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Abstract: In order to delineate a better approach to functional studies, we have selected 23
missense mutations distributed in different domains of two lysosomal enzymes, to be studied
by in silico analysis. In silico analysis of mutations relies on computational modeling to predict their
effects. Various computational platforms are currently available to check the probable causality of
mutations encountered in patients at the protein and at the RNA levels. In this work we used four
different platforms freely available online (Protein Variation Effect Analyzer- PROVEAN, PolyPhen-2,
Swiss-model Expert Protein Analysis System—ExPASy, and SNAP2) to check amino acid substitutions
and their effect at the protein level. The existence of functional studies, regarding the amino acid
substitutions, led to the selection of the distinct protein mutants. Functional data were used to
compare the results obtained with different bioinformatics tools. With the advent of next-generation
sequencing, it is not feasible to carry out functional tests in all the variants detected. In silico analysis
seems to be useful for the delineation of which mutants are worth studying through functional
studies. Therefore, prediction of the mutation impact at the protein level, applying computational
analysis, confers the means to rapidly provide a prognosis value to genotyping results, making it
potentially valuable for patient care as well as research purposes. The present work points to the
need to carry out functional studies in mutations that might look neutral. Moreover, it should be
noted that single nucleotide polymorphisms (SNPs), occurring in coding and non-coding regions,
may lead to RNA alterations and should be systematically verified. Functional studies can gain from
a preliminary multi-step approach, such as the one proposed here.

Keywords: lysosomal glucocerebrosidase; lysosomal alpha-galactosidase; sphingolipidoses;
functional studies; in silico analysis; GBA1; GLA; CSTB; ARSA; GALC

1. Introduction

Lysosomal storage diseases (LSDs) are a large group of inherited disorders leading to various
clinical symptoms, caused by defects in lysosomal enzymes, transporter proteins, activator proteins,
or other proteins involved in lysosomal function or biogenesis. Such defects lead to total or partial
loss of enzyme activity and consequent accumulation of substrate, which results in impaired organelle
function, leading to subsequent multi-organ dysfunction. The enzymes involved in two of the less
rare LSDs are lysosomal glucocerebrosidase (GlcCerase, glucosylceramidase or acid-β-glucosidase,
EC 3.2.1.45), and lysosomal acid-α-galactosidase (α-GAL or α-Gal A, EC 3.2.1.22). Most commonly,
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mutations in the genes coding for the aforementioned enzymes, GBA1 (ID: 2629) and GLA (ID: 2717)
lead to the development of Gaucher [1] and Fabry diseases, respectively [2]. Gaucher disease (GD,
MIM #230800, 230900, 231000) is the most common lysosomal storage disorder [1], and Fabry disease
(FD, MIM #301500) is an X-linked disorder that has a large range of phenotypes [2]. In the case
of both shingolipidoses, therapeutic approaches based on enzyme replacement or small-molecule
compounds have been successfully developed. Interestingly, both hydrolytic reactions require
activation by saposins; whereas globotriaosylceramide binds saposin B (SapB) prior to presentation
to α-GAL, saposin C (SapC) enhances GlcCerase activity [3]. The enzyme GlcCerase is a peripheral
membrane protein that catalyzes the hydrolysis of glucosylceramide (GlcCer) to ceramide and glucose.
The three-dimensional (3D) structure of human GlcCerase was discovered by Dvir et al. in 2003;
it comprises three non-contiguous domains, with the catalytic site located on the (α/β)8 TIM barrel
in domain III [4]. The 3D structure of human α-GAL was found by Garman and Garboczi in 2004;
it is composed of two domains and shares with GlcCerase a (α/β)8 TIM barrel motif in the catalytic
domain and an immunoglobulin fold in the same relative position [5].

To date, hundreds of mutations in GBA1 and GLA genes have been identified (http://www.
hgmd.cf.ac.uk), and new sequencing techniques continuously identify variants in large numbers
(http://gnomad.broadinstitute.org/). Large sets of information were also recently assembled through
the 1000 genomes project (http://www.internationalgenome.org/1000-genomes-browsers/).

