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Abstract: Various cytokines, including interferon (IFN)-γ and IL-17, are augmented, and autoreactive
T cells and B cells are activated in the immune pathogenesis of Sjögren’s syndrome (SS). In particular,
IFNs are involved in both the early stages of innate immunity by high level of type I IFN in glandular
tissue and sera and the later stages of disease progression by type I and type II IFN producing T cells
and B cells through B cell activating factor in SS. Genetically modified mouse models for some of
these molecules have been reported and will be discussed in this review. New findings from human
SS and animal models of SS have elucidated some of the mechanisms underlying SS-related dry
eye. We will discuss IFN-γ and several other molecules that represent candidate targets for treating
inflammation in SS-related dry eye.
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1. Introduction

Sjögren’s syndrome (SS) is an intractable autoimmune disease, characterized by chronic lymphocytic
infiltration of the lacrimal gland, salivary gland, and other exocrine glands, which lead to dry eye,
dry mouth, and extraglandular syndrome [1,2].

SS is categorized into primary SS, which is not associated with other autoimmune diseases,
and secondary SS, which is associated with other diseases including rheumatoid arthritis, systemic
lupus erythematosus, systemic sclerosis, autoimmune liver cirrhosis, and mixed connective tissue
disease [3,4]. Moreover, primary SS is further subdivided into the glandular form, which exclusively
affects the exocrine glands, and the extraglandular form, which affects organs beyond the exocrine
glands [1].

Animal models that reflect clinical findings have been studied to elucidate the pathogenic
processes of SS-related dry eye disease, using modern, cutting-edge technology. The comparison of SS
animal models to controls has enabled researchers to investigate the detailed mechanisms underlying
SS-related dry eye; these pathogenic processes cannot be examined using human samples, which are
limited in terms of their availability and applications. On the other hand, the pathophysiology of
SS-related dry eye has been controversial because the available animal models do not completely
reproduce all of the clinical aspects of dry eye related to SS or its clinical settings [5].

Nevertheless, recent advances in basic research have increased our understanding of the dry eye
disease caused by SS [5]. It is reported that various cytokines produced by immunocompetent cells
including IFN-γ and interleukin (IL)-17 are augmented and autoreactive T cells and B are activated
by IFN in the immune pathogenesis of SS exocrine glands [6]. In particular, IFNs are involved in
both the early stage of innate immunity, during which the type I IFN is elevated in glandular tissue
and sera [7] and the later phase of disease progression, by type I and type II IFN producing T cells
and B cells [8], which is stimulated by B-cell-activating factor (BAFF) in SS [2] (Figure 1). BAFF is
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a cytokine produced by monocytes and dendritic cells (DCs) [9,10] that is crucial for the proliferation,
differentiation and survival of B cells [9–11]. Genetically modified mouse models for some of these
molecules have been reported and will be discussed in this review. New findings from both animal
models and human SS have elucidated the mechanisms underlying SS-related dry eye and led to new
therapeutic interventions for this disease.

Int. J. Mol. Sci. 2018, 19, 2 of 11 

 

produced by monocytes and dendritic cells (DCs) [9,10] that is crucial for the proliferation, 
differentiation and survival of B cells [9–11]. Genetically modified mouse models for some of these 
molecules have been reported and will be discussed in this review. New findings from both animal 
models and human SS have elucidated the mechanisms underlying SS-related dry eye and led to new 
therapeutic interventions for this disease.  

 
Figure 1. IFNs are involved in both the early stage of innate immunity, in which the type I IFN is 
elevated in glandular tissue and sera, and the later phase of disease progression, in which type I and 
type II IFN produce T cells and B cells, stimulated by B-cell-activating factor (BAFF) in SS. Natural 
killer (NK) cells can activate immature dendritic cells (DCs) through the secretion of IFN-γ. Increasing 
levels of type II IFNs, such as IFN-γ, are observed in primary SS [2]. The polarization of IFN-γ-
secreting Th1 cells is implicated in SS pathogenesis. DC; dendritic cells, NK cells: natural killer cells, 
IFN; interferon, BAFF: B-cell-activating factor. 

This review describes recent research on the pathogenesis of SS, focusing on animal models and 
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primarily secreted from natural killer cells, T cells, and B cells and acts to enhance inflammation [8]. 
In addition, IFN-γ stimulates macrophages and dendritic cells to attack bacteria and to increase the 
expression of MHC molecules. IFN-γ is reported to be important for the immune response in 
autoinflammatory and autoimmune diseases, including SS [8].  

