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Abstract: Background: The functional interplay between tumor cells and their adjacent stroma
has been suggested to play crucial roles in the initiation and progression of tumors and the
effectiveness of chemotherapy. The extracellular matrix (ECM), a complex network of extracellular
proteins, provides both physical and chemicals cues necessary for cell proliferation, survival,
and migration. Understanding how ECM composition and biomechanical properties affect cancer
progression and response to chemotherapeutic drugs is vital to the development of targeted
treatments. Methods: 3D cell-derived-ECMs and esophageal cancer cell lines were used as a model to
investigate the effect of ECM proteins on esophageal cancer cell lines response to chemotherapeutics.
Immunohistochemical and qRT-PCR evaluation of ECM proteins and integrin gene expression
was done on clinical esophageal squamous cell carcinoma biopsies. Esophageal cancer cell lines
(WHCO1, WHCO5, WHCO6, KYSE180, KYSE 450 and KYSE 520) were cultured on decellularised
ECMs (fibroblasts-derived ECM; cancer cell-derived ECM; combinatorial-ECM) and treated with 0.1%
Dimethyl sulfoxide (DMSO), 4.2 µM cisplatin, 3.5 µM 5-fluorouracil and 2.5 µM epirubicin for 24 h.
Cell proliferation, cell cycle progression, colony formation, apoptosis, migration and activation
of signaling pathways were used as our study endpoints. Results: The expression of collagens,
fibronectin and laminins was significantly increased in esophageal squamous cell carcinomas (ESCC)
tumor samples compared to the corresponding normal tissue. Decellularised ECMs abrogated the
effect of drugs on cancer cell cycling, proliferation and reduced drug induced apoptosis by 20–60%
that of those plated on plastic. The mitogen-activated protein kinase-extracellular signal-regulated
kinase (MEK-ERK) and phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) signaling pathways
were upregulated in the presence of the ECMs. Furthermore, our data show that concomitant addition
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of chemotherapeutic drugs and the use of collagen- and fibronectin-deficient ECMs through siRNA
inhibition synergistically increased cancer cell sensitivity to drugs by 30–50%, and reduced colony
formation and cancer cell migration. Conclusion: Our study shows that ECM proteins play a key
role in the response of cancer cells to chemotherapy and suggest that targeting ECM proteins can be
an effective therapeutic strategy against chemoresistant tumors.

Keywords: esophageal cancer; 3D extracellular matrix; stroma; type I collagen; fibronectin;
chemoresistance; signaling cascade; targeted therapy

1. Introduction

Great interest has been generated in developing microphysiological systems that can best mimic
normal and pathological human conditions in vitro. Most drug discovery assays are performed
using in vitro models that do not recapitulate the in vivo tumor microenvironment present during
tumor growth, development and treatment [1–6]. The lack of good in vitro tumor models limits our
understanding of the functional interplay between tumor cells and the tumor microenvironment [7–10].
The dynamic full in vivo biological repertoire of the tumor microenvironment include many cells such
as fibroblasts, endothelial cells, immune cells and the ECM [7–16]. This ultimately leads to incorrect
and misleading claims when it comes to the efficacy of drug candidates. Such scenarios can be avoided
by employing in vitro models that better recapitulate the in vivo tumor microenvironment [3,17–23].
One important constituent of the tumor microenvironment is the extracellular matrix, a meshwork of
proteins and glycosaminoglycans [3,17,18,20]. The ECM provides both mechanical and biochemical
support for cellular adhesion and migration and acts as a conduit for extracellular cues via its
interaction with cell surface receptors. It is known to sequester growth factors and cytokines and
these will affect cellular growth and signaling [24–30]. Thus the ECM is the “theatre” where most
cues or signals from diverse sources are integrated into a “specific” message that is relayed to cells.
The ECM is synthesised mostly by fibroblasts with the contribution of other cells such as mesenchymal
stem cells, macrophages and endothelial cells [31–36]. Fibroblasts are the main cellular components of
tumor stroma [37–44]. Activated or transformed fibroblasts have a high proliferation rate and generate
huge amounts of extracellular matrix [38,39,45–49].

