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Abstract: Patau Syndrome (PS), characterized as a lethal disease, allows less than 15% survival
over the first year of life. Most deaths owe to brain and heart disorders, more so due to septal
defects because of altered gene regulations. We ascertained the cytogenetic basis of PS first,
followed by molecular analysis and docking studies. Thirty-seven PS cases were referred from
the Department of Pediatrics, King Abdulaziz University Hospital to the Center of Excellence in
Genomic Medicine Research, Jeddah during 2008 to 2018. Cytogenetic analyses were performed by
standard G-band method and trisomy13 were found in all the PS cases. Studies have suggested that
genes of chromosome 13 and other chromosomes are associated with PS. We, therefore, did molecular
pathway analysis, gene interaction, and ontology studies to identify their associations. Genomic
analysis revealed important chrl3 genes such as FOXO1, Col4A1, HMGBB1, FLT1, EFNB2, EDNRB,
GAS6, TNFSF1, STARD13, TRPC4, TUBA3C, and TUBA3D, and their regulatory partners on other
chromosomes associated with cardiovascular disorders, atrial and ventricular septal defects. There is
strong indication of involving FOXO1 (Forkhead Box O1) gene—a strong transcription factor present
on chrl3, interacting with many septal defects link genes. The study was extended using molecular
docking to find a potential drug lead for overexpressed FOXO1 inhibition. The phenothiazine and
trifluoperazine showed efficiency to inhibit overexpressed FOXO1 protein, and could be potential
drugs for PS/trisomy13 after validation.

Keywords: Patau Syndrome; cytogenetics; FOXO1; transcription factor; molecular pathways;
bioinformatics; molecular docking; and drug design

1. Introduction

Patau Syndrome (PS) is a rare congenital anomaly due to the presence of an extra chromosome
13 popularly called trisomy 13 [1]. In spite of being the least common, it is the severest of all autosomal
trisomies indicated by a prevalence rate of 1:5000 to 1:20,000 [2,3]. The syndrome is associated with
a host of congenital anomalies including central nervous system (CNS) defects, midline abnormalities,
eye and ear anomalies, cardiac defects, apnea, orofacial flaws, gastrointestinal and genitourinary
aberrations, limb deformations, and developmental retardation [4,5]. Life expectancy is severely
limited; more than 80% of PS patients do not survive long, and according to some estimates have
median survival of 2.5 days [2,6,7]. Nevertheless, only a few can survive beyond 10 years but not with
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serious intellectual and physical disabilities [8-11]. Early death of PS is assigned to frequent CNS and
cardiopulmonary system aberrations [12].

There is no specific treatment recommended for PS. Intensive care unit level of treatment for
a couple of weeks is requisite for infants. Surgery for heart defects and other abnormalities like
gastrointestinal or urogenital might be needed for six-month survivors. However, CNS disorders
are difficult to treat by surgery. Children surviving more than a year suffer from severe intellectual
disabilities, physical abnormalities and also have a high risk of developing cancer. Most studies
indicate that older women are at higher risks of delivering trisomy 13 offspring [13]. Despite the fact
that there are a number of trisomy 13 cases in Saudi Arabia, no systematic study has yet been done on
causative factors like maternal age, consanguinity, and parity.

PS is a multigenic complex and lethal disease of multiple congenital abnormalities associated
with poor prognosis [14]. Along with CNS disorders, heart ailments, especially septal defects are
leading cause of deaths [2,15]. Septal defects is a complex disorder involving hundreds of altered
gene regulations and these genes are located on multiple chromosomes including chromosome 13 [16].
Chromosome 13 is 114,364,328 bp in size, representing nearly 4% of the total DNA, and encodes
308 proteins. This chromosome has 343 protein-coding genes, 622 non-coding RNA genes, and 481
pseudogenes [17].

Molecular pathway and gene ontology analysis of chromosome 13 revealed the presence of
important genes like FOXO1, Col4A1, HMGBBI1, FLT1, EFNB2, EDNRB, GAS6, TNFSF1, STARD13,
TRPC4, TUBA3C, TUBA3D. These genes are linked with cardiovascular disorders, atrial and ventricular
septal defects commonly reported in PS [18-31]. Among them, FOXO1 is a strong transcription
factor which interacts and regulates several other genes on different chromosomes, (GATA4 (8p23.1),
GATAG6 (18q11.2), GJA1 (6q22.31), JAG1 (20p12.2), CITED? (6q24.1), RYR2 (1g43), NKX2-5 (5935.1),
RARA (17q21.2), CXCL12 (10q11.21), SIRT1 (10q21.3), TBX5 (12q24.21), AKT1 (14q32.33), CDKN2A
(9p21.3), PCK1 (20q13.31), etc.) and are associated with septal defects in PS [32-45]. Thus, some genes
like NODAL, FPR1, AFP, AGO2, UROD, ZIC2 are not located on chromosome 13 but have strong
association with PS.

