
 International Journal of 

Molecular Sciences

Article

Mining Late Embryogenesis Abundant (LEA) Family
Genes in Cleistogenes songorica, a Xerophyte
Perennial Desert Plant

Blaise Pascal Muvunyi , Qi Yan, Fan Wu, Xueyang Min, Zhuan Zhuan Yan, Gisele Kanzana,
Yanrong Wang * and Jiyu Zhang *

State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry
Innovation, Ministry of Agriculture; College of Pastoral Agriculture Science and Technology,
Lanzhou University; Lanzhou 730000, China; muvunyi14@lzu.edu.cn (B.P.M.); yanq16@lzu.edu.cn (Q.Y.);
wuf15@lzu.edu.cn (F.W.); minxy15@lzu.edu.cn (X.M.); yanzhzh16@lzu.edu.cn (Z.Z.Y.);
giskanzana@gmail.com (G.K.)
* Correspondence: yrwang@lzu.edu.cn (Y.W.); zhangjy@lzu.edu.cn (J.Z.); Tel.: +86-931-891-4051 (Y.W.);

+86-138-933-29958 (J.Z.)

Received: 19 September 2018; Accepted: 23 October 2018; Published: 1 November 2018
����������
�������

Abstract: Plant growth and development depends on its ability to maintain optimal cellular
homeostasis during abiotic and biotic stresses. Cleistogenes songorica, a xerophyte desert plant,
is known to have novel drought stress adaptation strategies and contains rich pools of stress
tolerance genes. Proteins encoded by Late Embryogenesis Abundant (LEA) family genes promote
cellular activities by functioning as disordered molecules, or by limiting collisions between enzymes
during stresses. To date, functions of the LEA family genes have been heavily investigated in
many plant species except perennial monocotyledonous species. In this study, 44 putative LEA
genes were identified in the C. songorica genome and were grouped into eight subfamilies, based
on their conserved protein domains and domain organizations. Phylogenetic analyses indicated
that C. songorica Dehydrin and LEA_2 subfamily proteins shared high sequence homology with
stress responsive Dehydrin proteins from Arabidopsis. Additionally, promoter regions of CsLEA_2
or CsDehydrin subfamily genes were rich in G-box, drought responsive (MBS), and/or Abscisic acid
responsive (ABRE) cis-regulatory elements. In addition, gene expression analyses indicated that genes
from these two subfamilies were highly responsive to heat stress and ABA treatment, in both leaves
and roots. In summary, the results from this study provided a comprehensive view of C. songorica
LEA genes and the potential applications of these genes for the improvement of crop tolerance to
abiotic stresses.
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1. Introduction

Abiotic stresses from increasing temperature or salinity can disrupt optimal plant performance
and cause significant crop yield losses [1]. To maintain proper homeostasis for normal growth, plants
have evolved multiple ways to combat harsh environments by mobilizing a wide spectrum of stress
responsive genes [2]. For example, proteins encoded by the late embryogenesis abundant (LEA) family
genes are known to play defensive roles in plants during abiotic stresses [3,4]. The LEA family genes
were first studied in cotton seed at the late phases of seed development [4]. The LEA family genes were
later identified in various tissues of many other plant species and the proteins encoded by these genes
were shown to be important during cold, drought and/or high salinity stresses [5,6]. LEA proteins
are not plant specific, they are also found in invertebrates, fungi and bacteria [7,8]. Typical LEA
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proteins are highly hydrophilic due to high contents of charged amino acid residues, as well as
amino acids like threonine, serine and alanine residues in their sequences [9]. It was suggested that
LEA proteins have molecular shield functions [10] and are capable of abating protein aggregation
and preventing enzyme degradation [11], thereby promoting proper cellular homeostasis during
stresses [8,12]. LEA proteins are also flexible proteins which can undergo conformational changes
and interact with other macromolecules including proteins, membranes and/or nucleic acids during
different adverse stress conditions [10].

