genes HAT3, ATHB4, ATHB2, and HAT2, and evidence exists that PHB
and PHV are involved in the control of HAT3 expression [14,20]. It has been recently shown that REV
physically interacts with HAT3 and ATHB4 to directly repress MIR165/166 expression in the adaxial side
of the leaf [91].

The interconnection between HD-Zip III transcription factors and auxin began to be clarified
especially through the molecular-genetic analysis of the vascular system [124]. REV directly positively
regulates the auxin biosynthetic genes TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1
(TAA1) and YUCCA5 (YUC5) [14,125]. Furthermore, it has been demonstrated that genes implicated
in auxin transport, including the influx carriers LIKE AUXIN RESISTANT 2 (LAX2) and LAX3,
and response are also direct targets of REV [122,125,126]. Interestingly, REV also upregulates the
expression of NAKED PINS IN YUC MUTANTS 1 (NPY1) and WAG1, encoding an AGC protein
kinase highly similar to PINOID (PID) [127]. NPY genes encode proteins with a Broad-Complex,
Tramtrack, and Bric-a-brac (BTB)-Poxvirus and Zinc Finger (POZ) domain that together with AGC
kinases determine the subcellular polar targeting of the PIN efflux carriers, thus establishing the
direction of auxin transport [128–131].

A recent study reinforces the interconnection between HD-Zip III transcription factors and auxin
signaling [132]. HD-Zip III proteins are known to determine xylem patterning in the Arabidopsis
root [116], and it has been shown that PHB directly interacts with the promoter of both MP/ARF5,
a transcription factor gene playing a major role in vascular development, and IAA20, encoding an IAA
protein that is stable in the presence of auxin and able to interact with MP. The double mutant of IAA20
and its closest homolog IAA30 forms ectopic protoxylem, whereas elevated levels of IAA30 result in
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discontinuous protoxylem, analogous to a weak mp mutant. It has therefore proposed a mechanism in
which PHB stabilizes the auxin response within the xylem axis by activating both MP and its repressors
IAA20 and IAA30 to ensure correct vascular patterning and differentiation of xylem cells [132].

Cross-talk between auxin and cytokinin (CK) is crucial during several developmental processes,
including vascular development. Several studies have indicated that ARABIDOPSIS HISTIDINE
PHOSPHOTRANSFER PROTEIN 6 (AHP6), an inhibitory pseudophosphotransfer protein, is positively
regulated by auxin and counteracts CK signaling, allowing protoxylem formation in the root.
Conversely, CK signaling negatively regulates the spatial domain of AHP6 expression [133,134].
Interestingly, it has been shown that PHB acts redundantly with other HD-Zip III transcription factors
to downregulate AHP6 expression, either directly or by alteration of auxin signaling [116,133].

The interaction between HD-Zip III proteins and cytokinin network is further strengthened
by the finding that PHB directly activates ISOPENTENYLTRANSFERASE 7 (IPT7), a gene coding
for a rate-limiting component of the cytokinin biosynthesis pathway. This in turn promotes cell
differentiation and regulates root length [135]. These results, together with the finding that CK
is transported in the phloem [136], suggests that CK is synthesized in the meristem vasculature
through the activity of PHB and then delivered to the transition zone (TZ) to promote differentiation.
Consistently, the expression of SHORT HYPOCOTYL 2 (SHY2), a CK primary target necessary and
sufficient to promote cell differentiation at the TZ [137], is weaker in phb phv double loss-of-function
mutants with respect to wild type but is reestablished after CK treatment. In addition, the root meristem
phenotype of the dominant shy2-2 mutant is suppressed in phb phv, further confirming the hypothesis
that PHB-dependent CK biosynthesis in the distal part of the root influences cell differentiation at
the proximal TZ [135]. Relevantly, it was also shown that CK represses both PHB and miR165 [135].
The authors referred to these interactions as an incoherent regulatory loop in which CK represses both
its activator and a repressor of its activator and proposed that this circuit might provide robustness
against CK fluctuations [135] (Figure 3).
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Figure 3. Interplay between the HD-Zip III protein PHB and CKs in the regulation of root meristem size.
DIC image of the Arabidopsis root tip with different developmental zones indicated, stem cell niche
(SCN), proximal meristem (PM), transition zone (TZ), and elongation and differentiation zone (EDZ),
together with a schematic representation of the molecular interactions involved in the determination of
RAM size. PHB induces CK biosynthesis in the PM of the root; cytokinin is delivered to the transition
zone where activates ARABIDOPSIS RESPONSE REGULATOR (ARR) 1. ARR1 represses the expression
of PHB at the TZ, thus restricting PHB expression to the distal part of the PM. Remarkably, ARR1 also
represses the transcription of MIR165A [135]. In addition, ARR1 induces the expression of SHY2, a CK
primary target necessary and sufficient to promote cell differentiation at the TZ. White arrowhead
indicates the TZ of the cortex tissue, placed at the boundary between the last meristematic cell and the
first differentiating cell [137]. A color code has been used to indicate different pathways: CK pathway,
red; IAA pathway, green; PHB/miR165, blue. Scale bar, 20 µm.
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Furthermore, recent work has shown that PHB also regulates cell activities at the TZ by repressing
B-ARRs, positive regulators of CK signaling [138,139]. Such a repressive effect of PHB on B-ARR
activities is enhanced by high cytokinin [139].