Forkhead Box O1 (FOXO1) gene needs special mention. It is a member of the forkhead box O
family of transcription factors located on 13q14.11. The FOXO1 exhibits its functions by binding
to promoter of downstream genes or interacting with other transcription factors [46]; both its
up- or down-regulation can lead to serious consequences. It has noticeable expression in the
cardiovascular system, specifically in vascular and endothelial cells, and plays a substantial role
in the crucial embryonic stage [22,47]. The specific function of FOXO1 has to be determined.
However, some studies strongly suggest its key role in regulation of numerous cellular functions
comprising proliferation, survival, cell cycle, metabolism, muscle growth differentiation, and myoblast
fusion [48-50]. Other observations relate it to muscle fiber-type specification highly expressed in
fast twitch fiber-enriched muscles, in comparison to slow muscles. The FOXO1 is also involved in
a host of other functions: metabolism regulation, cell proliferation, oxidative stress response, immune
homeostasis, pluripotency in embryonic stem cells, and apoptosis [51,52]. Besides, FOXO1 deletion or
downregulation helps to rescue heart from diabetic cardiomyopathy and increases apoptosis under
stress conditions like ischemia or myocardial infarction [52-55]. The FOXO1 is a major transcription
factor in cardiac development. Thus, we see FOXO1 null mice have underdeveloped blood vessels,
whereas overexpression of the FOXO1 gene results in reduced heart size, myocardium thickening, and
eventual heart failure [18-21]. Since FOXO1 protects cardiac tissue from a variety of stress stimuli
by up-regulating anti-apoptotic, antioxidant, and autophagy genes [47,56,57], and restores metabolic
equilibrium to minimize cardiac injury due to apoptosis, therefore, in PS, FOXO1 might be a chief
regulator of cardiac disorders [52]. The fact is reinforced by reports where survival is improved by
suppression of upregulated FOXO1 [18]. Given the wide range of functions of FOXO1, its expression
rate may play a vital role in PS and we checked its inhibition via molecular docking with certain drugs.



Int. ]. Mol. Sci. 2018, 19, 3547 3 0f 20

Molecular Docking between Candidate Drugs and FOXO1

Molecular docking, a computational simulation to screen inhibitor (ligand) compounds against
biomolecule of interest, has become a crucial aspect of drug discovery approaches. Recently,
repositioning or repurposing of the existing drugs is gaining attention for the treatment of diseases
other than their known primary indications [58,59]. This approach could save enormous time, efforts
and costs owing to the proven safety and quality of the drugs already available on the market, rather
than to discover and develop novel chemical leads [60]. Similar observation on FOXO1, already
implicated in a variety of functions, can specially be very promising for docking studies.

The FOXOL1 protein contains 4 functional domains; (i) Forkhead domain (FKH), (ii) nuclear
localization signal domain (NLS), (iii) nuclear export signal (NES), and (iv) transactivation domain
(TAD). The FKH domain consists of four helices (H1-H4), two winged-loops (W1-W2), and three
B strands (S1-S3), which mainly exhibits its functions as a DNA recognition and binding site.
The FOXOT1 regulates transcription of genes by directly binding with either 5-GTAAA(T/C)AA-3/,
or 5'-(C/A)(A/C)AAA(C/T)AA-3' consensus sequence of downstream DNA [61-63]. The FOXO1
protein has thus become an extremely useful therapeutic target in many diseases including
PS. Its expression can be regulated by acetylation, phosphorylation, and ubiquitination.
Many potential inhibitors including leptomycin B [64], phenothiazines/trifluoperazine [65,66],
bromotyrosine/psammaplysene A [67] or D4476 [68] and ETP-45658 [69], have been identified via
virtual screening. Some drug candidates directly targeting FOXO1 have been patented [66]. For the
docking study, we picked the FDA-approved drugs phenothiazine and its derivatives, trifluoperazine,
which binds directly to the DNA binding domain of FOXOL1 [70,71]. A brief introduction of both will
be befitting here.

Phenothiazine (PTZ) and its derivatives are organic antihelmintic compounds presently used for
important diseases like schizophrenia and bipolar disorder. Dopamine receptors are their main target.
Repurposing PTZ has been tried earlier for developing novel antitumor agents [72] and Hepatitis
C virus [73]. Trifluoperazine (TFP), the other derivative chosen in our studies, is a phenothiazine
derivative and a dopamine antagonist, with antipsychotic and antiemetic properties. Their scaffold
derivatives have also been suggested as an antiglioblastoma agent [74] and chemotherapeutic
anticancer agent with high efficacy and reduced toxicity especially for oral cancer [72]. Lately, they
have been shown as calmodulin antagonist [75,76].

In view of the fact that the exact mechanism is unknown as to how trisomy 13 disrupts
development, heart disorders were identified as one of the most common disorders causing early
death of PS patients. The present study, therefore, aims to explore the molecular interactions of
308 genes on this chromosome. We describe here the distinctive function of chromosome 13 and its
key genes, especially FOXO1. We further intended to design a potential drug against FOXO]1, a strong
transcription factor which interacts with other key genes associated with lethal heart disorders in
PS. The potential drugs to inhibit/reduce the transcriptional factor properties of FOXO1 are further
explored with an aim to restore metabolic balance and limit apoptosis-induced cardiac damage.

2. Results

2.1. Cytogenetic Analysis of PS Patient

The prime aim of the current work was conducting genetic analysis of PS cases in the Saudi
society (n = 37). Cytogenetic analyses were performed using G-banding technique-based karyotyping
and found “full trisomy 13” in all 37 PS cases (Figure 1). The majority of individuals were newborns
or children (up to 2 years), all with multiple abnormalities including heart disorders. Male to female
ratio was found as 1.2:1. Analysis showed that mothers of affected individuals were above 35 years.
The key clinical findings of PS observed: congenital heart defects (CHD) (61%), dysmorphic features
(56%), polydactyly of hands and/or feet (53%), cryptorchidism (51%), abnormal auricles/low-set ears
(47%), microphthalmia (40%), neurological disorders/microcephaly (35%), micrognathia (33%), scalp
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defects (31%), oral clefts (17%), microphthalmia/anophthalmia (9%), and duplication of the hallux
(8%). Out of 37 cases, 31 underwent echocardiography and/or ultrasound, 21 of them showed heart
defect and asymmetry of cardiac chambers. The main anatomical defects observed were arterial or
ventricular septal defect, patent ductus arteriosus, pulmonic stenosis, coarctation of the aorta, tricuspid
valve regurgitation, and mixed defects.
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Figure 1. Karyotyping result; (A) Normal Karyotype of Healthy female and (B) Trisomy 13 in all cases
(male = 20 and female = 17) of Patau Syndrome. Red arrow shows trisomy 13.