LEA proteins are divided into at least eight distinct subfamilies, based on their conserved
protein domains in the Pfam database: LEA (1–6), Dehydrin and Seed Maturation Protein (SMP) [13].
Motif structures within subfamily genes are mostly conserved, except the genes in the LEA_2/LEA5C
subfamily [9]. In addition, proteins in the LEA_2/LEA5C subfamily are known to have other
non-canonical LEA protein properties like high hydrophobicity and at least one atypical LEA domain
known as Water stress and Hypersensitive response (WHy) domain. The presence of atypical LEA
domain(s) in LEA proteins indicate that these proteins may function differently from typical LEA
proteins [14–16]. Proteins in the Dehydrin subfamily are featured with at least one K-segment,
a 15 amino acid residue rich in lysine (i.e., EKKGIMDKIKEKLPG) and can function like chaperones to
protect peripheral membrane and proteins during dehydration [2,17–20]. Numerous earlier studies
have demonstrated that the LEA family genes are potential abiotic stress responsive genes, important
for enhancing plant stress tolerance. For instance, transgenic Arabidopsis [21,22], maize [23], alfalfa [24]
bacteria [25], yeast and tobacco [26] expressing different LEA genes exhibited improved abiotic stress
tolerance compared with their respective wild-type plant, bacteria or yeast.

C. songorica is a xerophyte C4 desert plant distributed widely in the wild lands in the northwest
part of China, with an annual precipitation of about 100 mm [27]. Previous genome-wide surveys of
LEA family genes were done for multiple plant species except perennial monocotyledonous species.
In this study, we investigated the LEA family genes in C. songorica and analyzed the responses
of four selected LEA genes to heat stress or abscisic acid (ABA) treatment in leaves and shoots.
Results from this study provide new information on the evolution of the LEA family proteins, protein
structures and potential applications of these genes for the improvement of crop tolerance against
abiotic stresses.

2. Results

2.1. Identification of CsLEA Genes and Phylogenetic Analysis

A total of 44 putative C. songorica LEA proteins were identified in this study (Table S1).
These proteins were named from CsLEA1 to CsLEA44 and grouped into eight different subfamilies
(Figure 1): CsLEA_1, CsLEA_2/LEA5C (Battaglia classification), CsLEA_3, CsLEA_4, CsLEA_5,
CsLEA_6, SMP and Dehydrin, based on their Pfam conserved protein domains and their homology
with the published LEA proteins of A. thaliana [28]. Two atypical LEA stress related domains, Water
Stress and Hypersensitive response (WHy) and LEA14-like desiccation related protein (COG5608),
were detected in the proteins from CsLEA_2 subfamily (Figure S1).

2.2. Structures, Physiochemical Properties and Subcellular Localizations of CsLEA Proteins

Most proteins within the same family exhibited similar structures and properties (Table S1).
Over one third of the CsLEA proteins were classified as unstable proteins with an instability index
value higher than 40. Furthermore, this property varied significantly among the proteins within the
Dehydrin subfamily, ranging from 3.83 to 56.11. All the proteins in the LEA_5 subfamily showed
instability index values greater than 47 and were considered as the most unstable and/or potentially
disordered proteins [29–31]. The GRAVY (grand average of hydropathicity index) values of more than
90% CsLEA proteins were below 0, stressing that CsLEA proteins are likely to have low hydrophobicity
features. CsLEA_2 subfamily proteins were the most hydrophobic proteins, while Cs_LEA5 proteins
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were the highest hydrophilic proteins. These results are consistent with previous studies [28,32] and
reinforce the structural disordered properties of LEA proteins by which they are capable of interacting
with other molecules and mitigating the collision of enzymes during plant stress conditions [11]

Figure 1. Phylogenetic analysis of C. songorica LEA proteins. Full-length amino acid sequences of the
44 CsLEA proteins were analyzed using the unrooted method in the ClustalW software.

2.3. Gene and Motif Structure Analyses

LEA genes within the same subfamily showed similar exon and intron architectures (Figure 2,
right panel). Further investigation of structures of paired genes at the short-end branches in the
phylogenetic tree revealed that six of them (e.g., CsLEA 43–37, 35–25, 2–3, 8–9, 23–34 and 6–7) might
have experienced exon-intron gain/loss events during their evolutionary history. Similar situations
have been reported for Brassica LEA genes [21,33]. In total, 18 motifs were identified in 43 CsLEA
proteins (Figure 2, left panel). No motif was found in CsLEA28 protein. Except for LEA_2 and LEA_3
subfamily proteins, motif structures and compositions were nearly identical among the proteins in
the same subfamily, but differed significantly between the proteins belonging to different subfamilies,
implying functional specificities of different CsLEA subfamily proteins [14,34].
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Figure 2. Motif structure and exon–intron organizations of the 44 CsLEA genes. The 18 motifs
discovered in this study are shown on these CsLEA genes (left). The blue boxes represent exons and
the blue lines represent introns (right).
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2.4. Sequence Alignment of C. Songorica and Arabidopsis Dehydrin Proteins

Multiple sequence alignment using C. songorica Dehydrin protein sequences and their Arabidopsis
counterparts revealed the conservation stress response related segments including Y, K and S segments
(YKS) in C. songorica Dehydrin proteins (Figure 3).