The term in silico goes back to the 1970s and is related to the computer component silicon. In silico
methods are based on computational approaches for the prediction of effects prior to development of
laboratory methods [6] In vitro functional studies involve laboratory assays for testing various types
of functions and usually rely on cell based overexpression systems and cell based “test-tube” assays.
The in vitro studies require many consumables, specific laboratory apparatus and time-consuming
optimizations and laboratory procedures. Computational modeling is an important tool to deal
with the rapid increase in bioinformatics information. Presently, the most rapid and inexpensive
way to predict whether a Single-Nucleotide Polymorphism (SNP) will potentially cause disease
is by performing a computational analysis. Different parameters, such as clinical, populational,
structural, and bioinformatics, need to be considered when analyzing results. The increasing number
of computational tools available, and the rapidly growing number of available crystal structures, has
turned in silico modeling into an accurate complementary, and often crucial, prediction methodology.
Different computational platforms take into account, to various degrees, factors such as the general
rules of protein chemistry, 3D structure, and homologies in amino acid sequences among various
species or related proteins [7]. Most of the GBA1 and GLA mutations are point mutations leading
to missense substitutions, and functional studies exist in several of those mutations. The existence
of in vitro data adds relevant information for the computational study of the molecular basis of the
protein impairment.

In this report 23 single nucleotide alterations in the GBA1 and GLA genes, leading to amino
acid substitutions with protein functional studies, were re-examined through in silico analysis and
their effects were predicted and compared using different platforms available online. The analyzed
amino acid substitutions were individually mapped into the available 3D enzyme model, using the
PyMOL tool [8]. Comparison of the computational data obtained with previous in vitro expression,
or functional, data was carried out to evaluate the prediction accuracy regarding the establishment
of genotype/phenotype correlation. In silico prediction of the amino acid substitution impact at the
protein level may, sometimes, be considered as an alternative to in vitro expression or as a pre-study
indicator of the need for research at the functional level. Attentive in silico analysis is a potentially
valuable option for immediate guidance regarding patient care and counseling, being able to confer an
indication of prognosis value to the genotyping results.

Functional effects of mutations were predicted with different tools in an attempt to distinguish
between variant amino acid substitutions, considering evolutionary information, structural features,
and other relevant information. Tools that combine different types of existing information are more

http://www.hgmd.cf.ac.uk
http://www.hgmd.cf.ac.uk
http://gnomad.broadinstitute.org/
http://www.internationalgenome.org/1000-genomes-browsers/


Int. J. Mol. Sci. 2018, 19, 3409 3 of 10

complete and were used in the present study [9–11]. Missense mutations were selected in different
domains of the GlcCerase and of the α-GAL proteins with different types of functional evidence
of causality. In order to broaden the scope of the study, mutations in three other genes related to
neurodegenerative diseases were also added to the present study.

2. Results

The aim of this work was to investigate the prediction value of different bioinformatics tools,
applying them to single amino acid substitutions in the GBA1 and GLA genes.

GlcCerase and α-GAL structures were obtained from the Protein Data Bank (PDB).
GBA1 mutations (p.F109V, p.P182L, p.D140H, p.K157Q, p.W184R, p.N188S, p.E326K, p.R359Q, p.G377S,
p.R395P, p.N396T, p.P415R, and p.L444P) and GLA mutations (p.D33G, p.M42V, p.R112C, p.F113L,
p.R118C, p.C142W, p.D231G, p.D266N, p.S297F and p.D313Y) were mapped into 3D GlcCerase and
α-GAL structures: the first X-ray human GlcCerase to be solved (PDB code 1OGS) [4] and into the
first 3D α-GAL structure (PDB code 1R46) [5] (Figures 1 and 2). Three-dimensional structures were
designed using PyMOL (http://www.pymol.org) in order to visualize how these alterations could
affect enzyme structure.
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The missense mutations, depicted in Figures 1 and 2, were computationally analyzed and the
retrieved results were compared with the in vitro results and functional data (Table 1), in order
to ascertain the validity of the platforms used and evaluate the prediction accuracy regarding the
establishment of genotype/phenotype correlation. Differences in the results obtained reflect the
different types of algorithms used in the computational platforms.

Table 1. In silico analysis comparison of 23 missense mutations in the GBA1 and GLA genes.