2.2. Molecular Pathway Analysis

Diploid status of chromosome 13 and normal expression of its genes are vital and a number
of diseases are associated with its abnormalities (Table S1). However, molecular pathway and gene
ontology analysis show as many as 308 protein coding genes on chr13; some of these pathogenic genes
are ATP7B, BRCA2, CAB39L, CKAP2, ESD, GJB2, G]B6, GPC5, HTR2A, MBNL2, RB1, SOX21, ZMYM?2,
collectively noted for various disease associations. Other important genes such as Col4A1, EFNB2,
EDNRB, FLT1, FOX01, GAS6, HMGB1, STARD13, TRPC4, TUBA3C, ZIC2 are specifically associated
with cardiovascular disorders, atrial and ventricular septal defects—the key disorders of PS (Table 1).
Ingenuity pathway analysis on 308 genes revealed canonical pathways like estrogen-mediated S-phase
entry (Figure 2), gap junction signaling, cancer signaling, nitric oxide signaling in the cardiovascular
system, adipogenesis pathway, VEGF signaling, cell cycle: G1/S checkpoint regulation, angiopoietin
signaling, and 14-3-3-mediated signaling (Table 2). For a comprehensive idea, canonical pathways
based on protein coding genes are summarized in Table 2. A cursory look shows FOXOL1 to be involved
in most of the canonical pathways. We focused our attention on it being strong transcription factor,
interacting with and regulating many other genes on different chromosomes associated with septal
defects in PS.
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Table 1. Important pathogenic genes located on chromosome 13.
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Gene Symbol Gene Name Cytoband Associated Disease Associated Pathways Paralog
ATP7B ATPase Copper Transporting Beta 13q14.3 Wilson Disease, Menkes Disease Cardiac conduction; o channel transport; Transmembrane transport ATP7A
of small molecules
BRCA2 Breast cancer 2, early onset 13q13.1 Fanconi Anemia, and Breast Cancer DNA Damage and Role of BRCA1 and BRCA2 in DNA repair
CAB39L Calcium-binding protein 39-like 13q14.2 Acute Monocytic Leukemia RET signaling and mTOR signaling pathway CAB39
COL4A1 Collagen Type IV Alpha 1 Chain 13q34 Coronary artery disease Collagen chain trimerization, Integrin Pathway, ERK Signaling. COL4A5
DZIP1 DAZ interacting zinc finger protein 1 13q32.1 Acrodermatitis Enteropathica, Zinc-Deficiency Type Hedgehog signaling and GPCR signaling. DZIP1L
EDNRB Endothelin receptor type B 13q22.3 Waardenburg Syndrome Calcium signaling pathway and I"rostaglandm Synthesis EDNRA
and Regulation
ESD S-formylglutathione hydrolase 13q14.2 Wilson Disease and Leukocoria Glutathione metabolism
RET signaling; PI3K/AKT activation; Common Cytokine Receptor
FOXO1 Forkhead box O 1 13q14.11 Rhabdomyosarcoma 2, Alveolar and Rhabdomyosarcoma Gamma-Chain Family Signaling Pathways; AGE/RAGE pathway FOXO3
FLT1 Fms-related tyrosine kinase 1 13q12.3 Anal Canal Squamous Cell Carcinoma and Eclampsia p70S6K Signaling and Focal Adhesion KDR
GAS6 Growth Arrest Specific 6 13q34 Sticky platelet Sync?rome-, Acute Maxillary S1¥nj151tls, Mesangial Apoptotic Pathways in Synoylal F{broblasts, GPCR Pathway, PROSI
Proliferative Glomerulonephritis ERK Signaling
Gap junction protein, beta 2, 26 kDa . . . . . . .
GJB2 (connexin 26) 13q12.11 Vohwinkel Syndrome and Bart-Pumphrey Syndrome Development Slit-Robo signaling and Gap junction trafficking. GJB6.
GJB6 Gap junction protein, beta 6 (connexin 30) 13q12.11 Ectodermal Dysplasia 2, Cg;:;‘;g{gg and Deafness, Autosomal Gap junction trafficking; Vesicle-mediated transport GJB2
GPC5 Glypican-5 13q31.3 Simpson-Golabi-Behmel Syndrome and Tetralogy of Fallot Glycosaminoglycan metabolism GPC3
13q12.3 Microdeletion Syndrome, Adenosquamous Activated TLR4 signaling; Cytosolic sensors of pathogen-associated
HMGB1 Box 5Box 1 13q12.3 Gallbladder Carcinoma DNA; Innate Immune System HMGE2
HTR2A 5-HT2A receptor 13q14.2 Schizophrenia; Major Depressive Disorder Calcium signaling pathway; Signaling by GPCR HTR2C
MIPEP Mitochondrial intermediate peptidase 13q12.12 Combined Oxidative Phosphorylation Deficiency 31
PCCA Propionyl Coenzyme A carboxylase, 139323 Propionicacidemia and PCCA-Related Propionic Acidemia. Metabolism and HIV Life Cycle. Mccci
alpha polypeptide
RB1 Retinoblastoma 1 13q14.2 Retinoblastoma and Small-Cell Cancer of the Lung, Somatic. Arrhythmogenic right ventricular cardiomyopathy (ARVC) and RBL2
DNA Damage
RCBTBI1 RCC1 and BTB domain-containing protein 1 13q14.2 Retinal Dystrophy with Or Without Extraocular Anomalies. RCBTB2
RGCC Regulator of cell cycle RGCC 13q14.11 Renal Fibrosis and Retinal Cancer TP53 Regulates Transcription of Cell Cycle Genes
RNRI1 Encoding RNA, ribosomal 45S cluster 1 13p12 Idiopathic Bilateral Vestibulopathy and Congenital Cytomegalovirus Viral mRNA Translation
SLITRKG SLIT and NTRK-like protein 6 13311 Deafness and Yopia and A}ltosomal Recessive Non-Syndromic SLITRKS
Sensorineural Deafness
SOX21 Transcription factor SOX-21 13g32.1 Mesodermal Commitment Pathway and ERK Signaling. Mesodermal Commitment Pathway; ERK Signaling SOX14
StAR-Related Lipid Transfer Domain Hepatocellular Carcinoma, Arteriovenous Malformations of the Brain,  p75 NTR receptor-mediated signaling, Signaling by GPCR, Signaling
STARD13 L 13q13 - STARDS
Containing 13 Fibrosarcoma of Bone by Rho GTPases
Translationally controlled tumor R . .
TPT1 protein (TCTP) 13q14.13 Urticaria and Asthma DNA Damage and Cytoskeletal Signaling
TRPC4 Transient Receptor Potential Cation Channel 13q13.3 Photosensitive Epilepsy Developmental Biology, Ion channel transport, Netrin-1 signaling TRPC5