Esophageal cancer is one of the most highly malignant neoplasms and can be classified into
two main subtypes, esophageal adenocarcinomas and esophageal squamous cell carcinomas (ESCC),
with the majority of deaths from ESCC occurring in developing countries [50–52]. ESCC is the third
most common cancer in South African men [53,54]. Although promising progress has been attained
in treating esophageal cancer, it responds poorly to chemotherapeutic drugs and the mortality still
remains high [51,55–59]. Surgery, chemotherapy and radiotherapy are the most widely-used treatment
methods but about half of advanced esophageal cancer cases result in recurrence and patients normally
succumb to resistant disease [60–64]. There is a lack of understanding of the mechanisms driving the
initiation, progression and the occurrence of refractory disease. Besides the gradual accumulation over
time of genetic mutations in epithelial cells due to carcinogen exposure, the initiation, progression
and response to chemotherapy of many tumors including esophageal cancer depends on the interplay
between the stroma and tumor cells. Recent data suggest that the development of chemoresistant
disease is beyond cancer cell autonomous mechanisms with the tumor microenvironment emerging
as a key player in this phenomenon [50–52,65–70]. Several reports have shown the involvement
of stromal fibroblasts in esophageal cancer angiogenesis and differentiation through the release of
biomolecules and ECM synthesis [71–77]. The expression of several ECM proteins has been shown
to be upregulated in many tumors [17,78–80]. The so-called ‘hardening of the tumor’ is in fact
the deposition and crosslinking of thick fibres mainly made up of collagen and fibronectin [80–85].
ESCC stroma is fibrotic due to desmoplasia. Huge amounts of the ECM are deposited during ESCC
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development. Thus the constituents of the ECM can have a lasting effect on cancer cells. Different types
of ECMs have been used to study cancer cell-ECM interactions, with most ECM proteins being purified
proteins [3,6–8,10,16,18,20,86]. Decellularised cell-derived ECMs contain native ECM proteins, and are
cost-effective and easily obtainable [3,10,18,20,87–90]. Fibroblast-derived decellularised ECM would
mimic the desmoplastic microenvironment of the ESCC.

This study investigated the effect of three different cell-derived ECMs on the response of
esophageal cancer cells to chemotherapeutic drugs. We reproduced the native ECM microenvironment
by employing decellularised ECMs synthesised by fibroblasts and cancer cells. Our data show that
fibroblast- and cancer cell-derived ECMs contain similar ECM proteins, though in differing amounts.
We report that decellularised ECMs, regardless of origin, induce chemoresistance to cisplatin,
5-fluorouracil and epirubicin. Survival pathways such as the MEK-ERK and PI3K-Akt pathways
were activated in the presence of decellularised ECMs. Remarkably, we show that the use of type I
collagen- and fibronectin-deficient ECMs and drugs have a synergistic negative effect on esophageal
cancer cell proliferation, colony formation and migration. These results suggest that components of the
tumor microenvironment underlie aspects of chemoresistance, and are therefore potential drug targets.

2. Results

2.1. ECM Proteins and Matrix Metalloproteases Expression in Clinical Esophageal Squamous Cell
Carcinoma Tissues

Twenty-one biopsy samples were collected from histopathologically-confirmed ESCC patients and
were used to evaluate the expression profiles of ECM and associated genes. The clinicopathological
characteristics of the 21 ESCC patients are shown in Table 1. The age range of the patient cohort
is 30–83 years with a median age of 55 years. Patients were nearly evenly distributed between
male and females. Among the patient cohort, with the exception of one patient with a poorly
differentiated tumor and four esophageal tumors which were not graded, all other esophageal
tumors were moderately differentiated. To determine the importance of ECM proteins in ESCC,
we determined the mRNA levels of several ECM proteins in primary esophageal cancer tumor tissue
compared to normal tissue. Real time quantitative reverse transcription polymerase chain reaction
(qRT-PCR) analysis of RNA extracted from matched ESCC patients’ tumor and adjacent normal tissues,
was performed. GAPDH was used as a normaliser. Our statistical analysis of the resultant data show
that the expression of collagens, fibronectin and laminins was significantly upregulated in ESCC
tumor tissues compared to the corresponding normal tissue (Figure 1A,B). Immunohistochemical
staining of tumor and normal biopsy specimens using anti-type I collagen antibody showed
significantly upregulated type I collagen in tumor specimens compared to normal biopsy specimens
(Supplemental Figure S1A). The source of the ECM within the tumor microenvironment is both
cancer cells and stromal cells including cancer-associated fibroblasts. Real time qRT-PCR analysis of
RNA from normal fibroblasts (WI38, FG0), transformed CT1 fibroblasts and several ESCC cell lines
(WHCO1, WHCO5, WHCO6, KYSE 180, KYSE 450, KYSE 520) show that transformed CT1 fibroblasts
express significantly higher ECM proteins than normal fibroblasts (Supplemental Figure S1B–D;
Supplemental Figure S2A,B). ESCC cell lines express significantly lower ECM proteins, about 30–50%,
compared to normal fibroblasts (Supplemental Figure S1B–D; Supplemental Figure S2A,B).

The tumor microenvironment is not constant, with levels of ECM proteins always fluctuating.
Changes in the levels of ECM proteins within tumors can be brought about by matrix
metalloproteases (MMPs). Among the MMPs, MMP1, MMP2, MMP9 and MT1-MMP produced
by both stromal and tumor cells degrade and migrate through the ECM. Our data show significantly
upregulated levels of MMP-1, MMP2, MMP3 and MMP9 mRNA in ESCC tumor tissues compared
to the adjacent normal tissues (Figure 1C). Increased expression of ECM proteins might also be
accompanied by the over-expression of their receptors, which are responsible for relaying extracellular
cues between tumor cells and the tumor microenvironment. Indeed, integrins gene expression in the
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clinical ESCC tumor tissues show significant higher levels of integrin α-1 (ITGA1), ITGA2, ITGA5 and
ITGB1 mRNA compared to normal tissue from the same patient (Figure 1D).