A recent study on the mechanism underlying shoot regeneration in Arabidopsis provided an
additional link between HD-Zip III transcription factors and CK signaling [140], somehow predicted
also on the basis of protein-protein interaction studies between HD-Zip III and DNR/DNRL
transcription factors [30,141,142] and the analysis of the regeneration capacity of a cna mutant
encoded by the hoc locus [143]. Four B-ARR transcription factors, ARR1, ARR2, ARR10, and ARR12,
have essential roles in shoot regeneration. Indeed, the shoot regenerative capacity is impaired in the
arr1 arr10 arr12 mutant with respect to wild type [144–146]. The A-type ARRs play opposite roles
in shoot regeneration, and it has been shown that overexpression of ARR7 or ARR15 results in a
marked reduction of the regeneration capacity [147]. Remarkably, it was found that ARR1, ARR2,
ARR110 and ARR12 interact with PHB, PHV and REV HD-Zip III transcription factors, and that these
complexes in turn activates the expression of WUSCHEL (WUS), a gene essential in maintaining SAM
activity [140,148].

Beside the evidence of molecular interactions between HD-Zip III proteins and key components of
the auxin and cytokinin networks, it has been recently reported that REV positively directly regulates the
expression of the gene encoding the ABA receptor protein PYL6 [125,126]. Remarkably, PYL6 is oppositely
directly regulated by KAN1, a key determinant of abaxial cell fate in the leaf [59,127,149]. Furthermore,
microarray data revealed that the expression of REV, PHB and PHV significantly decreases upon ABA
application, as a consequence of ectopic induction of miR165 expression [21,126]. It has been therefore
proposed that the connection between ABA perception and signaling and HD-Zip III transcription
factors may be required to adapt leaf development to alterations in water availability [21,126].

Finally, it is worth mentioning that recent work has revealed that the expression of miR165/166
is regulated by a complex hormonal cross-talk during root development in Arabidopsis [150].
Evidence have been provided that miR 165/166 has important functions in ABA and abiotic stress
responses. It was indeed found that reduction in the expression of miR165/166 results in drought
and cold resistance phenotypes and hypersensitivity to ABA during seed germination and seedling
development. Furthermore, it was shown that miR165/166-mediated regulatory module is linked with
ABA responses likely through a direct regulation by HD-Zip III proteins of ABA INSENSITIVE4 (ABI4),
a regulator of ABA signaling, and β-glucosidase 1 (BG1), known to hydrolyze glucose-conjugated,
biologically inactive ABA to produce active ABA [151]. In addition, there is also evidence that the
cross-talk between miR165 and ABA is involved in root xylem formation and vascular acclimation to
water deficit. It was indeed shown that under limited water availability endodermal ABA signaling
activates MIR165A, thus leading to increased miR165 levels that repress HD-Zip III transcription factors
in the stele. Together the data nicely show how a pathway known to control core developmental
processes is used as a mean to adjust xylem formation under conditions of abiotic stress [152].

5. HD-Zips IV

Many of the HD-Zip IV genes were shown to be specifically or preferentially expressed in the
epidermis of developing embryos and/or other plant organs [153]. It is worth mentioning that
the epidermis plays a critical role also in plant defense against pathogens and in protection from
environmental stresses [154,155].

GLABRA2 (GL2), the first identified member of the HD-Zip IV protein family, promotes trichome
differentiation [156], and suppresses root hair formation in the root epidermis [19,156]. In particular,
GL2 controls cell fate determination of N-cells (non-hair cells; atrichoblast) [157], through a negative
regulation of the phospholipase D zeta 1 (PLDz1) [18], and of several bHLH transcription factors
including ROOT HAIR DEFECTIVE 6 (RDH6) involved in root hair initiation [156]. There is strong
evidence that BRs are required to maintain position-dependent cell fate specification in root epidermis,
as loss of BR signaling results in loss of H-cells (hair cells; trichoblast). Indeed, BRs are required for a
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correct expression of WEREWOLF (WER) and GL2, master regulators of epidermal patterning, and of
CAPRICE (CPC), a direct downstream target of WER [158].

Recent work has also established a link between HD-Zip IV proteins and GA signaling [159].
It was indeed shown that DELLA proteins interact directly with MERISTEM LAYER 1 (ATML1) and its
paralogue PLANT DEFENSIN 2 (PDF2), two HD-Zip IV proteins required for epidermis specification
and binding to the L1 box present in the promoters of epidermis-specific genes [17,160]. Silencing of
both ATML1 and PDF2 inhibits epidermis-specific gene expression and delays germination [157].
Evidence were provided that, upon seed imbibition, increased GA levels reduce DELLA protein
levels, thus releasing ATML1/PDF2 to activate epidermis-specific expression and promote seed
germination [159].

Apart from their role in development, interactions between HD-Zip IV transcription factors and
environmental responses have also been reported [161]. For example, HOMEODOMAIN GLABRA 11
(HDG11) was identified via activation tagging as a gene involved in drought tolerance. The mutant
has higher levels of ABA than the wild type and displays enhanced root growth with more lateral
roots and reduced stomatal density. Overexpression of HDG11 also conferred drought tolerance
associated with augmented lateral roots and reduced leaf stomatal density in both Arabidopsis and
tobacco [162]. Higher level of ABA and improved drought tolerance have been observed also in cotton,
poplar and rice transgenic plants overexpressing HDG11 [161,163]. It has been suggested that HDG11
positively regulates the expression of cell-wall-loosening protein genes, including EXP5, resulting in a
well-developed root system [164].

Intriguingly, HDG11 acts as a maternal regulator of zygote asymmetry through a direct activation
of the WUSCHEL RELATED HOMEOBOX 8 (WOX8) gene whose product leads to asymmetric division
of the zygote [165].