IFN is produced in response to invasion by viruses, pathogens, and neoplastic cells. While the 
profile of IFN responsive genes influences the biological pathways leading to IFN production, IFNs 
also confer a cellular response to invading pathogens, especially against double stranded RNA 
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Figure 1. IFNs are involved in both the early stage of innate immunity, in which the type I IFN is
elevated in glandular tissue and sera, and the later phase of disease progression, in which type I and
type II IFN produce T cells and B cells, stimulated by B-cell-activating factor (BAFF) in SS. Natural killer
(NK) cells can activate immature dendritic cells (DCs) through the secretion of IFN-γ. Increasing levels
of type II IFNs, such as IFN-γ, are observed in primary SS [2]. The polarization of IFN-γ-secreting Th1
cells is implicated in SS pathogenesis. DC; dendritic cells, NK cells: natural killer cells, IFN; interferon,
BAFF: B-cell-activating factor.

This review describes recent research on the pathogenesis of SS, focusing on animal models and
SS patients. We will highlight IFN-γ and several other molecules as candidates for the treatment of
inflammation in SS-related dry eye.

2. Interferons

2.1. Interferons

IFN-γ, a canonical cytokine, has indispensable roles in innate and adaptive immunity. IFN-γ is
primarily secreted from natural killer cells, T cells, and B cells and acts to enhance inflammation [8].
In addition, IFN-γ stimulates macrophages and dendritic cells to attack bacteria and to increase
the expression of MHC molecules. IFN-γ is reported to be important for the immune response in
autoinflammatory and autoimmune diseases, including SS [8].

IFN is produced in response to invasion by viruses, pathogens, and neoplastic cells. While the
profile of IFN responsive genes influences the biological pathways leading to IFN production, IFNs also
confer a cellular response to invading pathogens, especially against double stranded RNA viruses [7].

IFNs are classified into four types, as follows: (1) type I IFNs, consisting of IFN -α, -β, -ω, -ε,
-κ, and -τ and Limitin; (2) type II IFNs, consisting of IFN-γ; (3) the IFN-λ subfamily (type III IFNs),
consisting of IFN-λ1, IFN-λ2, IFN-λ3, IL-22, IL-24, and IL-26; and (4) the IL-10 family, consisting of
IL-10, IL-19, and IL-20. IFN-γ, the type II IFN, elicits its response through specific receptors, such as
IFN-γ receptor 1 (IFNGR1) and IFN-γ receptor 2 (IFNGR2) [12]. When type I IFN binds to the type I IFN
receptor (IFN1R), IFNGR1 colocalizes with IFNGR2 and together they induce signal transduction and
phosphorylation by IFNGR2, in association with Janus kinase 1/2 (JAK1/2) [13]. IFNs are involved
in activating the antiviral response and control immunoreactivity through interactions with their
corresponding receptors [14]. It has been reported that a role for IL-12 with IFN-γ, is implicated in
primary SS. IL-12 is known to be a potent inducer of Th1 cell polarization. Therefore, IL-12 plays
a primary role in increasing the levels of type II IFNs, such as IFN-γ, that are observed in primary
SS [2].
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2.2. Involvement of Type I IFN and Type II IFN

Signal transducer and activator of transcription 4 (STAT4) is triggered by a wide range of cytokines,
including type I IFN, IL-12 and IL-23, which stimulate Th17 cells and contribute to the regulation of
proinflammatory cytokine production. After coupling with receptors, STAT4 is phosphorylated and
transferred to the nucleus, leading to the gene transcription of IFN-γ and the activation of Th1 cells.
Interestingly, risk alleles in interferon regulatory factor 5 (IRF5) and STAT4 have been shown to be
additive in the development of primary SS [15].

Discrete expression patterns of the type I and II IFN signatures might be related to distinct SS
clinical phenotypes [16]. A recent study revealed that both type I and type II IFN were overexpressed
in SS patients versus sicca controls, with the type I IFN signature predominantly observed in peripheral
blood and a type II IFN signature predominantly observed in the minor salivary gland (MSG) tissues.
In SS-lymphoma minor salivary gland (MSG) tissues, lower levels of IFN-α, but higher levels of IFN-γ
and type II IFN-inducible gene (IFIG) transcripts were observed compared to both SS and sicca controls.
In a receiver operating characteristic curve analysis, the IFN-γ/IFN-α mRNA ratio in MSG tissues
demonstrated the best level of discrimination for lymphoma development [17].