Table 1. Clinicopathological characteristics of 21 ESCC samples from patients used in the study.

Biopsy Number Histology Sex Age Tumor Differentiation (Grade) Tumor
Site ICD-10 Invasive or Infiltrating

543 ESCC M 55 ND C15.4 Infiltrating
547 ESCC F 30 Moderate C15.5 Invasive
551 ESCC M 47 Moderate C15.5 Invasive
556 ESCC F 54 Moderate C15.4 Invasive
561 ESCC M 58 Moderate C15.9 Keratinizing
563 ESCC M 52 Moderate C15.5 Infiltrating
569 ESCC F 79 Poor C15.4 Invasive
571 ESCC F 48 Moderate C15.3 Keratinizing
573 ESCC F 41 ND C15.3 Infiltrating
591 ESCC M 47 Moderate C15.4 Invasive
596 ESCC F 67 Moderate C15.4 Invasive
601 ESCC M 59 ND C15.4 Infiltrating
607 ESCC F 48 Moderate C15.4 ND
613 ESCC M 54 Moderate C15.9 Invasive
618 ESCC F 60 Moderate C15.4 Keratinizing
619 ESCC M 57 Moderate C15.4 Infiltrating
621 ESCC F 64 Moderate C15.4 Invasive
622 ESCC F 83 ND C15.4 Infiltrating
627 ESCC M 52 Moderate ND ND
634 ESCC F 57 Moderate C15.4 Keratinizing
635 ESCC M 57 Moderate C15.4 Keratinizing

ESCC: Esophageal squamous cell carcinoma; M: Male; F: Female; ND: Not done.

Figure 1. Gene expression profile of ECM proteins and associated proteins in ESCC samples:
(A) qRT-PCR analysis of collagens mRNA expression in human ESCC samples; (B) Fibronectin
and laminins mRNA expression in human ESCC samples. (C) qRT-PCR analysis of MMPs mRNA
expressions in human ESCC samples; (D)‘qRT-PCR analysis of integrins mRNA expression in human
ESCC samples. Each ESCC tumor (T) mRNA was quantified relative to the corresponding normal
sample (N) from the same patient, which is taken as one. GAPDH is the normaliser. Statistical analysis
to determine significance difference of gene expression in tumor versus normal sample was done using
a 2-tailed non-parametric Mann-Whitney test. * p < 0.05.
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2.2. Detailed Analysis of Decellularised ECMs Used in the Study

Fibroblasts are the major stromal cell type responsible for ECM production and we previously
utilised the fibroblast-derived ECM as a model to investigate cancer cell and mesenchymal stem
cells interactions [88]. In the context of the tumor, fibroblasts within the tumor or surrounding
the tumor are called cancer-associated fibroblasts. We utilised cell-derived 3D culture models
involving plating ESCC lines on decellularised ECMs produced by transformed CT1 fibroblasts
(fd-ECM), ESCC cell lines (cd-ECM) and a combination of transformed CT1 fibroblasts and
WHCO1 cancer cells (combi-ECM) (Figure 2A). Our data show that the transformed CT1 fibroblasts
express significantly more upregulated α-smooth muscle actin than normal fibroblasts WI38
and FG0 and show the spindle-shaped morphological features typical of CAFs found within
tumors (Supplemental Figure S2C,D). We therefore used transformed CT1 fibroblasts, obtained
by transforming WI38 fibroblasts through γ-radiation [91] as our “transformed fibroblasts”.
Transformed CT-1 fibroblasts produced an ECM (tfd-ECM) that is much more highly linearized
than the ECM produced by WHCO1 cells (cd-ECM) and a mixture of CT-1 fibroblasts and WHCO1
cells (combi-ECM) (Figure 2A, right column). It is important to note that most synthetic and solubilised
ECMs used in most experiments such as Matrigel and Fibronectin do not form a linearized ECM.
This could have a huge impact on WHCO1 cancer cell response to drugs and probably mimic the
in vivo ECM better than these purified ECMs.

In order to study cancer cell-ECM interactions, it is necessary to obtain a detailed composition of
the decellularised ECMs. To analyse the composition of the tfd-ECM, cd-ECM and combi-ECM obtained
after synthesis, we employed a proteomics pipeline using chromatography combined with tandem mass
spectrometry (LC-MS/MS) to identify the peptides and proteins (Figure 2B). Our data showed that all
decellularised ECMs generally contain similar ECM proteins and proteoglycans, with obvious differences
in the quantities of ECM proteins and proteoglycans identified within tfd-ECM and combi-ECMs compared
to cd-ECMs (Figure 2C; Supplemental Figure S3A–C). Mass spectrometric analysis identified well-known
ECM proteins within the decellularised ECMs such as collagens, laminins and fibronectin (Table 2).
As expected, tfd-ECM and combi-ECM showed higher amounts of ECM proteins such as type I collagen
and fibronectin and glycoproteins than cd-ECM (Figure 2C).