Gene
Mutants PROVEAN PolyPhen-2 SNAP2 ExPASy Protein Function and Structure

Prediction
Expected
Accuracy

GBA1
Mutants

F109V
CM005404 Deleterious Probably

damaging
Effect
75% NA 15% of wt activity; weakly conserved; domain III;

stable protein [12]
P182L

rs80205046 Deleterious Probably
damaging

Effect
85% NA Near null activity; buried site; domain III;

unstable protein [13]
D140H

rs147138516 Neutral Benign Neutral
57% Disease 73% of wt activity; domain III [14]

K157Q
rs121908297 Deleterious Probably

damaging
Neutral

57% Disease 9.7% of wt activity; domain III; conserved region;
unstable protein [14]

W184R
rs61748906 Deleterious Probably

Damaging
Effect
66% Disease Inactive enzyme; domain III periphery; alteration of

enzyme geometry; unstable protein [12]
N188S

rs364897 Deleterious Benign Effect
66% Disease 66.6% of wt activity; domain III periphery;

stable protein [13]
E326K

rs2230288 Neutral Benign Neutral
56% Disease 42.7–25% of wt activity; domain III;

stable protein [15]
R359Q

rs74979486 Deleterious Probably
Damaging

Effect
75% Disease 4.5% of wt activity; domain III stable protein; highly

conserved region [12]
G377S

rs121908311 Deleterious Probably
Damaging

Effect
91% Disease 17% of wt activity; domain III; stable protein [12]

R395P Deleterious Benign Effect
75% NA 4.5% of wt activity; domain I, loop 2;

stable protein [12]
N396T

rs75385858 Deleterious Probably
Damaging

Effect
85% NA 14% of wt activity; domain I; stable protein [12]

P415R
rs121908295 Deleterious Probably

damaging
Effect
59% Disease Near null activity; conserved region;

unstable protein [16]
L444P

rs421016 Deleterious Possibly
damaging

Effect
91% NA 5.7–9% of wt activity; unstable protein [12,17].

GLA
Mutants

D33G
rs869312136 Deleterious Possibly

damaging
Effect
75% Unclassified 37% of wt activity; periphery of domain I [18]

M42V Deleterious Probably
damaging

Effect
85% Disease 7% of wt activity; domain I; unstable protein [19]

R112C
rs104894834 Deleterious Probably

damaging
Effect
91% Disease 5% of wt activity; periphery of domain I;

unstable protein [19]
F113L

rs869312142 Deleterious Probably
damaging

Effect
91% Disease 20% of wt activity; periphery of domain I; altered

alpha-GAL surface; unstable protein [19]
R118C

rs148158093 Deleterious Probably
Damaging

Effect
53% NA 29–32% of wt activity; periphery of domain I;

unstable protein [20,21].

C142W Deleterious Probably
damaging

Effect
95% NA 5% of wt activity; domain I; near active site pocket;

unstable protein [19].

D231G Deleterious Probably
damaging

Effect
95% NA 4% of wt activity; domain I, active site pocket;

stable protein [19]
D266N

rs869312407 Deleterious Probably
damaging

Effect
95% Disease 5% of wt activity; domain I, near the active site

pocket; buried; unstable protein [19]
S297F

rs28935489 Deleterious Probably
damaging

Effect
95% Disease 5% of wt activity; unstable protein [19]

D313Y
rs28935490 Deleterious Probably

damaging
Effect
95% Disease 76% of wt activity; in domain I periphery;

stable protein [22,23]

Legend: wt—wild-type; NA—Results not available with that computational tool.
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In order to broaden the scope of the present study, we analyzed 14 additional mutations in other
genes involved in neurodegenerative lysosomal-related disorders (Table 2). In all cases, functional
studies were available. These previous mutations provided an ampler comparison between in vitro
and in silico results.

Table 2. In silico analysis of 14 other single nucleotide mutations in the genes ARSA (MIM ID 607574)
and GALC (MIM ID 606890), CSTB (MIM ID 601145).