Figure 3. Multiple sequence alignment using C. songorica and Arabidopsis Dehydrin protein sequences.
The identified Y segment, K segment and S segment are indicated by different colors. Y segment = red,
K segment = green and S segment = purple.

2.5. Cis-Regulatory Element in C. Songorica LEA Gene Promoters

Cis-regulatory elements control expression patterns of stress responsive genes in various tissues
and organs. These elements are located upstream of gene coding sequences and provide binding
sites for transcription factors (TFs) [35]. More than three G-box cis-elements were recorded for each
Dehydrin, LEA_2 and SMP genes and nearly more than two MBS elements were detected for each
Dehydrin and LEA_2 subfamily gene (Table 1).
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Table 1. Stress-related cis-regulatory elements in 44 C. songorica LEA gene promoters.

CsLEA
Subfamilies Gene Names

Functional cis-Element Names and Sequences

MBS (CGGTC) G-Box
(GTGCAT/CACGAC)

ABRE
(GACACGTACGT) CGTCA Motif

Functions

Drought Responsive
(MYB Binding Site) Light Responsive Abscisic

Acid Responsive MeJA Responsive

LEA_1

CsLEA29 3 1 1 0
CsLEA30 2 3 1 4
CsLEA31 4 1 1 0
CsLEA32 2 2 1 0
CsLEA36 4 5 2 2

LEA_2

CsLEA2 2 1 0 3
CsLEA3 0 3 2 2

CsLEA14 2 6 1 0
CsLEA17 3 9 3 0
CsLEA19 5 0 0 1
CsLEA44 0 0 0 2

LEA_3

CsLEA1 4 2 0 2
CsLEA16 1 2 0 3
CsLEA22 1 3 1 3
CsLEA18 8 3 3 0
CsLEA8 0 7 1 2
CsLEA9 3 0 0 0

LEA_4 CsLEA5 1 5 4 1

LEA_5

CsLEA10 0 2 0 1
CsLEA11 0 3 0 3
CsLEA12 2 7 1 1
CsLEA13 2 1 3 5

LEA_6 CsLEA28 0 9 5 3

SMP

CsLEA24 0 4 1 0
CsLEA6 2 0 2 0
CsLEA7 2 6 0 0
CsLEA26 1 5 1 1
CsLEA33 0 5 1 4
CsLEA4 2 1 0 0

CsLEA23 2 1 0 0
CsLEA34 1 4 0 1
CsLEA42 0 3 1 2
CsLEA43 0 0 1 5

Dehydrin

CsLEA20 4 5 0 0
CsLEA25 4 2 0 1
CsLEA35 3 8 2 1
CsLEA37 0 6 3 4
CsLEA38 2 10 2 3
CsLEA39 3 1 0 1
CsLEA41 2 0 1 2
CsLEA40 0 2 0 1
CsLEA42 0 3 1 2
CsLEA43 0 0 1 5

2.6. Chromosomal Mapping of CsLEA Genes

C. songorica genome has in total twenty chromosomes. Positions of the 44 CsLEA genes on
15 different C. songorica chromosomes were estimated (Figure 4). Genes from the same subfamily were
mostly found on different chromosomes, suggesting a strategy to exert their functions across the whole
C. songorica genome. However, genes in the LEA_5 and Dehydrin subfamily were mostly found in
clusters on the 14th, 15th and 18th chromosome.

2.7. Gene Expression Analysis qRT-PCR Validation

The expression levels of the CsLEA 14, CsLEA 19, CsLEA 37 and CsLEA 38 genes were induced after
24 h of ABA or heat treatment but were not tissue specific (Figure 5). To validate results from expression
profile analysis, qRT-PCR was carried out for CsLEA 14, CsLEA 19 (from the LEA_2 subfamily) and for
CsLEA37 and CsLEA 38 (from the Dehydrin subfamily) as these genes showed a relatively high number
of stress related cis acting elements and motifs.
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We carried out qRT-PCR analyses using CsLEA14 and CsLEA19 (LEA_2 subfamily), and CsLEA37 and
CsLEA 38 (Dehydrin family). Results showed that after 24 h heat treatment the expression levels of these
four genes up-regulated by 156.5 (CsLEA 19), 95.8 (CsLEA14), 52.6 (CsLEA38) and 14.6 fold (CsLEA37)
in C. songorica leaves compared with the untreated plant leaf samples. The expression levels of these
four genes were slightly up-regulated after the ABA treatment, especially CsLEA 38 (14.6 fold, Figure 6).