Figure 2. Characterisation of CT1 fibroblasts and WHCO1 cancer cells and their ECMs. (A) Phase
contrast images of CT1 and WHCO1 cells prior to decellularization (left panel) and phase contrast
microscopy of decellularised ECMs (right panel). Scheme of the ECM analysis workflow. Images
were taken at 100× magnification. (B) Schematic representation of decellularised ECMs synthesis and
analysis via SDS PAGE and mass spectrometry. (C) Representative image showing SDS PAGE and
Coomassie Blue staining of decellularised ECMs (left panel). Representative Alcian Blue staining for
proteoglycans in decellularised ECMs. Images were taken at 100× magnification.
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Table 2. Major ECM proteins and associated entities identified in decellularised ECMs by mass
spectrometric analysis.

Glycoproteins Collagens ECM Regulators ECM Affiliated Proteins Secreted Factors Proteoglycans

Gene Name

FN1 COL1A1 TGM2 LGALS1 S100A13 HSPG2
LAMA3 COL1A2 HTRA1 FREM2 EGFL7 BGN
LAMA5 COL6A3 CSTB ANXA2 IGF2 DCN
FBN1 COL3A1 LOXL2 FREM1 S100A11 LUM

TGFB1 COL12A1 LOXL1 ANXA6 S100A6 ASPN
TNC COL6A1 SERPINH1 ANXA5 S100A13 OGN

EMILIN1 COL4A2 CTSB COLC12 CXCL12 PRELP
LAMC1 COL6A2 LOX CLEC3B CCL25 VCAN
LAMB2 COL4A5 ITH5 LGALS3 PF4
FBLN2 COL4A4 ADAM10 LGALS8 FGF2
LAMA2 COL5A2 ADAMTSL1 SEMA3C INSL5
TNXB COL7A1 PLG CLEC14A ANGPTL2

POSTN COL11A1 PZP ANXA9 S100A9
THBS1 COL4A1 CTSK ANXA1
FBN2 COL5A1 ADAMTSL5 PLXDC2

FBLN1 COL5A3 SERPINA1A SFTPA1
LAMB3 COL14A1 SERPINA3K CSPG4
LAMA4 COL16A1 PLOD1 SFTPD
AGRN COL18A1

FGB COL15A1
LAMC2

VWF
HMCN1
LTBP4

2.3. Decellularised ECMs Protect WHCO1 Cancer Cells from the Effect of Drugs

We sought to study the proliferation and migration of WHCO1 cancer cells on the underlying
decellularised ECMs and to determine how the presence of the ECMs affect the response of WHCO1
cancer cells to chemotherapeutic drugs. Many drugs are used in ESCC chemotherapies, including
cisplatin, 5-flurouracil and epirubicin. Cells were treated with 0.1% DMSO (control), cisplatin
(MW 300.05; CAS 15663-27-1; Sigma Aldrich, Steinheim, Germany), 5-fluorouracil (MW 130.08 g/mol;
CAS 51-21-8; Sigma Aldrich, Steinheim, Germany), epirubicin (MW 579.98 g/mol; CAS 56390-09-1;
Sigma Aldrich, Steinheim, Germany) at the indicated concentrations for different time periods.
Drugs concentrations used were lower than half of reported and determined IC50 values, as determined
by the MTT assay, as we were interested in studying the gene response of the WHCO1 cells to these
chemotherapeutic drugs and not interested in actually killing the cells. IC50 values were measured
in WHCO1 cancer cells over 24 h and were determined as the concentration of drugs needed to kill
50% of cells. As shown in Table 3, IC50 values for drugs were higher when cancer cells were plated
on ECMs compared to plastic. No major morphological changes were observed between WHCO1
cancer cells plated on plastic and those plated on decellularised ECMs, with or without drugs (data
not shown).

Table 3. Cytotoxicity quantification. Oesophageal cancer cells, WHCO1, were treated with drugs as
indicated and the effect was evaluated by the MTT assay. The IC50 was determined as the concentration
of drug needed to kill 50% of cells over 24 h treatment. Values of the IC50 are shown as mean ± S.D. of
three independent determinations.