BAFF production is highly dependent on type I and type II IFNs. Salivary gland epithelial cells
express and secrete BAFF after IFN stimulation, including IFN-α and IFN-γ, suggesting that exocrine
gland epithelial cells are important in the pathogenesis of primary SS after stimulation by the innate
immunity system [5,16].

Further studies may reveal more details, and the deletion of these regulatory molecules from
the endogenous locus may provide clues regarding their functions under physiological conditions.
Recent advances in genome editing, such as the clustered regularly interspaced short palindromic
repeat CRISPR-Associated Proteins 9 (CRISPR Cas 9) method [18,19], may serve as powerful tools
for elucidating these mechanisms in SS-related dry eye animal models and cultured cells from mice
and humans.

2.3. IFN-γ in SS-Related Dry Eye in Animal Models

IFN-γ is reported to be important in the SS-affected lacrimal gland and ocular surface in several
animal models [5]. The expression of autoantigens, including Ro60/Sjögren Syndrome type A antigen
(SSA), La/Sjögren Syndrome type B antigen (SSB), α-fodrin, β-fodrin, and the M3 acetylcholine
receptor, is thought to be an important trigger for the inflammatory epitheliopathy in SS by mechanism
involving clustered differentiation (CD4)+ T cell activation [20,21].

The activation of an innate response by IFN producing natural killer cells not only damages
the lacrimal gland and the ocular surface but also facilitates antigen presenting cell maturation via
IFN-γ [22]. IFN-γ facilitates the shift of naïve CD4+ T cells to a T helper type 1 polarization. Pathways
and molecules that are genetically associated with SS, including IRF-5 and the IFN signaling pathway,
the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interferon regulatory factor
5 (IRF 5) pathway, the lymphocyte signaling pathway, and antigen presentation machinery [23].

CD25KO model: As abovementioned, IFN-γ, a proinflammatory cytokine, is reported to be
critical for lacrimal gland destruction and secretory dysfunction in the CD25KO model of SS [24].
CD25 is the primary receptor for IL-2 is indispensable for the development of regulatory T cells.
The CD25KO model mimics an autoimmune disease that is characterized by the spontaneous
infiltration of lymphocytes and dacryoadenitis [25].

CD25KO/IL-17AKO double KO mice: An altered balance between IFN-γ and IL-13 in
CD25KO/IL-17AKO double KO mice accelerates lacrimal gland destruction by increasing glandular
apoptosis and facilitating apoptosis through the increased expression of the IFN-γR in the glandular
epithelium and the activation of caspases [24]. These findings suggested that targeting both IFN-γ
and IL-17 may be beneficial for treating lacrimal gland inflammation in SS. Related to dry eye
evaluation, epidermal growth factor level in tears using enzyme immunosorbent assay is decreased
and inflammatory cell infiltration into lacrimal gland were evaluated by histology in this animal model.
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CD25/IFN-γ double KO (gammaDKO) mice: A decrease in lacrimal gland destruction in IFN-γ
depleted mice has been found to correlate with the degree of T-cell infiltration and the presence
of M3R autoantibodies [26]. These reports implicate the significance of IFN-γ in innate immunity
and the initiation of this disease. Concerning evaluation for dry eye, lacrimal gland histopathology,
immunohistochemistory, gene expression of inflammatory marker, and EGF concentration in tears
were analyzed.

IL-2 knockout (KO), IL-2Rα KO and scurfy mice: Those models are reported to develop the
phenotype similar to an autoimmune disease, characterized by the spontaneous infiltration of
lymphocytes into exocrine glands and dacryoadenitis, but not scurfy mice. However, adoptive transfer
of T cells from Scurfy mice exhibit SS like dacrioadenitits, suggesting that environmental factor may
confer the phenotype of SS in Scurfy mice [25]. Pilocalpine-stimulated salivary secretion instead
of lacrimal fluid secretion was reduced in IL-2 KO and IL-2Rα KO mice. Regarding scurfy mouse,
adoptive transfer of T cells from this mouse induced SS-like phenotype in RAG2 KO mice. Innate
immune response inducer, lipopolysaccaridosis (a ligand for toll-like receptor) confer to trigger SS
like phenotype.