Figure 4. Locations of the 44 CsLEA genes on 15 chromosomes of C. songorica.

Figure 5. Hierarchical clustering of CsLEA gene expression profiles in root and shoot tissues after 24 h
heat or ABA treatment. The log transformed values for the relative expressions of CsLEA genes were
used for the hierarchical clustering analysis. The blue scale means low transcript expression and the
red scale means high transcript expression.
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Figure 6. Hierarchical clustering of CsLEA gene expression profiles in root and shoot tissues after 24 h
heat or ABA treatment. The log transformed values for the relative expressions of CsLEA genes were
used for the hierarchical clustering analysis. The blue scale means low transcript expression and the
red scale means high transcript expression.

3. Discussion

3.1. Phylogeny Analysis and Protein Sequence Analysis

Genome surveys of LEA subfamily proteins (e.g., LEA_1 to LEA_6, SMP and DEHYDRIN) were
done for A. thaliana [28], rice [36] and maize [37]. C. songorica is a perennial monocotyledonous
desert plant with a high tolerance for drought stress. Investigation of stress responsive proteins
encoded by LEA family genes in a desert plant should benefit crop improvement for drought and other
abiotic stresses. Phylogenetic analysis grouped the CsLEA proteins into eight different subfamilies.
Several C. songorica and Arabidopsis Dehydrin subfamily proteins were clustered together with high
bootstrap values, which implied potential significant functional similarities between C. songorica
and Arabidopsis DEHYDRIN proteins. Many of the Arabidopsis Dehydrin proteins are known as
stress regulatory proteins such as RAB18 (AtLea51) and COR47 (AtLea4), two ABA and cold inducible
proteins [38,39], ERD14 (AtLea4) and ERD10 (AtLea5), two disordered chaperon proteins [40] and
Dehydrin Xero2 (AtLea33), a disordered cold responsive protein with membrane binding activity [41].

Sequence alignment using CsDehydrin proteins and their Arabidopsis counterparts revealed
that all C. songorica Dehydrin proteins contained YKS segments but lacked the lysine rich segment.
The K segment is critical for the formation of structural disordered alpha-helical compounds that
can enhance bindings between proteins and their targeted molecules [10,42]. The presence of
the K segment in C.songorica DEHYDRIN proteins emphasizes their role in limiting aggregation
of molecules and thence promoting proper cellular homeostasis during dehydration stresses [11].
Additionally, the detection of the S segment in the C. songorica DEHYDRIN protein also suggests their
implication in enhancing plant tolerance against abiotic stresses through protein phosphorylation,
as previous studies indicated that the S segment participates in calcium binding through protein
phosphorylation [43]. The findings above support the fact that disordered LEA proteins are flexible
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proteins, capable of adjusting their conformation to maintain proper cellular homeostasis during
detrimental stress conditions [43,44].

3.2. Protein Domain Analysis

Two additional non-LEA conserved protein domains that are associated with stress response
were detected in the CsLEA_2 subfamily proteins (Supplementary Figure S1). At least one WHy
(Water stress and Hypersensitive response) [15,16] and one COG5608 domain (LEA14-like desiccation
related protein) was spotted within each single protein sequence from the CsLEA_2 subfamily.
The COG5608 domain was previously detected in the Arabidopsis LEA14 protein, a well characterized
abiotic stress marker protein, which suggests that the CsLEA_2 subfamily proteins may function
similarly to Arabidopsis LEA14 protein (Atlea1). On the other hand, a thorough functional
characterization of the WHy domain has only been elucidated in a few bacterial genes, dwhy1 [15]
and drwh [45]. Studies in vivo indicated that dwhy1 confers cold and freeze damage resistance.
Furthermore, in E. coli, the function of drwh is related to oxidative stress tolerance and salinity stresses.
Silencing this gene triggered reduced activity of antioxidant enzymes such as lactate dehydrogenase
(LDH) malate dehydrogenase (MDH) [15,45]. All the CsLea_2 subfamily genes contained the WHy
domain which could explain the functional importance of this domain during low water availability in
a typical desert grass, C. songorica.