Drug Plastic tfd-ECM cd-ECM combi-ECM

Cisplatin (IC50 ± S.D. (µM)) 18.5 ± 6.4 23.8 ± 3.2 22.4 ± 4.5 25.7 ± 3.2
5-FU (IC50 ± S.D. (µM)) 14.1 ± 3.8 19.1 ± 2.6 20.6 ± 2.2 21.9 ± 1.8

Epirubicin (IC50 ± S.D. (µM)) 12.8 ± 2.3 17.3 ± 4.5 18.5 ± 1.9 27.8 ± 5.3

With no drug present, there were no significant differences in cell proliferation between WHCO1
cells on plastic and those on decellularised ECMs (Figure 3A). Cisplatin caused a significant decrease
in WHCO1 cell proliferation on plastic compared to those on the decellularised ECMs (Figure 3B).
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The same trend is observed in WHCO1 cell proliferation in the presence of 5-fluorouracil and epirubicin
(Figure 3C,D). The presence of the decellularised ECMs appears to protect WHCO1 cells and reduce
the effect of drugs on WHCO1 cancer cell growth. The effect of drugs and ECMs on WHCO1 cancer
cell doubling time is shown in Table 4. For the no-drug experiment, the doubling times are similar
for both plastic and ECMs, whilst the doubling times for drug and ECMs are lower than those for
plastic and drugs (Table 4). Immunoblot analysis substantiated these results with Ki67 and PCNA
protein levels mostly upregulated in the presence of decellularised ECMs and drugs compared to
plastic dishes and drugs (Figure 3A–D; Supplemental Table S1). Thus the ECMs reduce the effect of
the chemotherapeutic drugs on WHCO1 cancer cell proliferation.

Table 4. Average esophageal cancer cells, WHCO1, population doubling times were calculated
as described in Materials and Methods. Doubling times are presented as mean ± S.D of three
independent determinations.

Plastic tfd-ECM cd-ECM combi-ECM

No Drug (hours) 33.6 ± 3.3 38.6 ± 5.7 37.1 ± 4.2 36.8 ± 4.5
Cisplatin (hours) 55.3 ± 9.4 39.5 ± 4.3 36.9 ± 3.8 36.7 ± 5.8

5-FU (hours) 56.2 ± 5.1 39.5 ± 3.6 32.6 ± 4.6 31.9 ± 3.8
Epirubicin (hours) 58.3 ± 2.5 34.7 ± 3.5 30.7 ± 4.9 32.1 ± 3.8

Figure 3. Effect of decellularised ECMs on WHCO1 cancer cell proliferation in response to cisplatin,
5-fluorouracil and epirubicin. WHCO1 cancer cells were cultured on plastic and on ECMs and treated
with drugs as indicated for 24 h. Cell counting was done using the Countess Cell Counter. Total proteins
(50 µg) were loaded on SDS PAGE gels and immunoblot analysis performed. (A) Effect of decellularised
ECMs on WHCO1 cancer cell proliferation in the absence of drugs. (B) Effect of decellularised ECMs
on WHCO1 cancer cell proliferation in response to cisplatin. (C) Effect of decellularised ECMs on
WHCO1 cancer cell proliferation in response to 5-fluorouracil (D) Effect of decellularised ECMs on
WHCO1 cancer cell proliferation in response to epirubicin. Data show cell counting (left panel) and
immunoblot analysis (right panel). * p < 0.05.

2.4. Decellularised ECMs Reduce Drug-Induced Cell Cycle Arrest and Apoptosis in WHCO1 Cancer Cells

An assessment of the influence of decellularised ECMs on the effect of chemotherapeutic drugs
on WHCO1 cell cycle progression and apoptosis by flow cytometry was done. With no drug present,
our data indicate that the cell cycle profiles between cells on the ECMs compared to cells on plastic
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are the same (Figure 4A; Supplemental Table S2). Addition of cisplatin caused a G2 phase cell cycle
arrest in WHCO1 cells on plastic which was abrogated by the culture of cells on decellularised
ECM, with cd-ECM and combi-ECM reducing drug effect more than the tfd-ECM (Figure 4A;
Supplemental Table S2). Addition of 5-flurouracil resulted in G1 phase cell cycle arrest and this effect
is reduced by the presence of decellularised ECMs with WHCO1 cells cultured on combi-ECM having
similar profiles as cells cultured on plastic with no drug present (Figure 4A; Supplemental Table S2).
Epirubicin induced a G2 phase cell cycle arrest in WHCO1 cells on plastic and this is slightly abrogated
by the presence of combi-ECM (Figure 4A; Supplemental Table S2). Immunoblot analysis of cell
cycle-associated proteins show increased cyclin D1 protein levels in the presence of drugs in WHCO1
cells cultured on ECMs compared to those on plastic (Figure 4B; Supplemental Table S3).

Figure 4. Decellularised ECMs abrogate drug-induced cell cycle arrest in WHCO1 cancer cells.
(A) Effect of decellularised ECMs on WHCO1 cancer cell cycle progression in the presence of cisplatin,
5-fluorouracil and epirubicin. (B) Effect of decellularised ECMs on Cyclin D1 and p21 protein levels in
WHCO1 cancer cells in response to the presence of cisplatin, 5-fluorouracil and epirubicin.