6. Conclusions

A fundamental question in plant biology is how plants integrate environmental signals with
intrinsic developmental programs and how coordinate the growth of different organs depending
on resource availability. Over recent years remarkable progress has been made, and the molecular
mechanisms controlling these processes are being elucidated. The functional analysis of the HD-Zip
proteins revealed that they are part of complex networks involved in the integration of external
signals through the regulation of hormonal pathways involved in the control of fundamental
developmental processes. Although many factors belonging to each HD-Zip family are implicated
in specific processes, it is interesting to note that the simple overexpression of ATHB2 (and other
members of the HD-Zip II family) and HDG11 is sufficient to generate plants looking for optimal
light and water for growth, respectively. This could be explained by the existence of organ- and/or
tissue-specific hubs that stimulated by external and/or internal (hormonal) signals converge to
coherently adjust the development and growth to a specific environmental signal. These hubs may
have been generated during evolution through multiple duplication events that have promoted neo
and sub-functionalization of factors operating on specific pathways. The identification of these hubs it
has the potential to lead to a more unified vision of the development and growth of the plant according
to environmental stresses that could be applied for the improvement of the cultivated plants.
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Abbreviations

ABA Abscisic acid
ABA ABA deficient
ABI4 ABA INSENSITIVE4
ABIG1 ABA-INSENSITIVE GROWTH 1
ACCO 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE
AHP6 HISTIDINE PHOSPHOTRANSFER PROTEIN 6
AP2 APETALA2
AUX/IAA AUXIN/INDOLE-3-ACETIC ACID
ARF AUXIN RESPONSE FACTOR
ARR ARABIDOPSIS RESPONSE REGULATOR
ATHB ARABIDOPSIS THALIANA HOMEOBOX
ATML1 MERISTEM LAYER 1
BDL BODENLOS
BES1/BZR1 BRI1-EMS SUPPRESSOR 1/BRASSINAZOLE RESISTANT1
BG1 β-glucosidase 1
b-HLH basic Helix-Loop-Helix
BIN2 BRASSINOSTEROID-INSENSITIVE 2
BR Brassinosteroid
BRC1 BRANCHED1
ChIP Chromatin Immunoprecipitation
ChIP-seq Chromatin Immunoprecipitation sequencing
CK Cytokinin
CNA CORONA
CPC CAPRICE
DRN DORNROSCHEN
DNRL DORNROSCHEN-like
EAR ERF-Associated Amphiphilic Repression
EDZ Elongation and Differentiation Zone
EIN3 ETHYLENE-INSENSITIVE 3
EXP3 EXPANSIN 3
ET Ethylene
H cell Hair cell; trichoblast
HAHB4 HELIANTHUS ANNUUS HOMEOBOX 4
HB HOMEOBOX
HAT1 HOMEOBOX ARABIDOPSIS THALIANA 1
HDG11 HOMEODOMAIN GLABRA 11
HD-Zip Homeodomain-leucine zipper
IPT7 ISOPENTENYLTRANSFERASE 7
GA Gibberellin Acid
GAI GIBBERELLIN INSENSITIVE
GL2 GLABRA2
GSK3 GLYCOGEN SYNTHASE KINASE 3
KAN1 KANADI 1
LAX2 LIKE AUXIN RESISTANT 2
LBD1 LOB-Binding Domain 1
MeJa Methyl-Jasmonic acid
MP MONOPTEROS
N cell Non-hair cell; atrichoblast
NCED3 9-CIS-EPOXICAROTENOID DIOXIGENASE 3
NPY1 NAKED PINS IN YUC MUTANTS 1
PDF2 PLANT DEFENSIN 2
PHB PHABULOSA
PHV PHAVOLUTA
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PID PINOID
PIF1 PHYTOCHROME INTERACTING FACTOR 1
PIN2 PIN FORMED2
PLDz1 Phospholipase D zeta 1
PM Proximal Meristem
POZ Broad-Complex, Tramtrack, and Bric-a-brac (BTB)-Poxvirus and Zinc Finger
PP2C Protein Phosphatases type 2C
PYL PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE
RDH6 ROOT HAIR DEFECTIVE 6
R/FR Red/Far-Red
REV REVOLUTA
SAD Small body size–mothers against decapentaplegic homolog 4 (Smad4)

activation domain
SAM Shoot Apical Meristem
SCN Stem Cell Niche
SHY2 SHORT HYPOCOTYL 2
SnRK Sucrose non-fermenting 1-related protein kinase
START Steroidogenic acute regulatory protein-related lipid-transfer
TAA1 TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1
TCP TEOSINTE BRANCHED1, CYCLOIDEA, PCF
TPL TOPLESS
TZ Transition Zone
WAG1 WAVY ROOT GROWTH 1
WER WEREWOLF
WOX8 WUSCHEL RELATED HOMEOBOX 8
WUS WUSCHEL
YUC5 YUCCA5

References

1. Ruberti, I.; Sessa, G.; Lucchetti, S.; Morelli, G. A novel class of plant proteins containing a homeodomain
with a closely linked leucine zipper motif. EMBO J. 1991, 10, 1787–1791. [CrossRef]

2. Sessa, G.; Carabelli, M.; Ruberti, I.; Baima, S.; Lucchetti, S.; Morelli, G. Identification of distinct families
of HD-Zip proteins in Arabidopsis thaliana. In Plant Molecular Biology: Molecular-Genetic Analysis of
Plant Development and Metabolism; Puigdomenech, P., Coruzzi, G., Eds.; NATO-ASI Series; Springer:
Berlin/Heidelberg, Germany, 1994; Volume 81, pp. 411–426.