Gene
Mutants PROVEAN PolyPhen-2 SNAP2 ExPASy Protein Function and Structure

Prediction
Expected
Accuracy

ARSA
mutants

G86D
rs74315460 Deleterious Probably

damaging
Effect
95% Disease Null activity; unstable protein [24]

C156R
rs199476348 Deleterious Probably

Damaging
Effect
59% Disease 50% of wt activity [25]

T274M
rs74315472 Deleterious Probably

Damaging
Effect
95% Disease 35% of wt activity [26]

C300F
rs74315484 Deleterious Probably

Damaging
Effect
95% Disease Null activity; disruption of disulfide bond linking

major and minor β-sheets [27,28]
T409I

rs74315481 Neutral Possibly
damaging

Effect
75% Disease 60% of wt activity [29]

GALC
Mutants

I82M
without

reference
SNP (rs)

Deleterious Probably
Damaging

Neutral
57% Disease Normal activity [30]

G286D
rs199847983 Deleterious Probably

Damaging
Effect
71% Disease 17.5% of wt activity [31]

Y335C
rs757407613 Deleterious Probably

Damaging
Effect
75% Disease 10% of wt activity [32]

G553R
rs748573754 Deleterious Probably

Damaging
Effect
91% Disease 1.8% of wt activity [31]

L634S
rs138577661 Deleterious Probably

Damaging
Effect
95% Disease 12% of wt activity [30]

CSTB
mutants

Q22Q
rs386833443 Neutral NA Neutral

82% NA Expected abnormal peptide with
premature truncation [33]

G4R
rs74315443 Deleterious Probably

Damaging
Effect
85% Disease Binding pocket modification; interaction

properties compromised [34]
G50E

rs312262708 Deleterious Possibly
Damaging

Effect
95% NA Altered stability and interaction with

target proteins [35,36]
Q71P

rs796052392 Deleterious Possibly
Damaging

Effect
75% NA Changes in second binding loop; altered

binding affinities [37]

Legend: wt—wild-type; NA—Results not available with that computational tool.

3. Discussion

In vitro mutagenesis and subsequent expression of mutant proteins, or functional studies and
characterization, is a cumbersome task in terms of time, workload, and cost. For these reasons, in silico
analysis is a desirable, fast, inexpensive, and reliable way to boost our understanding of how an amino
acid substitution could affect the protein structure and function. Availability of 3D protein structures
enables the mapping of amino acid substitutions and, therefore, helps complement the information
acquired from different computational platforms. These aspects facilitate preliminary research in the
biomedical field. As observed with the tools used here, the incorporation of more data increases the
accuracy of the results, and thus makes predictions more reliable.
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When a novel missense mutation is detected in a disease context, and its polymorphic nature has
been excluded by population studies, it is possible to predict its outcome through in silico analyses,
by first performing computational SNP evaluation followed by modeling the amino acid substitution
into the 3D protein structure. In silico analysis is necessary to predict the impact of novel mutations
in diseases such as the lysosomal disorders analyzed here. However, general limitations exist—for
instance, the structural-based prediction tools may be unable to accurately predict mutation effects due
to a lack of homologous structures in the databases. In such cases, functional analysis studies should
be performed to elucidate how the missense mutation affects the protein function and contributes to
the patient phenotype.

Overall, the retrieved results from the different computational platforms were rather similar,
although they use different data sources and algorithms. The biggest difference observed seemed to be
between PROVEAN and the other platforms, since it takes into account fewer variables. On the other
hand, SNAP2 relies on protein and DNA data, as well as evolutionary and conservation information,
and therefore is able to check more aspects regarding the impact of amino acid substitutions. In the case
of α-GAL and GlcCerase mutations p.F113L and p.W184R, the location on the periphery of the proteins
could suggest that they did not have a significant effect on enzyme activity and stability. However, the
computational studies indicate them as damaging missense mutations and in vitro studies confirm that
the respective proteins are unstable with reduced activity (p.F113L) or even inactive (p.W184R) [12,19].
These types of mutations usually occur in specific protein binding sites. These specific amino acids can
be located on sites that are vital for the dimerization in α-GAL or tetramer formation in GlcCerase [38],
or be located in sites where the activator proteins (Saposin B in α-GAL and Saposin C in GlcCerase)
binds. Binding disruption will lead to partial or total loss of protein function.

A major limitation of this study is that there are few neutral, or low-score, variants to be analyzed.
This problem arises because studies are not exhaustive enough and mutations that may look neutral
are often not sufficiently investigated. Particular attention should be given to mutations in the “milder”
spectrum. In addition to amino acid substitutions, SNPs may alter RNA processing by interfering with
consensus sequences. A silent mutation or a “neutral” amino acid substitution may alter consensus
sequences involved in splicing and lead to abnormal transcripts. Such mutations risk being overlooked
and labeled as non-causal. An example to take into account is that of an apparently neutral/silent
mutation on the CSTB gene (p.Q22Q in Table 2), which affected RNA processing and was proven to be
causal only by functional studies [39,40].