To determine whether the observed protective effect of the decellularised ECMs on WHCO1
cells was due to inhibition of apoptosis, cellular apoptosis was evaluated by Annexin V/Propidium
Iodide double staining followed by flow cytometry. Culture of WHCO1 cells on decellularised ECMs
reduced the number of apoptotic cells in the presence of drugs compared to cells grown on plastic
(Figure 5A, shown in Q2 + Q3). Immunoblot analysis of anti-apoptotic proteins such as Bcl-2 and
Bcl-xL showed an upregulation of these proteins in the presence of decellularised ECMs (Figure 5B;
Supplemental Table S4). Culture of WHCO1 cells on decellularised ECMs in the presence of drugs
resulted in more colonies being formed than those cultured on plastic in the presence of drugs
(Figure 6A,B). A key subpopulation of tumor cells that has been found to play important roles in
chemoresistance is the cancer stem cell population. We isolated cancer stem cell-like cells from cancer
cells via the side population technique (Supplemental Figure S4A). We found that isolated CSC-like
cells formed more colonies on ECMs and when challenged with drugs than normal cancer cells.
(Supplemental Figure S4A–D). Thus, decellularised ECMs appear pro-tumorigenic.
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Figure 5. Decellularised ECMs reduce drug-induced apoptosis in WHCO1 cancer cells. (A) Effect of
decellularised ECMs on drug-induced apoptosis in WHCO1 cancer cells (% apoptotic cells shown in
quadrant Q2 and Q3). (B) Effect of decellularised ECMs on Bcl-2 and Bcl-xL protein levels in WHCO1
cancer cells in response to the presence of cisplatin, 5-fluorouracil and epirubicin.

Figure 6. Decellularised ECMs reduce the effect of drugs on WHCO1 cancer cell colony formation.
(A) Representative images of colony formation assay that was performed using WHCO1 cells cultured
on either plastic or ECMs in the presence of cisplatin, 5-fluorouracil or epirubicin. (B) Quantification of
colonies formed when WHCO1 cells were cultured either on plastic or ECMs in the presence of cisplatin,
5-flurouracil or epirubicin. * p < 0.05.
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2.5. Decellularised ECMs Upregulates Several Survival Pathways in WHCO1 Cancer Cells

Cell surface adhesion receptors mediate most cancer cell-ECM interactions. These adhesion
molecules are also responsible for transmitting extracellular initiated signaling to the cell. The levels
of integrin α2, α3, α11 and β1 were assessed using immunoblot analysis. Decellularised ECMs and
chemotherapeutic drugs caused differential integrin gene expression in WHCO1 cells (Figure 7A–D;
Supplemental Table S5) with integrin α2 and α3 mostly upregulated compared to those on plastic
and treated with drugs. These integrins are known to bind to several ECM proteins such as laminin,
fibronectin, type I collagen, vitronectin and tenascin. The ECM is known to influence cellular behaviour
through adhesion signaling. In addition, signal transduction pathways can be triggered by integrins
resulting in the activation of several pathways affecting cancer cell proliferation, gene expression and
invasion. To unravel the signaling pathways activated in cancer cells cultured on the ECMs and in
response to the presence of drugs, we analysed the MEK-ERK and PI3K signaling pathways. Our data
showed decellularised ECM-mediated upregulation of the MEK-ERK signaling pathway irrespective of
the presence of drugs (Figure 8A–D; Supplemental Table S6). The PI3K-Akt pathway appears activated
only in the presence of drugs. This is expected as PI3K-Akt signaling is one of the major survival
pathways, likely activated as cancer cells respond to the presence of drugs.

Figure 7. Increased integrin expression in WHCO1 cancer cells cultured on ECMs in comparison with
those cultured on plastic. (A) Effect of decellularised ECMs on integrin α2, α3, α11 and β1 protein
expression in the absence of drugs. (B) Effect of decellularised ECMs on integrin α2, α3, α11 and β1
protein expression in the presence of cisplatin. (C) Effect of decellularised ECMs on integrin α2, α3,
α11 and β1 protein expression in the presence of 5-fluorouracil. (D) Effect of decellularised ECMs on
integrin α2, α3, α11 and β1 protein expression in the presence of epirubicin GAPDH which was used
as a loading control. Experiments were performed in triplicates and repeated twice.
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Figure 8. Decellularised ECMs increase both MEK-ERK and PI3K-Akt signaling activation
(A) Influence of decellularised ECMs on MEK-ERK and PI3K-Akt signaling activation in the absence
of drugs. (B) Influence of decellularised ECMs on MEK-ERK and PI3K-Akt signaling activation in
the presence of cisplatin. (C) Influence of decellularised ECMs on MEK-ERK and PI3K-Akt signaling
activation in the presence of 5-fluorouracil. (D) Influence of decellularised ECMs on MEK-ERK and
PI3K-Akt signaling activation in the presence of epirubicin.