3. Sessa, G.; Steindler, C.; Morelli, G.; Ruberti, I. The Arabidopsis Athb-8, -9 and -14 genes are members of a
small gene family coding for highly related HD-Zip proteins. Plant Mol. Biol. 1998, 38, 609–622. [CrossRef]
[PubMed]

4. Henriksson, E.; Olsson, A.S.; Johannesson, H.; Johansson, H.; Hanson, J.; Engstrom, P.; Soderman, E.
Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic
relationships. Plant Physiol. 2005, 139, 509–518. [CrossRef]

5. Nakamura, M.; Katsumata, H.; Abe, M.; Yabe, N.; Komeda, Y.; Yamamoto, K.T.; Takahashi, T. Characterization
of the class IV homeodomain leucine zipper gene family in Arabidopsis. Plant Physiol. 2006, 141, 1363–1375.
[CrossRef]

6. Ariel, F.D.; Manavella, P.A.; Dezar, C.A.; Chan, R.L. The true story of the HD-Zip family. Trends Plant Sci.
2007, 12, 419–426. [CrossRef]

7. Ciarbelli, A.R.; Ciolfi, A.; Salvucci, S.; Ruzza, V.; Possenti, M.; Carabelli, M.; Fruscalzo, A.; Sessa, G.;
Morelli, G.; Ruberti, I. The Arabidopsis homeodomain-leucine zipper II gene family: Diversity and
redundancy. Plant Mol. Biol. 2008, 68, 465–478. [CrossRef] [PubMed]

8. Floyd, S.K.; Bowman, J.L. Distinct developmental mechanisms reflect the independent origins of leaves in
vascular plants. Curr. Biol. 2006, 16, 1911–1917. [CrossRef] [PubMed]

9. Floyd, S.K.; Zalewski, C.S.; Bowman, J.L. Evolution of class III homeodomain-leucine zipper genes in
streptophytes. Genetics 2006, 173, 373–388. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/j.1460-2075.1991.tb07703.x
http://dx.doi.org/10.1023/A:1006016319613
http://www.ncbi.nlm.nih.gov/pubmed/9747806
http://dx.doi.org/10.1104/pp.105.063461
http://dx.doi.org/10.1104/pp.106.077388
http://dx.doi.org/10.1016/j.tplants.2007.08.003
http://dx.doi.org/10.1007/s11103-008-9383-8
http://www.ncbi.nlm.nih.gov/pubmed/18758690
http://dx.doi.org/10.1016/j.cub.2006.07.067
http://www.ncbi.nlm.nih.gov/pubmed/17027487
http://dx.doi.org/10.1534/genetics.105.054239
http://www.ncbi.nlm.nih.gov/pubmed/16489224


Int. J. Mol. Sci. 2018, 19, 4047 12 of 20

10. Hu, R.; Chi, X.; Chai, G.; Kong, Y.; He, G.; Wang, X.; Shi, D.; Zhang, D.; Zhou, G. Genome-wide identification,
evolutionary expansion, and expression profile of homeodomain-leucine zipper gene family in poplar
(Populus trichocarpa). PLoS ONE 2012, 7, e31149. [CrossRef]

11. Romani, F.; Reinheimer, R.; Florent, S.N.; Bowman, J.L.; Moreno, J.E. Evolutionary history of
HOMEODOMAIN LEUCINE ZIPPER transcription factors during plant transition to land. New Phytol. 2018,
219, 408–421. [CrossRef]

12. Sessa, G.; Morelli, G.; Ruberti, I. The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of
different DNA binding specificities. EMBO J. 1993, 12, 3507–3517. [CrossRef] [PubMed]

13. Tron, A.E.; Bertoncini, C.W.; Palena, C.M.; Chan, R.L.; Gonzalez, D.H. Combinatorial interactions of two
amino acids with a single base pair define target site specificity in plant dimeric homeodomain proteins.
Nucl. Acids Res. 2001, 29, 4866–4872. [CrossRef] [PubMed]

14. Brandt, R.; Salla-Martret, M.; Bou-Torrent, J.; Musielak, T.; Stahl, M.; Lanz, C.; Ott, F.; Schmid, M.; Greb, T.;
Schwarz, M.; et al. Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning
and light-mediated growth responses. Plant J. 2012, 72, 31–42. [CrossRef] [PubMed]

15. Sessa, G.; Morelli, G.; Ruberti, I. DNA-binding specificity of the homeodomain-leucine zipper domain.
J. Mol. Biol. 1997, 274, 303–309. [CrossRef] [PubMed]

16. Palena, C.M.; Gonzalez, D.H.; Chan, R.L. A monomer-dimer equilibrium modulates the interaction of the
sunflower homeodomain leucine-zipper protein Hahb-4 with DNA. Biochem. J. 1999, 341, 81–87. [PubMed]

17. Abe, M.; Takahashi, T.; Komeda, Y. Identification of a cis regulatory element for L1 layer-specific gene
expression, which is targeted by an L1-specific homeodomain protein. Plant J. 2001, 26, 487–494. [CrossRef]
[PubMed]

18. Ohashi, Y.; Oka, A.; Rodrigues-Pousada, R.; Possenti, M.; Ruberti, I.; Morelli, G.; Aoyama, T. Modulation of
phospholipid signaling by GLABRA2 in root-hair pattern formation. Science 2003, 300, 427–430. [CrossRef]