Desiccating stress dry eye model: A lymphocyte function-associated antigen-1 (LFA-1) antagonist,
named “lifitegrast,” and an anti-intercellular adhesion molecule-1 antagonist have been shown to
suppress IFN-γ family genes and improve the conditions of keratoconjunctiva sicca (KCS), including
the corneal epithelial barrier dysfunction and goblet cell density/area of ocular surface but not lacrimal
gland in a mouse desiccating stress dry eye model that develops KCS similar to SS [27]. Tear secretion
level was not tested in this animal model. However, it is important to evaluate the corneal epithelial
barrier and goblet cell density both of which influence the severity of dry eye and stability of tear film
layer. This report suggested that the IFN-γ family genes and LFA/intercellular adhesion molecule-1
(ICAM-1) signaling are involved in the signal transduction underlying SS-related dry eye.

Non-obese diabetic (NOD) mouse model: Lacrimal gland of this mouse model exhibit
inflammatory cell infiltration in pathology. IFN-γ were elevated in lacrimal gland and tears compared
to the controls [28]. In cultured lacrimal gland epithelia and corneal cell epithelia, IFN-γ reduce the
component of tear secretion including Rab3 D in lacrimal gland and stimulate the expression of MHC
class II-mediated antigen presentation. These results suggest the significance that early elevations in
IFN-γ levels play in the specific features of dry eye pathology in SS [28].

Subtype-3 muscarinic acetylcholine receptors (M3R) KO mice: Tsuboi et al. have reported
that retinoic-acid-receptor-related orphan nuclear receptor gamma (ROR-γ) T antagonists suppress
SS-like dacryoadenitis through the suppression of IL-17 and IFN-γ production by M3R-specific T cells,
suggesting that Th1 cells interact with Th17 cells and collaborate with each other in the development of
this disease [29]. CD4+ M3R-reactive T cells produce IFN-γ and IL-17 in response to the N-terminal 1
and 1st extracellular loop peptides of M3R, and recombination-activating genes 1 (Rag1) KO mice that
received N1- and/or first peptide-immunized splenocytes developed sialadenitis [30]. These reports
demonstrate that IFN-γ that is released from autoreactive CD4+ T cells by M3R is a critical trigger of
local and systemic SS disease manifestations in both innate and adaptive immunity.

MpJ-lpr/lpr mice: On the other hand, MpJ-lpr/lpr mice exhibit a Sjögren’s like syndrome
with lymphocytic infiltration in the salivary glands and lacrimal glands, and develop dry eye;
they also develop a lupus/autoimmune lymphoproliferative syndrome-like condition. The lacrimal
gland lesions in these mice were suggested to be Th2-mediated based on an elevation in IL-4 [31].
In this animal model, the mRNA expression by competitive polymerase chain reaction and
immunohistochemistry for frozen section were used to evaluate the inflammatory change in
exocrine glands.

2.4. Severe Dry Eye Related to Sjögren’s Syndrome

In SS-associated dry eye, changes or reductions in the epithelial glycocalyx, a loss of goblet cells,
and keratinization of the conjunctival and corneal epithelia occur in conjunction with the expression
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of cornified envelope precursor proteins [5]. Squamous metaplasia frequently occurs where mucosal
membrane is transdifferentiated to an epidermalized surface, such as the ocular surface, and this is
observed during the transition to severe dry eye in several syndromes, including SS, ocular cicatricial
pemphigoid, Stevens Johnson syndrome and graft-versus-host disease (GVHD). Small proline-rich
proteins in mice [32], involucrin in human cell line [33] and mice [32], late envelope proteins and
filaggrin are reported to be cornified envelope precursor proteins [34,35]. IL-1β and IFN-γ have
a primary role in forming the squamous metaplasia on the ocular surface epithelia in response to
chronic inflammation. Both cytokines have been shown to be present at the ocular surface in dry
eye. The expression of the relevant genes has been shown to precede the squamous phenotype [32].
IFN-γ has been reported to promote goblet cell loss, epithelial apoptosis, and keratinization of the
conjunctival epithelium in a dry eye mouse model [36] and is an important contributor to squamous
metaplasia in human dry eye disease [24]. IFN-γ upregulates the expression of cornified envelope
precursors in keratinocytes [33], corneal epithelial cells [37], and conjunctival epithelial cells from
patients with SS [34,38]. During the process of squamous metaplasia, IFN-γ is released by infiltrating
Th1 cells and NK cells at the ocular surface [31].