Subfamily C Member 4




Int. ]. Mol. Sci. 2018, 19, 3547 6 of 20
Table 1. Cont.
Gene Symbol Gene Name Cytoband Associated Disease Associated Pathways Paralog
TSC22D1 TSC22 domain family protein 1 13q14.11 Salivary Gland Cancer and Brain Sarcoma Development TGF—beta receptf) * ‘SIgnalmg and TSC22D2
Ectoderm Differentiation
. . . Development Slit-Robo signaling, Cooperation of Prefoldin and

TUBA3C Tubulin Alpha 3C 13q12.11 Clouston Syndrome, nonsyndromic Deafness, Kabuki Syndrome 1 TriC/CCT in actin and tubulin folding TUNA3D

XPO4 Exportin-4 13q12.11 Conjunctival Degeneration and Pinguecula eIF5A regulation in response to inhibition of the nuclear export system

and Ran Pathway

zZIc2 Zic Family Member 2 13q32.3 Holoprosencephaly 5 and Zic2-Related Holoprosencephaly Mesodermal Commitment Pathway ZIC1

ZMYM2 Zinc finger MYM-type protein 2 13q12.11 Lymphoblastic Lymphoma and 8P11 Myeloproliferative Syndrome HIV Life Cycle and FGFR1 mutant receptor activation ZMYM3
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Figure 2. Estrogen-mediated S-phase Entry pathway derived from 308 protein coding genes of triosomy
13 (chromosome 13) using Ingenuity Pathway Analysis Tool.

Table 2. Top canonical pathways determined by Ingenuity pathway analysis tools based on protein
coding genes located on chromosome 13.

Canonical Pathways —log (p Value) Ratio Molecules
Estrogen-mediated S-phase Entry 2.06 0.115 RB1, CCNAL1, TFDP1
. . RB1, FOXO1, TFDP1, KL, IRS2, CDKS,
Cancer Signaling 1.69 0.052 SMAD9, TFDP1, ARHGEF7
Extrinsic Prothrombin Activation Pathway 1.56 0.125 F10, F7
Role of p14/p19ARF in Tumor Suppression 1.5 0.071 RB1, KL, IRS2

GJB6, KL, GJA3, TUBA3C/TUBA3D,

Gap Junction Signaling 1.41 0.036 IRS2, GJB2, HTR2A
Docosahexaenoic Acid (DHA) Signaling 1.27 0.057 FOXO1, KL, IRS2
Aldosterone Signaling in Epithelial Cells 1.24 0.035 SACS, fgé’zf_g;i}’c?é\l AJC3,

FGF Signaling 1.2 0.044 KL, FGF9, FGF14, IRS2
GP6 Signaling Pathway 1.18 0.038 COL4A1, KL, IRS2, COL4A2, KLF12
Adipogenesis pathway 1.17 0.037 RB1, SAP18, SMAD9, FOXO1, KLF5
VEGEF Signaling 1.08 0.040 FOXO1, FLT1, KL, IRS2
Cell Cycle: G1/S Checkpoint Regulation 1.04 0.046 RB1, FOXO1, TFDP1

ErbB2-ErbB3 Signaling 0.994 0.044 FOXO1, KL, IRS2
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Table 2. Cont.

Canonical Pathways —log (p Value) Ratio Molecules
Nitric Oxide Signaling in the 0.988 0.037 FLT1, KL, SLC7A1, IRS2
Cardiovascular System
Coagulation System 0.948 0.057 F10, F7
Angiopoietin Signaling 0.875 0.039 FOXO1, KL, IRS2
Role of NANOG in Mammalian Embryonic 0.866 0.0333 SMADY, KL, CDX2, IRS2
Stem Cell Pluripotency
IL-3 Signaling 0.805 0.036 FOXO1, KL, IRS2
. . . KL, FGF9, DIAPH3, ARHGEF7,
Actin Cytoskeleton Signaling 0.801 0.027 FGF14, IRS2
14-3-3-mediated Signaling 0.778 0.030 FOXO1, KL, TUBA3C/TUBA3D, IRS2
IL-7 Signaling Pathway 0.774 0.034 FOXO1, KL, IRS2
HMGBI Signaling 0.77 0.030 HMGBI, KL, IL17D, IRS2
NF-«B Signaling 0.769 0.028 TNFSF11, FLT1, KL, IRS2, TNFSF13B