19. Lin, Q.; Ohashi, Y.; Kato, M.; Tsuge, T.; Gu, H.; Qu, L.J.; Aoyama, T. GLABRA2 directly suppresses Basic
Helix-Loop-Helix transcription factor genes with diverse functions in root hair development. Plant Cell 2015,
27, 2894–2906. [CrossRef]

20. Turchi, L.; Carabelli, M.; Ruzza, V.; Possenti, M.; Sassi, M.; Peñalosa, A.; Sessa, G.; Salvi, S.; Forte, V.;
Morelli, G.; et al. Arabidopsis HD-Zip II transcription factors control embryo development and meristem
function. Development 2013, 140, 2118–2129. [CrossRef]

21. Brandt, R.; Cabedo, M.; Xie, Y.; Wenkel, S. Homeodomain leucine zipper proteins and their role in
synchronizing growth and development with the environment. J. Int. Plant Biol. 2014, 56, 518–526. [CrossRef]

22. Kagale, S.; Links, M.G.; Rozwadowski, K. Genome-wide analysis of ethylene-responsive element
binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.
Plant Physiol. 2010, 152, 1109–1134. [CrossRef] [PubMed]

23. Steindler, C.; Matteucci, A.; Sessa, G.; Weimar, T.; Ohgishi, M.; Aoyama, T.; Morelli, G.; Ruberti, I.
Shade avoidance responses are mediated by the ATHB-2 HD-Zip protein, a negative regulator of gene
expression. Development 1999, 125, 4235–4245.

24. Ohgishi, M.; Oka, A.; Morelli, G.; Ruberti, I.; Aoyama, T. Negative autoregulation of the Arabidopsis
homeobox gene ATHB-2. Plant J. 2001, 25, 389–398. [CrossRef] [PubMed]

25. Sawa, S.; Ohgishi, M.; Goda, H.; Higuchi, K.; Shimada, Y.; Yoshida, S.; Koshiba, T. The HAT2 gene, a member
of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin
response in Arabidopsis. Plant J. 2002, 32, 1011–1022. [CrossRef] [PubMed]

26. Causier, B.; Ashworth, M.; Guo, W.; Davies, B. The TOPLESS interactome: A framework for gene repression
in Arabidopsis. Plant Physiol. 2012, 158, 423–438. [CrossRef]

27. Schrick, K.; Nguyen, D.; Karlowski, W.M.; Mayer, K.F. START lipid/sterolbinding domains are amplified in
plants and are predominantly associated with homeodomain transcription factors. Genome Biol. 2004, 5, R41.
[CrossRef]

28. Mukherjee, K.; Burglin, T.R. MEKHLA, a novel domain with similarity to PAS domains, is fused to plant
homeodomain-leucine zipper III proteins. Plant Physiol. 2006, 140, 1142–1150. [CrossRef]

29. Xie, Y.; Huhn, K.; Brandt, R.; Potschin, M.; Bieker, S.; Straub, D.; Doll, J.; Drechsler, T.; Zentgraf, U.; Wenkel, S.
REVOLUTA and WRKY53 connect early and late leaf development in Arabidopsis. Development 2014, 141,
4772–4783. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0031149
http://dx.doi.org/10.1111/nph.15133
http://dx.doi.org/10.1002/j.1460-2075.1993.tb06025.x
http://www.ncbi.nlm.nih.gov/pubmed/8253077
http://dx.doi.org/10.1093/nar/29.23.4866
http://www.ncbi.nlm.nih.gov/pubmed/11726696
http://dx.doi.org/10.1111/j.1365-313X.2012.05049.x
http://www.ncbi.nlm.nih.gov/pubmed/22578006
http://dx.doi.org/10.1006/jmbi.1997.1408
http://www.ncbi.nlm.nih.gov/pubmed/9405140
http://www.ncbi.nlm.nih.gov/pubmed/10377247
http://dx.doi.org/10.1046/j.1365-313x.2001.01047.x
http://www.ncbi.nlm.nih.gov/pubmed/11439135
http://dx.doi.org/10.1126/science.1083695
http://dx.doi.org/10.1105/tpc.15.00607
http://dx.doi.org/10.1242/dev.092833
http://dx.doi.org/10.1111/jipb.12185
http://dx.doi.org/10.1104/pp.109.151704
http://www.ncbi.nlm.nih.gov/pubmed/20097792
http://dx.doi.org/10.1046/j.1365-313x.2001.00966.x
http://www.ncbi.nlm.nih.gov/pubmed/11260495
http://dx.doi.org/10.1046/j.1365-313X.2002.01488.x
http://www.ncbi.nlm.nih.gov/pubmed/12492842
http://dx.doi.org/10.1104/pp.111.186999
http://dx.doi.org/10.1186/gb-2004-5-6-r41
http://dx.doi.org/10.1104/pp.105.073833
http://dx.doi.org/10.1242/dev.117689


Int. J. Mol. Sci. 2018, 19, 4047 13 of 20

30. Chandler, J.W.; Cole, M.; Flier, A.; Grewe, B.; Werr, W. The AP2 transcription factors DORNROSCHEN
and DORNROSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with
PHAVOLUTA. Development 2007, 134, 1653–1662. [CrossRef]

31. Turchi, L.; Baima, S.; Morelli, G.; Ruberti, I. Interplay of HD-Zip II and III transcription factors in
auxin-regulated plant development. J. Exp. Bot. 2015, 66, 5043–5053. [CrossRef]