3.3. C. songorica Gene Promoter and Gene Expression Analysis

ABA and stress responsive cis-regulatory elements, such as ABRE, MBS/MYB and G-Box were
found to be abundant in the promoters of C. songorica Dehydrin and the LEA_2 subfamilies genes.
These regulatory elements are known to provide binding sites for transcription factors like ABEF
(a member of the bZIPTFs family), BHLH and ERF for the transcription of downstream stress
responsive genes [46]. Expression analysis of CsLEA37 and CsLEA38 (DEHYDRIN genes), and CsLEA14
and CsLEA19 (LEA_2 subfamily genes) with qRT-PCR indicated that the expression levels of these
four genes in root and shoot tissues were significantly up-regulated after the drought or ABA treatment.

The relevant role of DEHYDRIN or the LEA_2 subfamily proteins during plant stress tolerance
has been reported in earlier studies using various transgenic plants. For example, transgenic tobacco
plant overexpressing the CaLEA6 gene showed an enhanced dehydration and salt tolerance [47].
Additionally, sweet potato plants overexpressing the IbLEA14 gene exhibited an improved salinity
and dehydration tolerance [48]. A Foxtail millet plant overexpressing the SiLEA4 gene displayed
salt and drought resilience [49]. For DEHYDRIN proteins, transgenic Arabidopsis plant expressing
a Dehydrin gene from an olive showed an enhanced osmotic stress tolerance [50]. Similarly, a wheat
Dhn-5 gene increased salinity and dehydration stress tolerance in transgenic Arabidopsis plants [51].
C. songorica DEHYDRIN and LEA_2 gene transcripts accumulation during water deficit and ABA
treatment, reinforcestheir functional importance under detrimental stress conditions.

4. Materials and Methods

4.1. Mining LEA Genes in the C. Songorica Genome

C. songorica LEA genes were mined based on their protein sequence homology with the previously
published A. thaliana [28], Oryza sativa (rice) [36] and Zea mays (maize) [37] LEA protein sequences.
The published full length A. thaliana, rice and maize LEA protein sequences or coding sequences were
retrieved from (https://phytozome.jgi.doe.gov/pz/portal.html) [28,32]. The obtained LEA protein
sequences were used as queries to blast search the whole C. songorica genome sequence retrieved from
the BMK cloud: http://www.biocloud.net/ using a local blast tool [52,53].

The resulting non-redundant sequences were further examined with the Hidden Markov Model
available in the Pfam database (http://pfam.sanger.ac.uk/search) [13] and then submitted to the
SMART database (http://smart.embl-heidelberg.de/) [54] and the NCBI Conserved Domain Search

https://phytozome.jgi.doe.gov/pz/portal.html
http://www.biocloud.net/
http://pfam.sanger.ac.uk/search
http://smart.embl-heidelberg.de/
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database (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) [55], respectively, to confirm
CsLEA Pfam domain families. The obtained LEA nucleotide and protein sequences were then
submitted to the Genbank to obtain respective accession numbers (Table S1).

4.2. Multiple Sequence Alignment and Phylogenetic Analysis of CsLEA Family Proteins.

The alignment of the C. songorica and Arabidopsis LEA protein sequences was performed using
the ClustalW software [56] in the MEGA 6 program with a default parameter setting. After sequence
alignment and pair-wise deletion of gaps as previously described [57], a phylogenetic tree was
constructed using the Neighbor Joining (NJ) algorithm with bootstrap analysis of 1000 trials [57,58].
Multiple sequence alignment and sequence homology analysis of C. songorica and Arabidopsis
Dehydrin proteins were performed using the ClustalW algorithm embedded in the DNAMAN version
6 program as instructed (Lynnon Corporation, Quebec, Canada).

4.3. In Silico Analyses of CsLEA Proteins.

Determination of GRAVY (grand average of hydropathicity index) values and pI (theoretical
isoelectric point) were carried out by the ProtParam Tool (web.expasy.org/protparam/) [59].
Protein Prowler Subcellular Localization Predictor version 1.2 (http://bioinf.scmb.uq.edu.au/
pprowler_webapp_1--2/) 53 and TargetP1.1 (http://www.cbs.dtu.dk/services/TargetP/) servers [60]
were used to predict the subcellular locations of C. songorica LEA proteins. All of the prediction servers
were run under the default settings. To determine the conserved motifs in different C. songorica
and Arabidopsis LEA proteins, protein sequences were analyzed using MEME (The Multiple
Expectation Maximization for Motif Elicitation) platform (http://alternate.meme-suite.org/) [61].
MEME parameters were then customized to detect a maximum of 40 motifs with a width covering 6 to
50 amino acid residues.