2.3. Genomic Analysis and Protein—Protein Interaction Study

The result of STRING displayed direct interaction and predicted functional relationship amid
FOXO1 and its interacting proteins. The following proteins showed noticeable interactions with
FOXO1: GATA4 (8p23.1), SIRT1 (10q21.3), CITED2 (6q24.1), NFATc1 (18q23), and TBX5 (12q24.21)
(Figure 3). FOXOL1 as transcription factor interacted with the following relevant target genes: FASLG
(1924.3), IGFBP1 (7p12.3), SOD2 (6q25.3), PPARGC1A (4p15.2), ADIPOQ (3q27.3), APOC3 (11q23.3),
OSTN (3g28), BCL2L11 (2q13), CCND2 (12p13.32), and CDKN1B (12p13.1). This was predicted by
text-mining application and UCSC genome browser. However, genomic analysis of PS had shown
that many genes (NODAL on 10q22, FPR1 on 19q13.41, AFP on 4q13.3, AGO2 on 8q24.3, UROD on
1p34.1, ZIC2 on 13g32.3, etc.) are not directly regulated by FOXO1, rather strongly associated with PS
(Table 3).

D
N
-
‘ NFATc1 EP300 —@

NKX2.5

TBXS
— Co-expression

— Pathway

Figure 3. Protein—protein Interaction Partners (GATA4, NKX2-5, SIRT1, CITED, NFATc1, TBX5)
of FOXO1.
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Table 3. Key genes strongly associated with the survival of PS patient.

9 of 20

Gene Symbol Gene Name Cytoband Associated Disease Associated Pathways Paralog
NODAL Nodal Growth Differentiation Factor 10q22 Visceral Heterotaxy 5 (HTX5) and Nodal-Related Visceral Heterotaxy Mesodermal Commltment Pathway and Signaling pathways GDF3
regulating pluripotency of stem cells
. Susceptibility to Localized Juvenile Periodontitis and . . S Lo
FPR1 Formyl Peptide Receptor 1 19q13.41 Periodontitis 1, Juvenile Signaling by GPCR and Peptide ligand-binding receptors FPR2
. .. . . Glucocorticoid receptor regulatory network and Embryonic and
AFP Alpha Fetoprotein 4q13.3 Alpha-Fetoprotein Deficiency and ngedltary Persistence of Induced Pluripotent Stem Cell Differentiation Pathways and ALB
Alpha-Fetoprotein R i
Lineage-specific Markers
AGO2 Argonaute RISC Catalytic Component 2 8q24.3 Chromosome 18P Deletion Syndrome and Gum Cancer RET signaling and Translational Control. AGO1
UROD Uroporphyrinogen Decarboxylase 1p34.1 Porphyria Cutanea Tarda and Urod-Related Porphyrias Metabolism and Porphyrin and chlorophyll metabolism
GATA4 GATA Binding Protein 4 8p23.1 Testicular Anomalies with or without Congenital Heart Disease and Response to elevated platelet cytosol{c Ca2+ and Human Embryonic GATA6
Atrial Septal Defect 2 Stem Cell Pluripotency
GATA6 GATA Binding Protein 6 18q11.2 Pancreatic Age.nesm ar}d Congenital Heart Defects and Mesodermal Commitment Pathway and Response to elevated platelet GATA4
Atrioventricular Septal Defect 5 cytosolic Ca2+
. . L. . . Development Slit-Robo signaling and Arrhythmogenic right
GJAl Gap Junction Protein Alpha 1 6q22.31 Oculodentodigital Dysplasia and Syndactyly, Type Iii ventricular cardiomyopathy GJA3
. Signaling by NOTCH1 and NOTCH2 Activation and Transmission of
JAG1 Jagged 1 20p12.2 Alagille Syndrome 1 and Tetralogy of Fallot Signal to the Nucleus JAG2
Cbp/P300 Interacting Transactivator with . . Cellular Senescence (REACTOME) and Transcriptional regulation by
CITED2 Glu/ Asp Rich Carboxy-Terminal Domain2 6q24.1 Atrial Septal Defect 8 and Ventricular Septal Defect 2 the AP-2 (TFAP2) family of transcription factors CITED1
. Ventricular Tachycardia, Catecholaminergic Polymorphic, 1 and Calcium signaling pathway and Arrhythmogenic right
RYR2 Ryanodine Receptor 2 1q43 Arrhythmogenic Right Ventricular Dysplasia 2 ventricular cardiomyopathy RYR3
NKX2-5 NK2 Homeobox 5 5q35.1 Atrial Septal Defect 7, With or Without Av Conduction Defects and Human Embryonic Stem Cell Pluripotency and NFAT and Cardiac NKX2-3
Tetralogy of Fallot Hypertrophy
Nuclear Receptors in Lipid Metabolism and Toxicity and Activated
RARA Retinoic Acid Receptor Alpha 17q21.2 Leukemia, Acute Promyelocytic, Somatic and Myeloid Leukemia PKNT1 stimulates transcription of AR (androgen receptor) regulated RARB
genes KLK2 and KLK3.
CXCL12 C-X-C Motif Chemokine Ligand 12 10q11.21 HIV-1 and AIDS Dementia Complex p70S6K Signaling and Akt Signaling
SIRT1 Sirtuin 1 10921.3 Xeroderma Pigmentosum, Gro¥§n]130:rmd Ovarian Endodermal Sinus Longevity regulating pathway and E2F transcription factor network SIRT4
TBX5 T-Box 5 12q24.21 Holt-Oram Syndrome and Aortic Valve Disease 2 Human Embryonic Stem Cell Pluripotency and Cardiac conduction. TBX4
AKT1 AKT Serine/Threonine Kinase 1 14q32.33 Cowden Syndrome 6 and Proteus Syndrome, Somatic Transeription Androgien Rgcep tor nuclg ar signaling and E-cadherin AKT3
signaling in keratinocytes
CDKN2A Cyclin Dependent Kinase Inhibitor 2A 9p21.3 Pancreatic Cancer/Melanoma Syndrome and Melanoma and Neural DNA Damage and Bladder cancer CDKN2B
System Tumor Syndrome
PCK1 Phosphoenolpyruvate Carboxykinase 1 20q13.31 Pepck 1 Deficiency and Phosphoenolpyruvate Carboxykinase-1, Abacavir transport and metabolism and Citrate cycle (TCA cycle) PCK2