32. Merelo, P.; Paredes, E.B.; Heisler, M.G.; Wenkel, S. The shady side of leaf development: The role of the
REVOLUTA/KANADI1 module in leaf patterning and auxin-mediated growth promotion. Curr. Opin.
Plant Biol. 2017, 35, 111–116. [CrossRef] [PubMed]

33. Roodbarkelari, F.; Groot, E.P. Regulatory function of homeodomain-leucine zipper (HD-ZIP) family proteins
during embryogenesis. New Phytol. 2017, 213, 95–104. [CrossRef] [PubMed]

34. Arce, A.L.; Raineri, J.; Capella, M.; Cabello, J.V.; Chan, R.L. Uncharacterized conserved motifs outside
the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity.
BMC Plant Biol. 2011, 11, 42. [CrossRef] [PubMed]

35. Söderman, E.; Mattsson, J.; Engström, P. The Arabidopsis homeobox gene ATHB-7 is induced by water
deficit and by abscisic acid. Plant J. 1996, 10, 375–381. [CrossRef] [PubMed]

36. Dezar, C.A.; Gago, G.M.; González, D.H.; Chan, R.L. Hahb-4, a sunflower homeobox-leucine zipper gene,
is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Transgenic Res.
2005, 14, 429–440. [CrossRef] [PubMed]

37. Deng, X.; Phillips, J.; Bräutigam, A.; Engström, P.; Johannesson, H.; Ouwerkerk, P.B.F.; Ruberti, I.; Salinas, J.;
Vera, P.; Iannacone, R.; et al. A homeodomain leucine zipper gene from Craterostigma plantagineum regulates
abscisic acid responsive gene expression and physiological responses. Plant Mol. Biol. 2006, 61, 469–489.
[CrossRef] [PubMed]

38. Agalou, A.; Purwantomo, S.; Övernäs, E.; Johannesson, H.; Zhu, X.; Estiati, A.; de Kam, R.J.; Engström, P.;
Slamet-Loedin, I.H.; Zhu, Z.; et al. A genome-wide survey of HD-Zip genes in rice and analysis of
drought-responsive family members. Plant Mol. Biol. 2008, 66, 87–103. [CrossRef]

39. Ebrahimian-Motlagh, S.; Ribone, P.A.; Thirumalaikumar, V.P.; Allu, A.D.; Chan, R.L.; Mueller-Roeber, B.;
Balazadeh, S. JUNGBRUNNEN1 Confers Drought Tolerance Downstream of the HD-Zip I Transcription
Factor AtHB13. Front. Plant Sci. 2017, 8, 2118. [CrossRef]

40. Shen, W.; Li, H.; Teng, R.; Wang, Y.; Wang, W.; Zhuang, J. Genomic and transcriptomic analyses of HD-Zip
family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics 2018.
[CrossRef]

41. Yang, Q.; Niu, Q.; Li, J.; Zheng, X.; Ma, Y.; Bai, S.; Teng, Y. PpHB22, a member of HD-Zip proteins,
activates PpDAM1 to regulate bud dormancy transition in “Suli” pear (Pyrus pyrifolia White Pear Group).
Plant Physiol. Biochem. 2018, 127, 355–365. [CrossRef]

42. Merlot, S.; Gosti, F.; Guerrier, D.; Vavasseur, A.; Giraudat, J. The ABI1 and ABI2 protein phosphatases 2C
act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J. 2001, 25, 295–303.
[CrossRef] [PubMed]

43. Saez, A.; Apostolova, N.; González-Guzmán, M.; González-García, M.P.; Nicolás, C.; Lorenzo, O.;
Rodríguez, P.L. Gain-of-function and loss-of-function phenotypes of the protein phosphatases 2C HAB1
reveal its role as a negative regulator of abscisic acid signaling. Plant J. 2004, 37, 354–369. [CrossRef]
[PubMed]

44. Kuhn, J.M.; Boisson-Dernier, A.; Dizon, M.B.; Maktabi, M.H.; Schroeder, J.I. The protein phosphatase
AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on
AtPP2CA mRNA. Plant Physiol. 2006, 140, 127–139. [CrossRef] [PubMed]

45. Miyazono, K.; Mikayawa, T.; Sawano, Y.; Kubota, K.; Kang, H.-J.; Asano, A.; Miyauchi, Y.; Takahashi, M.;
Zhi, Y.; Fujita, K.; et al. Structural basis of abscisic acid signalling. Nature 2009, 462, 609–614. [CrossRef]
[PubMed]

46. Park, S.Y.; Fung, P.; Nishimura, N.; Jensen, D.R.; Fujii, H.; Zhao, Y.; Lumba, S.; Santiago, J.; Rodrigues, A.;
Chow, T.F.; et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START
proteins. Science 2009, 324, 1068–1071. [CrossRef] [PubMed]