Limitations of in silico analysis also arise since mutations (in the patient) may have additive or
compensatory effects and the tools used only predict single protein changes. Besides the wide range of
mutant variants and clinical phenotypes, in some cases, mutations in the same gene may be associated
with more than one disease. Certain GBA1 mutations are known to be associated with Gaucher Disease
(GD) and with Parkinson’s disease (PD) [41,42]. A good example of this association is mutation p.E326K,
which has been repeatedly investigated [14,38,43]. The association of a single protein with different
diseases is an additional limitation for in vivo and in vitro assays. Recently, a complex integration
of in silico computational analysis has been used for the understanding of the association of GBA1
mutations in GD and PD [44]. This latter approach, integrating multiple parameters, namely molecular
dynamics, seems to pave the way for the development of more dependable in silico computational
modeling approaches.

In general, it is possible to conclude that in silico methods remain an accurate way to make a rapid
analysis regarding the expected effect of mutations. Nonetheless, the more factors that are taken into
account, the more accurate the prediction will be. In order to take the best advantage of in silico analysis,
different computational platforms should be used, trying to cover the major factors influencing protein
structure and function. RNA processing alterations should also be routinely investigated by in silico
analysis. The SNP impact at the RNA level can be investigated by using some of the various RNA
assessment tools, such as Human Splicing Finder [45], GeneSplicer [46], NetGene2 [47], or Berkeley
Drosophila Genome Project (BDGP) Splice Prediction by Neural Network [48].
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4. Materials and Methods

4.1. Data Identifiers

The UniProt database was used to retrieve information about the protein sequence of GBA
(UniProtKB P04062), GLA (UniProtKB P06280), CSTB (UniProtKB P04080), ARSA (UniProtKB P15289)
and GALC (UniProtKB P54803). The three-dimensional structure of these proteins was obtained
from the Protein Data Bank (PDB, http://www.rcsb.org/pdb/home/home.do) with the following 3D
reference IDs: GlcCerase (1OGS), α-GAL (1R46), Cystatin-B (2OCT) for CSTB gene, Arylsulfatase A
(1AUK) for ARSA gene, and Galactocerebrosidase (3ZR5) for GALC gene.

4.2. In Silico Methods

Twenty-three missense mutations were analyzed using four different computational platforms
freely available online (Table 1). PROVEAN (Protein Variation Effect Analyzer) (http://provean.jcvi.
org/) is a computational tool that predicts whether an amino acid substitution or indel will have an
impact on the biological function of a protein. PROVEAN is useful for filtering sequence variants to
identify nonsynonymous or indel variants that are predicted to be functionally important. Results
are given as “deleterious” or “neutral”, according to scores [49,50]. The PolyPhen-2 (Polymorphism
Phenotyping v2) program (http://genetics.bwh.harvard.edu/pph2/) uses the sequence homology
and knowledge of 3D structures; it predicts the possible impact of an amino acid substitution on
the structure and function of a human protein using straightforward physical and comparative
considerations. The results are classified as “benign”, “possibly damaging”, “probably damaging”,
or “unknown” [7,51]. The ExPASy Swiss-model [52] is a fully automated protein structure modeling
server, accessible via the ExPASy web page (https://swissmodel.expasy.org/), and was also used in
this study [53]. The SNAP2 (screening for non-acceptable polymorphisms) program (www.rostlab.
org/services/SNAP/) incorporates evolutionary information, predicted aspects of protein structure,
and other relevant information in order to make predictions regarding the functionality of mutated
proteins [11]. The results are retrieved as “having an effect” or “being neutral”, and a score, correlated
with the severity of the change, is given for each substitution along with the percentage of expected
accuracy [10].

5. Conclusions

In the present work, we show that a comparison of the results between various platforms is crucial
and, in the case of the most deleterious mutants, the results are generally clear. In the case of the more
neutral mutations, functional studies and more refined in silico approaches are fundamental for the
understanding of the mutation’s impact on the RNA processing, protein function, and pathophysiology
of the disease.
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