Cytosolic, Deficiency
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Docking using the Lamarckian Genetic Algorithm approach was employed to elucidate the basis
of structural binding of PTZ and TFP to FOXO1. The result demonstrated favored binding energies
AG in the range of —4.17 kcal/mol to —1.87 kcal/mol, respectively, with 1 molecule of PTZ showing
hydrogen bond with the active site residue Ser193. Other predominant interactions for PTZ were
hydrophobic (Leul63, Leul68, Val194, and Pro195) and pi—pi ring stacking non-covalent interaction
with Trp189. Estimated inhibition constant, Ki values were 879.98 uM (FOXO1:PTZ) and 42.27 mM
(FOXOL1.TFP).

It was further revealed that the PTZ hydrophobic binding pocket was lined mainly with residues
Leul63, Leul68, Lys171, Trp189, Val194, and Prol95, and the hydroxylic Ser193 showed crucial
interactions with the ligand (Figure 4). Similarly, TFP binding site was also hydrophobic with residues
Leul83, Tyr187, Leu217, Arg225, Ser234, Ser235, and Trp237. Weak interactions with TFP were seen
through Ser184, Ser218, Ser234, and Ser235. Besides, non-covalent hydrogen bonding was evident
between TFP’s electrophilic F1, F2, and F3 and nucleophilic O of Arg214 (Figure 5). Molecular docking
analysis was done to understand the binding efficiency of the selected drugs; PTZ was found to be the
better FOXO1 inhibitor as it displayed a higher negative binding energy as compared to TFP, hence,
it promises to be a more effective inhibitor.

H
N

Lew 163(C)

Key

docking

Figure 4. Molecular docking of phenothiazine with FOXO1 protein. (A) Depicting the molecular
structure of phenothiazine; (B) Structure visualization of FOXO1 protein bound with ligand PTZ.
The interacting residues are labeled in the binding site. (C) 2D plot of phenothiazine of FOXO1
showing ligand—protein interaction profiled by AutoDock software of Docking Server. Leul63, Leul68,
Lys171, Trp189, Val194, Pro195, and Ser193 residues of FOXO1 showed crucial interactions with
the phenothiazine.
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docking

Figure 5. Molecular docking of trifluoperazine with FOXO1 protein. (A) Depicting the molecular
structure of trifluoperazine; (B) Structure visualization of FOXO1 protein bound with ligand TFP.
The binding site is shown and the interacting residues are labeled. (C) 2D plot of trifluoperazine of
FOXO1 showing ligand—protein interaction profiled by AutoDock software of Docking Server. Leul83,
Tyr187, Leu217, Arg225, Arg234, Ser184, Ser218, Ser234, Ser235 and Trp237 residues of FOXO1 showed
crucial interactions with the trifluoperazine.

3. Discussion

Generally, normal development requires only two copies of autosomal chromosomes; the presence
of a third copy of chromosome (trisomy) is mostly lethal to the embryo. However, trisomy 13, 18, and
21 are the only cases where development can proceed to live birth. In the present study, the age of
PS patients ranged from 1 day to 2 years, the majority (n = 19) died within a week, 8 within a month,
9 passed a month barring 1 surviving 2 years as an exception. Studies also showed survival with
trisomy 13 being miserably limited with median life expectancy of 2.5 days. The overall observation
reinforces other studies where 85% of PS patients could hardly survive beyond a month [2] and rarely
survive beyond 10 years [8-10].

It is typical to have different types of abnormalities related to chromosome 13 manifested
in various disorders. Apart from PS others include 13q deletion syndrome, propionic academia,
retinoblastoma, Waardenburg Syndrome, Wilson’s Syndrome, Young-Madders Syndrome and also
bladder and breast cancer. In the present case, all cases had confirmed trisomy 13. However, other
researchers have reported full trisomy of chromosome 13 in 70-80% of cases, mosaicism in 10-20% and
translocations involving chromosomes 13 in 5-10%, besides other types of chromosomal abnormalities
in 5-10% of cases [15].

The frequency of CHD in patients was 61%, which falls in the range (56 to 86%) of frequency
reported by other studies [3,15,77,78]. However, relatively low frequency has been reported by
Rasmussen et al. (45.7%) and Pont et al. (34.8%) [4,79].

No plausible explanation is forthcoming as to how extra genetic material (trisomy 13) causes
a plethora of abnormal features like abnormal cerebral functions, a small cranium, retardation,
nonfunctional eyes, and heart imperfections. We made an attempt to identify important pathogenic
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genes such as EDNRB, ZIC2, ATP7B, GJB2, HT'R2A located on chromosome 13 to associate these with
diseases and pathways; however, none was alone capable of the symptoms of PS.

As for exploring the pathways, it is known that the EDNRB gene located at 13q22.3 codes
for endothelin receptor type B protein, a GPCR located on the cell surface which functions via
interaction with endothelins. It activates a phosphatidylinositol-calcium, the second messenger system
transmitting information from outside the cell to inside. Its highest expression is in placental tissues.
Mutations in this gene have been previously linked to the congenital genetic disorder, Hirschsprung
disease, alternatively called Congenital Aganglionic Megacolon. It is a neural crest development
disorder characterized by absence of enteric ganglia along a variable length of the intestine causing
intestinal obstruction [80]. The Zic family member 2 (ZIC2) gene is present at 13q32.3 genomic region
and encodes a type of zinc finger protein that functions as a transcriptional repressor and regulates
both early and late stages of forebrain development. Mutations in ZIC2 gene, involving expansion
of an alanine repeat at C-terminus, cause holoprosencephaly-5, a structural anomaly of the human
brain [81-83]. It appears that a polyhistidine tract gene polymorphism is probably associated with
increased risk of Holoprosencephaly. The defect appears to be due to changes in the organizer region
leading to defective anterior notochord, further resulting in degradation of the prechordal plate.
As a result shh signal cannot reach to the developing forebrain, vital for the formation of the two
hemispheres [84]. ZIC2 has also been linked to neural tube defects [85] and heart defects [86].