http://dx.doi.org/10.1242/dev.001016
http://dx.doi.org/10.1093/jxb/erv174
http://dx.doi.org/10.1016/j.pbi.2016.11.016
http://www.ncbi.nlm.nih.gov/pubmed/27918939
http://dx.doi.org/10.1111/nph.14132
http://www.ncbi.nlm.nih.gov/pubmed/27523393
http://dx.doi.org/10.1186/1471-2229-11-42
http://www.ncbi.nlm.nih.gov/pubmed/21371298
http://dx.doi.org/10.1046/j.1365-313X.1996.10020375.x
http://www.ncbi.nlm.nih.gov/pubmed/8771791
http://dx.doi.org/10.1007/s11248-005-5076-0
http://www.ncbi.nlm.nih.gov/pubmed/16201409
http://dx.doi.org/10.1007/s11103-006-0023-x
http://www.ncbi.nlm.nih.gov/pubmed/16830180
http://dx.doi.org/10.1007/s11103-007-9255-7
http://dx.doi.org/10.3389/fpls.2017.02118
http://dx.doi.org/10.1016/j.ygeno.2018.07.009
http://dx.doi.org/10.1016/j.plaphy.2018.04.002
http://dx.doi.org/10.1046/j.1365-313x.2001.00965.x
http://www.ncbi.nlm.nih.gov/pubmed/11208021
http://dx.doi.org/10.1046/j.1365-313X.2003.01966.x
http://www.ncbi.nlm.nih.gov/pubmed/14731256
http://dx.doi.org/10.1104/pp.105.070318
http://www.ncbi.nlm.nih.gov/pubmed/16361522
http://dx.doi.org/10.1038/nature08583
http://www.ncbi.nlm.nih.gov/pubmed/19855379
http://dx.doi.org/10.1126/science.1173041
http://www.ncbi.nlm.nih.gov/pubmed/19407142


Int. J. Mol. Sci. 2018, 19, 4047 14 of 20

47. Santiago, J.; Rodrigues, A.; Saez, A.; Rubio, S.; Antoni, R.; Dupeux, F.; Park, S.-Y.; Márquez, J.A.; Cutler, S.R.;
Rodríguez, P.L. Modulation of drought resistance by the abscisic acid-receptor PYL5 through inhibition of
clade A PP2Cs. Plant J. 2009, 60, 575–588. [CrossRef] [PubMed]

48. Valdes, A.E.; Overnas, E.; Johansson, H.; Rada-Iglesias, A.; Engstrom, P. The homeodomain-leucine zipper
(HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating
protein phosphatase 2C and abscisic acid receptor gene activities. Plant Mol. Biol. 2012, 80, 405–418.
[CrossRef] [PubMed]

49. Himmelbach, A.; Hoffmann, T.; Leube, M.; Höhener, B.; Grill, E. Homeodomain protein ATHB6 is a target of
the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J. 2002, 21, 3029–3038.
[CrossRef]

50. Manavella, P.A.; Arce, A.L.; Dezar, C.A.; Bitton, F.; Renou, J.P.; Crespi, M.; Chan, R.L. Cross-talk between
ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J.
2006, 48, 125–137. [CrossRef]

51. Manavella, P.A.; Dezar, C.A.; Bonaventure, G.; Baldwin, I.T.; Chan, R.L. HAHB4, a sunflower HD-Zip
protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress
responses. Plant J. 2008, 56, 376–388. [CrossRef]

52. Nguyen, D.; Rieu, I.; Mariani, C.; van Dam, N.M. How plants handle multiple stresses: Hormonal interactions
underlying responses to abiotic stress and insect herbivory. Plant Mol. Biol. 2016, 91, 727–740. [CrossRef]
[PubMed]

53. Cabello, J.V.; Arce, A.L.; Chan, R.L. The homologous HD-Zip I transcription factors HaHB1 and AtHB13
confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J. 2012, 69,
141–153. [CrossRef]

54. Gao, D.; Appiano, M.; Huibers, R.P.; Chen, X.; Loonen, A.E.H.M.; Visser, R.G.F.; Wolters, A.-M.A.;
Bai, Y. Activation tagging of ATHB13 in Arabidopsis thaliana confers broad-spectrum disease resistance.
Plant Mol. Biol. 2014, 86, 641–653. [CrossRef] [PubMed]

55. Aoyama, T.; Dong, C.H.; Wu, Y.; Carabelli, M.; Sessa, G.; Ruberti, I.; Morelli, G.; Chua, N.H. Ectopic expression
of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco. Plant Cell 1995, 7, 1773–1785.
[CrossRef] [PubMed]

56. Hanson, J.; Johannesson, H.; Engström, P. Sugar-dependent alterations in cotyledon and leaf development in
transgenic plants expressing the HDZhdip gene ATHB13. Plant Mol. Biol. 2001, 45, 247–262. [CrossRef]

57. Merelo, P.; Xie, Y.; Brand, L.; Ott, F.; Weigel, D.; Bowman, J.L.; Heisler, M.G.; Wenkel, S. Genome-Wide
Identification of KANADI1 Target Genes. PLoS ONE 2013, 8, e77341. [CrossRef]

58. Kerstetter, R.A.; Bollman, K.; Taylor, R.A.; Bomblies, K.; Poethig, R.S. KANADI regulates organ polarity in
Arabidopsis. Nature 2001, 411, 706–709. [CrossRef]

59. Hur, Y.S.; Um, J.H.; Kim, S.; Kim, K.; Park, H.J.; Lim, J.S.; Kim, W.Y.; Jun, S.E.; Yoon, E.K.; Lim, J.; et al.
Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth
by promoting cell expansion and endoreduplication. New Phytol. 2015, 205, 316–328. [CrossRef]

60. Ariel, F.; Diet, A.; Verdenaud, M.; Gruber, V.; Frugier, F.; Chan, R.; Crespi, M. Environmental regulation of
lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell 2010,
22, 2171–2183. [CrossRef]

61. Xu, C.; Luo, F.; Hochholdinger, F. LOB Domain Proteins: Beyond Lateral Organ Boundaries. Trends Plant Sci.
2016, 21, 159–167. [CrossRef]