2.6. Type I Collagen and Fibronectin Play Key Roles in WHCO1 Cancer Cell Survival and Migration In Vitro

Several studies have shown that ECM proteins are involved in the survival, migratory behaviour
and the invasiveness of cancer cells. Chief among these ECM proteins are type I collagen
and fibronectin. This study show that type I collagen and fibronectin are major decellularised ECM
proteins and are upregulated in ESCC patient samples. Our immunohistochemical staining of ESCC
samples, qRT-PCR and mass spectrometric analysis of ECMs unequivocally showed the presence of
high levels of type I collagen and fibronectin. To study the role that ECM proteins play in cancer cell
migration, we performed transient type I collagen and fibronectin knockdowns in transformed CT1
fibroblasts and WHCO1 cancer cells during ECM synthesis using two siRNA for each ECM protein.
Both type I collagen and fibronectin knockdown through the use of siRNA showed decreased levels of
both collagen and fibronectin in the media and cell lysates compared to control in transformed CT1
fibroblasts and WHCO1 cells (Supplemental Figure S5A,B).

Type I collagen and fibronectin knockdown did not affect either fibroblasts or WHCO1 cell
proliferation and morphology (data not shown). Beside the use of siRNA, the absence of ascorbic
acid achieved the same knockdown of Type I collagen (data not shown). Drug-induced apoptosis is
higher in cells cultured on collagen- and fibronectin-deficient ECMs than on normal decellularised
ECMs (Figure 9A). Anti-apoptotic proteins such as Bcl-2 and Bcl-xL are downregulated in the absence
of type I collagen and fibronectin (Figure 9B; Supplemental Table S7). Knockdown of type I collagen
and fibronectin combined with challenging the cells with cisplatin resulted in less colony formation
compared to cells on normal ECMs (Supplemental Figure S5C). WHCO1 cells plated on normal ECMs
migrated further than those on plastic and those plated on collagen-deficient ECMs migrated slower
than those on normal ECMs (Supplemental Figure S6A,B). The addition of anti-α2 blocking antibody
in combination with type I collagen knockdown synergistically reduced WHCO1 cancer cell migration
on combinatorial-ECM (Supplemental Figure S6C). Knockdown of fibronectin reduced migration of
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WHCO1 cells by around 30–50% (data not shown). This study suggests that ECM proteins such as
collagen and fibronectin are mediators of cancer cell survival and migration. These results, together
with the observation that WHCO1 cancer cells plated on decellularised ECMs express increased levels
of both fibronectin- and type I collagen-binding integrins (ITGα2, ITGα3, ITGα5 and ITGβ1), point
to the matrix as a possible therapeutic target for drugs to inhibit cancer cell growth and metastasis.
Collectively our data suggest that knocking down certain ECM proteins may be effective in suppressing
cancer development and enhancing chemotherapeutic effects.

Figure 9. Collagen and fibronectin knockdown increase cisplatin-induced apoptosis. (A) Effect
of collagen- and fibronectin-deficient ECMs on cisplatin-induced apoptosis in WHCO1 cancer
cells (percentage of apoptotic cells shown in quadrant Q2 and Q3). (B) Effect of collagen- and
fibronectin-deficient ECMs on Bcl-2 and Bcl-xL protein levels in the presence of cisplatin.

3. Discussion

It has now been established that the tumor microenvironment plays a huge role in
determining the initiation and progression of cancer [9,11,14,38,72,75–77,88,92,93]. The tumor
microenvironment is a dynamic and ever-changing environment comprised of many components
including cancer cells, fibroblasts, immune cells, endothelial cells and the ECM [38,46,47,94–98].
Cancer-associated fibroblasts or tumor-associated fibroblasts (CAFs or TAFs) are the major cellular
component of this environment and they play a role in modulating cancer progression [99–102].
Accumulating evidence suggests that CAFs play a crucial role in tumor development and metastasis
by synthesising ECM proteins. Targeting CAFs is hindered by the fact that CAFs are heterogeneous,
with different subpopulations having specific phenotypes and roles during tumor development and
metastasis [103,104]. Thus, targeting CAFs is challenging. Targeting the ECM proteins synthesised
by resident cells within the tumor microenvironment might be an effective method to control cancer
development, chemoresistance and metastasis. However, to date, few studies have included important
components of the tumor microenvironment such as the ECM in their experimental setup to evaluate
the interactions between cancer cells and the tumor microenvironment ECM.

In our bid to identify potential therapeutic targets within the ESCC tumor microenvironment,
we evaluated how ECM components would affect the response of WHCO1 esophageal cancer cells
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to drugs. The first key finding of this study is that ECM proteins such as collagen and fibronectin play
important roles in esophageal cancer cell survival, migration and chemoresistance. Importantly, these
two ECM proteins are upregulated in esophageal tumor compared to normal tissue. The increased
expression of ECM proteins including collagens, fibronectin and laminins in tumor biopsies is
in contrast to the decreased expression of these ECM proteins by esophageal cancer cell lines.
Thus, the increased expression of ECM proteins in tumor biopsies could be from both cancer cells
and stromal cells known to be present in tumors. Several studies have shown that cancer-associated
fibroblasts and macrophages synthesise increased levels of ECM proteins and these ECM proteins
are associated with poor prognosis and chemoresistance in several cancer types [18,79,105–112].
Our data is in agreement with these recent studies illustrating the important role the ECM plays
in the tumor microenvironment and in chemoresistance. Indeed, ECM proteins such as collagen
and fibronectin have been associated with cancer cell migration before [79,113–122]. Our data show
that knockdown of both collagen and fibronectin reduces esophageal cancer cell survival, migration
and chemoresistance. Our data also show that MMP2 and MMP9 play a huge role in the migration
of cancer cells. Several integrins were also found to be upregulated in tumor samples compared to
normal samples. These ECM proteins, among other proteins, are potential chemotherapeutic targets.
Several of these ECM proteins have been associated with survival pathways such as the MEK-ERK
and Akt [79,123–126]. We have to appreciate that tumors are real ecosystems harbouring several cell
types and non-cellular components such as the ECM. Our data suggest that the microenvironment is
a shelter for cancer cells and aid their resistance to chemotherapy. Thus, the microenvironment plays
a huge role in the development of chemoresistance.