2.5. The Microbiome in SS-Related Dry Eye and IFN-γ Level

Recent research suggests that the microbiome is related to the immune response in SS-associated
dry eye. Previously, dysbiosis was suspected to be involved in the pathogenesis of SS, similar to
other autoimmune diseases, such as inflammatory bowel disease, Crohn’s disease, and rheumatoid
arthritis [39]. Recent studies demonstrated that an alteration of the microbiome may decrease the
IFN-γ levels in SS [40]. Furthermore, Zaheer et al. examined CD25KO mice, which develop SS-like
inflammation, in a germ-free environment. They found that germ-free CD25KO mice expressed that
higher levels of IFN-γ and IL-12 than did conventional CD25KO mice. In addition, the expression levels
of IFN-γ, IL-12, and other inflammation-related molecules improved after the germ-free CD25KO mice
received fecal microbiota transplantations from conventional mice [41]. These results demonstrated
that the microbiome plays an important role in SS development. However, most of the mechanisms
behind these changes are unknown, and further studies are needed to investigate the relevance of the
microbiome in the molecular mechanisms of autoimmune disease.

2.6. Sjögren’s Syndrome-Related Dry Eye in Humans

Studies on human SS revealed diffuse lymphocyte infiltration of the acinar areas of the lacrimal
gland and conjunctiva. B cells were the predominant infiltrating cell type, but other cells, including
activated CD4+ T cells and CD8+ T cells with HLA-DR and costimulatory molecules, were found
with glandular epithelial cells and stromal infiltrating cells in SS patients, while T cell dominant
characteristics were found in the lacrimal glands from patients with GVHD [42,43]. Clusters of plasma
cells were frequently observed in the interlobular areas of the lacrimal gland and the conjunctival
stroma of patients with SS, suggesting that abnormal antibody production and tissue damage
in the local microenvironment of the ocular surface and the lacrimal gland were caused by SS.
However, there are limitations when studying clinical samples, in terms of comparison with controls
and examining the mechanisms of the pathogenic process of SS in the lacrimal gland and on the
ocular surface.

Environmental factors including viruses activate epithelial cells of exocrine gland and dendritic
cells, which produce proinflammatory cytokines like IL-17 and IFN-γ. Glandular epithelial cells
produce chemokines such as chemokine (C–X–C motif) ligand (CXCL) 9 and CXCL10 [44].

Recently, it is reported that H1N1 vaccination in SS patient promote polyclonal B cell activation
and autoantibody production through type I IFN [45]. Considering hyperreactive B cells in type I IFN
milieu, we need to pay much attention to vaccination in SS patients.

A Sjögren’s syndrome susceptibility locus at OAS1 was identified in responding type I IFN [46]
using the 2002 American-European Consensus Group (AECG) Criteria with dry eye symptom and/or
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ocular surface staining and/or reduced tear production [47] and need to be re-evaluated by the newly
proposed 2016 American College of Rheumatology (ACR)/European League Against Rheumatism
(EULAR) criteria [4] to compare and confirm this susceptibility locus. Based on the heterogeneity of
the clinical presentation and pathology in SS, the IFN expression patterns is likely to vary among
individuals [16] and the systemic IFN type I and type II signature influence the disease severity [48].
IFN-γ, a type II IFN, is involved in the most frequent pathways that have been identified in the
pathogenic processes of human SS [16], although three distinct patterns of IFN were evident: type
I-predominant, type II-predominant, and type I/II mixed IFN among those patients. The authors
evaluated MSG, however minor salivary gland severity well reflect the ocular surface disturbance in
SS patients. IFN-γ facilitates naïve CD4 T cells to shift into a T helper type 1 polarization. Genetic
associations with SS, including interferon regulatory factor-5 (IRF-5) and the IFN signaling pathway,
have been suggested [23].

2.7. Treatment for SS Related Dry Eye Patients

Aqueous-deficient dry eye in SS is treated with tear lubrication using artificial tears,
mucin-producing eye drops, punctal plug, or surgical occlusion depending on the severity of the dry
eye. For SS patients, it is essential to use preservative-free topical reagents [49].