62. Stamm, P.; Topham, A.T.; Mukhtar, N.K.; Jackson, M.D.B.; Tomé, D.F.A.; Beynon, J.L.; Bassel, G.W.
The Transcription Factor ATHB5 Affects GA-Mediated Plasticity in Hypocotyl Cell Growth during Seed
Germination. Plant Physiol. 2017, 173, 907–917. [CrossRef] [PubMed]

63. Leivar, P.; Quail, P.H. PIFs: Pivotal components in a cellular signaling hub. Trends Plant Sci. 2011, 16, 19–28.
[CrossRef] [PubMed]

64. Capella, M.; Ribone, P.A.; Arce, A.L.; Chan, R.L. Arabidopsis thaliana HomeoBox 1
(AtHB1), a Homedomain-Leucine Zipper I (HD-Zip I) transcription factor, is regulated by
PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation. New Phytol. 2015,
207, 669–682. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1365-313X.2009.03981.x
http://www.ncbi.nlm.nih.gov/pubmed/19624469
http://dx.doi.org/10.1007/s11103-012-9956-4
http://www.ncbi.nlm.nih.gov/pubmed/22968620
http://dx.doi.org/10.1093/emboj/cdf316
http://dx.doi.org/10.1111/j.1365-313X.2006.02865.x
http://dx.doi.org/10.1111/j.1365-313X.2008.03604.x
http://dx.doi.org/10.1007/s11103-016-0481-8
http://www.ncbi.nlm.nih.gov/pubmed/27095445
http://dx.doi.org/10.1111/j.1365-313X.2011.04778.x
http://dx.doi.org/10.1007/s11103-014-0253-2
http://www.ncbi.nlm.nih.gov/pubmed/25293871
http://dx.doi.org/10.1105/tpc.7.11.1773
http://www.ncbi.nlm.nih.gov/pubmed/8535134
http://dx.doi.org/10.1023/A:1006464907710
http://dx.doi.org/10.1371/journal.pone.0077341
http://dx.doi.org/10.1038/35079629
http://dx.doi.org/10.1111/nph.12998
http://dx.doi.org/10.1105/tpc.110.074823
http://dx.doi.org/10.1016/j.tplants.2015.10.010
http://dx.doi.org/10.1104/pp.16.01099
http://www.ncbi.nlm.nih.gov/pubmed/27872245
http://dx.doi.org/10.1016/j.tplants.2010.08.003
http://www.ncbi.nlm.nih.gov/pubmed/20833098
http://dx.doi.org/10.1111/nph.13401
http://www.ncbi.nlm.nih.gov/pubmed/25865500


Int. J. Mol. Sci. 2018, 19, 4047 15 of 20

65. Zhong, G.Y.; Zhong, G.V.; Burns, J.K. Profiling ethylene-regulated gene expression in Arabidopsis thaliana by
microarray analysis. Plant Mol. Biol. 2003, 53, 117–131. [CrossRef] [PubMed]

66. Pierik, R.; Djakovic-Petrovic, T.; Keuskamp, D.H.; de Wit, M.; Voesenek, L.A. Auxin and ethylene regulate
elongation responses to neighbor proximity signals independent of gibberellin and DELLA proteins in
Arabidopsis. Plant Physiol. 2009, 149, 1701–1712. [CrossRef] [PubMed]

67. Lin, Z.; Hong, Y.; Yin, M.; Li, C.; Zhang, K.; Grierson, D. A tomato HD-Zip homeobox protein, LeHB-1,
plays an important role in floral organogenesis and ripening. Plant J. 2008, 55, 301–310. [CrossRef]

68. González-Grandío, E.; Pajoro, A.; Franco-Zorrilla, J.M.; Tarancón, C.; Immink, R.G.; Cubas, P. Abscisic acid
signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proc. Natl. Acad.
Sci. USA 2017, 114, E245–E254. [CrossRef]

69. Aguilar-Martínez, J.A.; Poza-Carrión, C.; Cubas, P. Arabidopsis BRANCHED1 acts as an integrator of
branching signals within axillary buds. Plant Cell 2007, 19, 458–472. [CrossRef]

70. De Smet, I.; Lau, S.; Ehrismann, J.S.; Axiotis, I.; Kolb, M.; Kientz, M.; Weijers, D.; Jürgens, G.
Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana.
J. Exp. Bot. 2013, 64, 3009–3019. [CrossRef]

71. Lavy, M.; Estelle, M. Mechanisms of auxin signaling. Development 2016, 143, 3226–3229. [CrossRef] [PubMed]
72. Leyser, O. Auxin signaling. Plant Physiol. 2018, 176, 465–479. [CrossRef] [PubMed]
73. Berleth, T.; Jurgens, G. The role of the monopteros gene in organising the basal body region of the Arabidopsis

embryo. Development 1993, 118, 575–587.
74. Hardtke, C.S.; Berleth, T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating

embryo axis formation and vascular development. EMBO J. 1998, 17, 1405–1411. [CrossRef] [PubMed]
75. Hamann, T.; Mayer, U.; Jurgens, G. The auxin-insensitive bodenlos mutation affects primary root formation

and apical-basal patterning in the Arabidopsis embryo. Development 1999, 126, 1387–1395. [PubMed]
76. Hamann, T.; Benkova, E.; Bäurle, I.; Kientz, M.; Jurgens, G. The Arabidopsis BODENLOS gene encodes

an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev. 2002, 16,
1610–1615. [CrossRef] [PubMed]
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