4.4. Analysis of Cis-Regulatory Elements and Motifs

Sequences of 2000 bp from promoters of the 44 identified C. songorica LEA genes were analyzed for
potential cis-regulatory elements and motifs by querying them through the PlantCARE database (http:
//bioinformatics.psb.ugent.be/webtools/plantcare/html/) [62]. Stress- and ABA-related cis-regulatory
elements, including MYB binding site (drought responsive) [63], G-box (light inducible) [64], ABRE
(Abscisic acid responsive) [65] and CGTCA-motif (Methyl jasmonate responsive) [66] were recorded.

4.5. Plant Material Preparation and Transcriptomic Data Analysis

C. songorica seeds were sown in vermiculite medium supplied with 1/4 diluted Hoagland’s
nutrient solution, pH 5.8. Growth chamber conditions were set at 75–80% relative humidity, 30/28 ◦C
(day/night), and 16/8 h (day/night) light at 200 mmol photons m−2 s−1. One-month old seedlings
were treated with 40 ◦C or with 100 µM ABA. Root and shoot tissue samples were collected at 0 and 24 h
post the treatment and kept at −80 ◦C till RNA extraction. Three root and shoot samples were collected
from each treatment. Total RNA was isolated from the samples using the Shengong RNA isolation
kit as instructed (Shengong Ltd., Shanghai, China). RNA pools were constructed following Illumina
sequencing guidelines and then sequenced conferring to RNA-seq procedure. In total 24 million
250-bp raw reads were produced from the 12 samples. To eliminate adapter sequences from raw reads,
the FASTX version 0.0.13 toolkit (http://hannonlab.cshl.edu/fastxtoolkit/) was used. Additionally,
the FastQC server tool (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was utilized to
assess the quality of sequences. The resulting clean reads were aligned with the C. songorica genome
by means of Tophat v.2.0.10 server (http://tophat.cbcb.umd.edu/) [67] and the produced alignment
files were used as Cufflinks inputs to create transcriptome assemblies [68]. The C. songorica gene
expression levels were estimated based on fragments per kilobase of exon model per million mapped
reads (FPKM) for root and shoot tissues. Following this, a random sampling model built on read count
for each individual gene was applied to determine differentially expressed [69]. Gene expression levels

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
web.expasy.org/protparam/
http://bioinf.scmb.uq.edu.au/pprowler_webapp_1--2/
http://bioinf.scmb.uq.edu.au/pprowler_webapp_1--2/
http://www.cbs.dtu.dk/services/TargetP/
http://alternate.meme-suite.org/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://hannonlab.cshl.edu/fastxtoolkit/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://tophat.cbcb.umd.edu/
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were normalized with Pearson coefficients to generate hierarchical clustering with average linkage
using HemI toolkit [70].

4.6. Gene Expressions Analysis.

The isolated RNA was then used to synthesize first strand cDNAs using an oligo dT primer
and the cDNA synthesis kit (Shengong Ltd, Shanghai, China). The resulting cDNA samples were
individually diluted to 100 ng/µL prior to qPCR using gene specific primers (Table S2). For each PCR
reaction, three biological replicates with three technical replicates were each used. qPCR reactions were
40 cycles of 95 ◦C for 5 s, 60 ◦C for 15 s, and 72 ◦C for 34 s using a SYBR Green Master (Shengong Ltd,
Shanghai, China). The relative gene expression levels were determined using the comparative ∆∆Ct
method [71]. The expression level of the C. songorica GADPH gene was used as an internal control.
Two-way analysis of variance and Duncan’s multiple range test (DMRT) were used for multiple mean
comparisons. SPSS (IBM Corp. 2013, IBM SPSS Statistics for Windows, Version 21.0, Armonk, NY, USA)
was used to determine the significant differences between means (p < 0.005).

5. Conclusions

At a glance, this study methodically investigated at a genome wide level LEA proteins from a
monocot perennial desert plant, Cleistogenes songorica. A total of 44 genes discovered were classified
into eight different subfamilies and were found to be patchily spread over the C. songorica chromosomes.
Analysis of the physio-chemical properties, motif and gene structure, homology and phylogenetic
relationships detected that they were mostly similar within the same groups, but greatly differed
among different subfamilies. Our study particularly explored CsLEA_2 and CsDEHYDRIN subfamilies
proteins and elucidated their striking links with the regulatory mechanisms of plant abiotic stress
tolerance. This study delivers a comprehensive summary of the evolution of the C. songorica LEA
genes and some groundbreaking insights to the functional roles of this family that can be a critical
foundation for crop abiotic tolerance improvement.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/11/
3430/s1.
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