The present endeavor extended search beyond chromosome 13 and identified genes such as
NODAL, FPR1, AFP, AGO2, UROD, GATA4, GJA1, JAG1, CETED2, RYR2, NKX2-5, RARA, SIRT1, TBX5,
AKT1, and PCK1 across genome with a view to exploring their role in PS. In doing so, two facts emerged
clearly; one, the majority of PS patients had CHD and, two, all patients showed trisomy13. It thus
appears that there could be a strong link between genes located on trisomy13 and heart disorders.
Ingenuity pathway analysis of chr13 genes explored indicated hundreds of canonical pathways and
many of them had FOXOL1 as key molecules of such pathways. We applied a bioinformatics approach
and searched scientific literature and identified pathogenic genes involved in CHD located on chr13
beside other chromosomes. It appears that genes of chrl3 and other chromosomes might work
together, either as transcription factor regulator or interacting partners. Nevertheless, FOXO1 is a
strong transcription factor activating many genes, these being: FASLG, IGFBP1, SOD2, PPARGCIA,
ADIPOQ, APOC3, OSTN, BCL2L11, CCND2, and CDKN1B. The protein—protein interaction study also
showed key interacting partners like GATA4, NKX2-5, SIRT1, CITED2, NFATcl and TBX5, which are
actively implicated in heart disorders and thus partly responsible for PS.

It will not be out of place to mention GATA4, an interaction partner of FOXO1, a strong
transcription factor regulating cardiac repair and remodeling. It plays an important role in cardiac
development and differentiation as its abnormal expression leads to embryonic lethality [87-89].
Likewise, overexpression of NKX2-5 is reported as hypertrophic stimuli [90]. Interestingly, GATA4
and NKX2-5 act synergistically and regulate a myriad of cardiac genes [91,92]. Other studies showed
that TBX5 is also an interaction partner of FOXO1, GATA4, and NKX2-5 and encodes transcription
factors involved in the regulation of forelimb and heart development [93-95]. Thus, the role of GATA4,
NKX2-5, and TBX5 is established in cardiogenesis; however, their role in regulating the heart septal
formation is a matter of further investigation [45,96,97]. Sperling et al. are credited for reporting
a direct role of CITED2 gene mutation in CHD epigenetic factor like methylation in the promoter
region of CITED? plays a vital role in heart disease [98,99]. The sirtuins, a family of enzymes, encoded
by SIRT1-SIRT7, are highly expressed in the heart tissue and the vascular endothelium, and are
pivotal regulators of lifespan and health. The SIRT1 executes its function by deacetylation of FOXO
transcription factor and other key substrates; all closely linked to cardio vascular ailments. The
SIRT1 inhibition is shown to be associated with septal and valvular heart defects, as well as vascular
dysfunction [100-102].

One thing is evident clearly though multiple studies—there is a direct and indirect involvement
of FOXO1 in heart disease [52-55]. Activated FOXO1 has a direct impact on cell survival via alteration
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in metabolism and turning on the cell death signaling cascade [103,104]. Overexpression of FOXO1
also causes autophagy in heart, leading to death [56,57]. A latest study had shown that knock down
of FOXO1 and FOXO3 in the heart of Lmna~/~ mice results in attenuation of apoptosis with a twice
increase in the survival rate [18].

A bit of inhibiting expression of FOXO1 protein will further classify its important role in regulation.
It is a monomeric nuclear protein and functions primarily as transcription factors by binding to
a consensus DNA sequence of promoter region of downstream genes with a DNA-binding domain,
158-248 amino acid region [63,105-107]. The nuclear localization of FOXO1 is tightly regulated by the
post translational modifications like acetylation, methylation, phosphorylation, and ubiquitination,
or simply by its interaction with proteins like 14-3-3 [105]. Studies on these lines have identified
a long list of FOXO1 inhibitors to be classified into two groups: one, drugs targeting nuclear transport
of FOXO1 including leptomycin B, curcumin, psammaplysene A, phenothiazines/triflouperazine,
calmodulin inhibitor/calmidazolium, intracellular Ca2* chelator- BAPTA-AM 1; and two, drugs
targeting FOXO1 signaling pathway including epigallocatechin- 3-gallate, theaflavins, hyaluronan
oligosaccharides, resveratrol, apigenin, luteolin, and psammaplysene A [64,65,67].

Phenothiazines and its derivatives (trifluoperazine) are chosen from FDA-approved drugs and
binds directly with DBD of FOXO1 [70,71]. The molecular docking approach was applied to determine
inhibition constant, predicting binding modes and defining the specific binding sites. The results
showed that both the drugs can potentially inhibit FOXO1 protein. The drug PTZ mainly interacts
with hydrophobic amino acids of the DNA-binding region (158-235) of the protein target. The TFP also
binds inside the DNA-binding domain but the interacting residues are different from those in the case
of PTZ binding. The contact or interaction surface value of docked ligand and protein is 421.011 A? for
PTZ and 612.637 A2 for TFP.

The present study is mainly based on a bioinformatics approach, so it can be associated with
few limitations. It is proposed to undertake in silico finding to resolve the issue, and predictions are
advised to be validated before final conclusion. Our finding suggests genetic engineering potentials
in future.