The mucin-producing eye drops diquafosol and rebamipide are reported to be effective for SS
dry eye [50–54]. Diquafosol is a dinucleotide derivative that has purinoreceptor P2Y2 receptor agonist
activity. It stimulates P2Y2 receptors at the ocular surface, to produce tears and mucin secretion from
the conjunctiva through an elevated intracellular calcium concentration [55,56]. Rebamipide, a mucosal
protective and anti-inflammatory agent, is also recommended for SS dry eye [38,50,51]. Rebamipide
has anti-inflammatory effects through CD4 inhibition and macrophage activation [57].

Systemic corticosteroid is not recommended for SS dry eye and dry mouth [1]. Topical cyclosporine
0.05% (Restasis) is approved for treating dry eye by the FDA and the European Medicine Agency
(EMA) [58]. Ikervis, cyclosporine cationic emulsion, has been approved by the EMA [59] and in some
Asian countries [60]. Recently, topical lifitegrast, an integrin inhibitor, a LFA-1 antagonist, was approved
by the FDA for the treatment of dry eye [61]. Recently, protocols for tear film-oriented therapy has
been proposed by the Japan Dry Eye Society, which recommended low-dose corticosteroid therapy
for the anti-inflammatory treatment of dry eye disease (http://www.dryeye.ne.jp/tfot/index.html).
(access on 9 November 2018).

SS dry eye frequently involves evaporative in addition to aqueous-deficient dry eye. Therefore,
treatment of the meibomian gland and eye lid is often required. Warm compression, lid hygiene,
topical and oral antibiotics, and oil-containing eye drops are helpful to improve this type of dry eye [62].
Omega 3-containing fish oil is effective for SS-related meibomian gland dysfunction (MGD) [63].

Rituximab, a chimeric monoclonal antibody targeting the pan-B-cell marker CD20, and abatacept,
a immunomodulatory drug that inhibit T-cell activation via co-stimulatory blockade, are recommended
biological reagents for systemic SS in the Japanese SS clinical practice guidelines [1] and may improve
SS dry eye [64].

Although an IFN-based therapeutic strategy has not yet been approved, there are accumulating
evidence in humans supports it [65]. Considering the mechanistic insight that IFN signaling is involved
in SS related dry eye in mice and humans, the development of IFN-related therapeutic interventions
could be indispensable treating SS related dry eye.

2.8. Hypothetical Pathogenic Processes of SS-Related Dry Eye

Viral infections, such as Epstein-Barr virus, HIV, hepatitis C virus, coxsackie virus, or human
trophic lymphocyte virus type 1 (HTLV-1), of glandular epithelial cells have been reported to trigger
the autoimmune response in SS [2,66]. Epithelial activation and damage due to the viral infection could
lead to the release of SS-associated ribonucleoprotein autoantigens, including Ro60/SSA, La/SSB,
and supporting and organizing scaffold proteins for cell membranes, such asα-fodrin, β-fodrin, and the

http://www.dryeye.ne.jp/tfot/index.html
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M3 muscarinic acetylcholine receptor, and Th1-related chemokines, such as chemokine (C–X–C motif)
ligand 1 (CXCL1) and CXCL9, in exocrine glands [67]. Epithelial cell activation by viral infection may
be promoted in individuals who carry specific alleles of genes that encode proteins in the IFN signaling
pathways [2]. The subsequent secretion of proinflammatory cytokines, including IFN-γ, may promote
the infiltration of lymphocytes, primarily T cells, into the lacrimal glands, and increase BAFF secretion
by epithelial cells [10]. These conditions promote B-cell activation and maturation as plasma cells
and the secretion of altered autoantibodies, especially in SS-susceptible individuals. IFN-γ may be
associated with the maturation of B cells into plasma cells and the production of altered antibodies.
Alternatively, abnormally accumulated autoantibodies can form immune complexes with autoantigens,
which participate in the local microenvironment of the salivary and lacrimal glands, as well as in the
conjunctival mucosal membrane. Collectively, these processes stimulate the activation of a chronic
immune cascade, leading to dry eye caused by lacrimal gland and ocular surface dysfunction (Figure 2).