4. Materials and Methods

4.1. Patients

A total of 37 cases including PS, dysmorphic features, multiple congenital anomalies, CHD and
cleft palate were registered from Western region of Saudi Arabia through the King Abdulaziz University
Hospital, Jeddah. The majority of individuals were newborns with multiple abnormalities including
heart and neurological disorders. Peripheral blood (5-10 mL) was obtained after informed consent
and a complete clinical and case history was recorded. Ethical approval for the study (G/017/27) was
obtained from the King Abdulaziz University clinical research ethics board dated 09-06-2009 and the
study strictly followed the standard Helsinki ethical guidelines during this research work.

4.2. Cytogenetics Study

A standard 72 h lymphocyte culture and GTG banding (G banding by Trypsin and Giemsa) were
applied to peripheral blood in all patients. Microscopic examinations were done using 50 cells for each
patient. In cases of suspected mosaicism, the number expanded to one hundred cells. Chromosomes
were analyzed by semi-automatic Applied Imaging Karyotyper and karyotypes were described as per
the International System for Human Cytogenetic Nomenclature (ISCN, 2016) [108].

4.3. Molecular Pathway and Gene Ontology Analysis

Biological significance of protein coding genes of chromosome 13 was interpreted by the
Ingenuity Pathways Analysis software version 338830M (Ingenuity Systems, Redwood City, CA, USA).
Significance of relationships between genes and functional frameworks was indicated by Fisher’s
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exact test p-values. The percentage and number of uploaded genes/molecules matching to genes of
a canonical pathway were measured for significance, expressed as a score. The Molecule Activity
Predictor was employed to predict the effects of a gene/molecule on other molecules of pathway.

4.4. Identification of Functionally Significant Interacting Proteins of FOXO1

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING version 9.1, https://string-
db.org/) was used to identify significant proteins interacting with FOXO1. The biological database and
web resource of known and predicted protein interactions were utilized, derived from high-throughput
experimental sources, text mining and co-expression [109-111].

4.5. Molecular Docking and Drug Design

A search was made for available three-dimensional structures of FOXO1 protein in the RCSB’s
PDB database and retrieved five entries: 3C0O6, 3C0O7, 3COA, 4LGO0, and 5DUI. All these structures were
DNA-bound protein complexes. We proceeded with PDB code 3CO7:C. It corresponds to UniProtKB
(Q12778, https:/ /www.uniprot.org/help /uniprotkb) and the residues 1-154 were missing from the
protein chain C.

Information was collected for structure of two selected compounds; Phenothiazine and
trifluoperazine from ZINC database (available online: http://zinc.docking.org). It is a database
of commercially available compounds [112]. We downloaded the mol2 file for ZINC ID 00028150 and
19418959 respectively. Structural analogs of TFP (31350265 and 39546119) were not considered for the
present study.

Docking calculations for predicting binding modes and energies of two ligands phenothiazine
(PTZ) and trifluoperazine (TFP) to protein (FOXO1) employed DockingServer [113], and AutoDock
software for gasteiger partial charges addition to the ligand atoms, combining non-polar hydrogen
atoms and defining rotatable bonds. Affinity grids were generated using the Autogrid tool [114].
AutoDock parameter set- and distance-dependent dielectric functions were used in the calculation of
the van der Waals and the electrostatic terms, respectively. Docking simulations were performed using
Lamarckian genetic algorithm and the Solis & Wets local search algorithm (http://autodock.scripps.
edu) [115]. Initial position, torsions, and orientation of the ligands were set randomly. All rotatable
torsions were released during docking. All experimentation was resultant of 10 different runs set to
finish after 250,000 energy evaluations. The population size was fixed to 150. Translational step of
0.2 A, and quaternion and torsion steps of 5 were applied during the search.

4.6. Statistical Analysis

x? analysis and Fisher’s exact test were used to compare the clinical features and proportion of
chromosomal abnormalities in PS patients. The statistical analysis was carried out using MATLAB ver
R2007a (The MathWorks, Natick, MA, USA).

5. Conclusions

Cytogenetic analysis of 37 Saudi PS patients showed full trisomy 13 without exception. Molecular
interactions study of 308 protein coding genes located on chromosome 13 led to identification
of significant genes such as: FOXOI1, RB1, CCNA1, TFDP1, KL, IRS2, F10, F7 GJB6, GJA3,
TUBA3C/TUBA3D, COL4A1, FLT1, KLF12, and ZIC2. The pathways (Estrogen-mediated S-phase entry,
Extrinsic prothrombin activation pathway, Gap junction signaling, Docosahexaenoic acid signaling,
VEGEF signaling, Cell cycle: G1/S checkpoint regulation, IL-3 Signaling) were explored to find an
association with PS. Molecular network analysis and protein—protein interaction study indicated
FOXOI1 as strong transcription factor which interacts with other key genes like GATA4, CITED and
TBX5 located on different chromosomes but associated with lethal heart disorders in PS. Lethal genetic
disorders are toughest to treat and many PS newborns die within a couple of days with severe
complications without proper treatment. However, patients with a less severe condition have some
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chance of survival and could be diagnosed with an actual problem and treated (surgery or medicine)
accordingly. The in silico molecular docking studies done separately indicated phenothiazine and
trifluoperazine as efficient inhibitor for FOXO1 protein as potential drugs for septal defects patients and
PS. Molecular docking indicated phenothiazine to be an efficient inhibitor for FOXO1 and a candidate
for future drug target, especially in septal defects patients and PS cases. It is recommended to utilize
the present outcome after validation in vitro and in vivo animal model approaches.

Supplementary Materials: Supplementary materials can be found at http:/ /www.mdpi.com/1422-0067/19/11/
3547/s1.
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