Int. J. Mol. Sci. 2018, 19, 7 of 11 

 

encode proteins in the IFN signaling pathways [2]. The subsequent secretion of proinflammatory 
cytokines, including IFN-γ, may promote the infiltration of lymphocytes, primarily T cells, into the 
lacrimal glands, and increase BAFF secretion by epithelial cells [10]. These conditions promote B-cell 
activation and maturation as plasma cells and the secretion of altered autoantibodies, especially in 
SS-susceptible individuals. IFN-γ may be associated with the maturation of B cells into plasma cells 
and the production of altered antibodies. Alternatively, abnormally accumulated autoantibodies can 
form immune complexes with autoantigens, which participate in the local microenvironment of the 
salivary and lacrimal glands, as well as in the conjunctival mucosal membrane. Collectively, these 
processes stimulate the activation of a chronic immune cascade, leading to dry eye caused by lacrimal 
gland and ocular surface dysfunction (Figure 2).  

 
Figure 2. Hypothetical pathogenic process of Sjögren’s syndrome related dry eye diseasemodified 
form Sumida, T. et al [67].Viral infection acts as a trigger for the autoimmune response in SS. SS-
associated ribonucleoprotein autoantigens, including Ro60/SSA, La/SSB, α-fodrin, β-fodrin, and M3 
muscarinic acetylcholine receptor, are released by epithelial activation and damage. Epithelial cells 
are activated by IFN signaling pathways, followed by the subsequent infiltration of lymphocytes, 
primarily T cells, into the lacrimal glands and the secretion of B-cell-activating factor by epithelial 
cells. The subsequent B-cell activation and maturation as plasma cells results in the secretion of altered 
autoantibodies. These processes stimulate a chronic immune cascade, leading to lacrimal gland and 
ocular surface dysfunction and thus to dry eye. EBV; Epstein‒Barr Virus, HIV; Human 
Immunodeficiency Virus, HCV; Hepatitis C Virus, HTLV; Human T-lymphotrophic Virus. 

3. Future Directions 

It will be important to carefully evaluate and confirm the appropriateness and accuracy of of the 
various mouse models for SS and the significance of the data obtained from studies of these mice, to 
better understand the human disease and potential interventional therapies. 

There are many unresolved issues associated with SS-related dry eye, including the pathogenic 
process, the underlying mechanisms, and possible clinically translatable therapeutic interventions. 
Examining these issues using appropriate animal models of SS-related dry eye, may lead to the 
development of specific and precise therapeutic interventions to alleviate this intractable disease. 

Author Contributions: Conceptualization, Y.O. and K.T.; Methodology, Y.O.; Software, E.S.; Validation, Y.O., 
E.S. and K.T.; Data Curation, Y.O. E.S.; Writing—Original Draft Preparation, Y.O. and E.S. and K.T.; Writing—

Figure 2. Hypothetical pathogenic process of Sjögren’s syndrome related dry eye diseasemodified form
Sumida, T. et al [67].Viral infection acts as a trigger for the autoimmune response in SS. SS-associated
ribonucleoprotein autoantigens, including Ro60/SSA, La/SSB, α-fodrin, β-fodrin, and M3 muscarinic
acetylcholine receptor, are released by epithelial activation and damage. Epithelial cells are activated
by IFN signaling pathways, followed by the subsequent infiltration of lymphocytes, primarily T cells,
into the lacrimal glands and the secretion of B-cell-activating factor by epithelial cells. The subsequent
B-cell activation and maturation as plasma cells results in the secretion of altered autoantibodies.
These processes stimulate a chronic immune cascade, leading to lacrimal gland and ocular surface
dysfunction and thus to dry eye. EBV; Epstein-Barr Virus, HIV; Human Immunodeficiency Virus, HCV;
Hepatitis C Virus, HTLV; Human T-lymphotrophic Virus.

3. Future Directions

It will be important to carefully evaluate and confirm the appropriateness and accuracy of of the
various mouse models for SS and the significance of the data obtained from studies of these mice,
to better understand the human disease and potential interventional therapies.

There are many unresolved issues associated with SS-related dry eye, including the pathogenic
process, the underlying mechanisms, and possible clinically translatable therapeutic interventions.
Examining these issues using appropriate animal models of SS-related dry eye, may lead to the
development of specific and precise therapeutic interventions to alleviate this intractable disease.
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