Our analysis of the ECM proteins and integrins present in the stroma of the ESCC advance
our understanding of the ESCC stroma and will allow future studies to focus on these proteins.
The development of ESCC involves changes in the type and origin of the ECM present. Through the
use of these cell-derived 3D ECMs we show that differences in the composition of different cell-derived
ECMs and how this affects cancer cell response to chemotherapeutic drugs. Many features of the in vivo
tumor microenvironments have been studied with many 3D tumor models having been made [127–133].
These models have attempted to include ECM proteins, cancer and stromal cells with the relevant
biochemical and biophysical cues, into one system [2,3,90,93,134,135]. Many studies have been undertaken
and have decisively shown that cells such as fibroblasts and mesenchymal stem cells are important
contributors to cancer cell growth and possibly chemotherapeutic resistance [1,7,13,20,88,136,137]. Very few
studies however have focused on the role the extracellular matrix play in chemotherapeutic resistance.
The development of anti-stromal treatment, especially those targeting the stable ECM, which can be used
together with chemotherapy, is a major advance in the treatment of several cancers.

3D ECM models have advanced our understanding of how cells interact with each other
and with the ECM during tumor growth and invasion. These models have shown that cells in
3D environments show different cellular morphology and gene expression compared to those in
2D environments [9,20,88,90,93,134]. Cancer cells on 2D surfaces are normally exposed to uniform
environments and concentrations of chemotherapeutic drugs whereas cells in 3D environments
are exposed to gradients of biological signals and drug concentrations. Anti-cancer drugs added
to cancer cells on 2D surfaces reach cancer cells without encountering physical barriers whereas
cancer cells in vivo are surrounded by many tumor components and this restricts the movement of
cancer drugs throughout the tumor. Earlier studies have shown that MDA MB 231 cells in 3D silk
fibroin scaffolds require a higher drug dosage compared with the same cells on 2D cultures [138].
Ovarian cancer cells also show increased chemoresistance when grown as 3D spheroids compared
to 2D culture [139–142]. It has now been established that 3D scaffolds generally better imitate the
in vivo tumor microenvironment necessary for modelling cancer cell-ECM interactions and also
for cancer cell-drug screening assays [136,143–147]. The interaction between cancer cells and their
surrounding microenvironment plays a significant role in the acquisition of drug resistance in
many cancers. The present study shows that besides physically inhibiting drugs from accessing
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cancer cells, the decellularised ECMs can upregulate anti-apoptotic genes such as Bcl-2 and Bcl-xL.
The upregulation of these genes could be an adaptation mechanism employed by cancer cells in
new environments. Thus, the decellularised ECMs influence cellular biological processes.

Our study utilised natural decellularised ECMs instead of purified ECM proteins in a bid to better
mimic the in vivo tumor microenvironment [148]. In drug discovery, decellularization of cell-derived
ECMs and tissues has been used as an important tool to study the interactions between the ECM and
cells [18,149,150]. Done properly, decellularization can be used to successfully preserve the biochemical
composition of the ECM and native tissues. By combining both cancer cells and fibroblasts we hope
this will best represent the ECM milieu present in the tumor microenvironment. In addition, we also
evaluated how the different ECMs affect the WHCO1 esophageal cancer cells response to commonly
used drugs cisplatin, 5-fluorouracil and epirubicin. To profile early transcriptional gene expression
changes, less than half of the reported IC50 concentrations of the drugs were used. Cisplatin is
known to interfere with DNA replication, which kills mostly cancer cells as they are fast growing cells.
Cisplatin-induced DNA damage activates several cellular processes culminating in the activation of
cell cycle checkpoints. This results in the induction of G2/M cell cycle arrest. Our data is in agreement
with literature in showing that cisplatin induces G2/M cell cycle arrest. 5-Fluorouracil is known to
mediate apoptosis and induce G1/S cell cycle phase arrest. Again, our data is in agreement with this.
Epirubicin acts by intercalating DNA strands and has been reported to cause both G1 and G2/M cell
cycle arrest. Several reports including those using the same concentration of epirubicin as we did in
this study, have shown that epirubicin induces G1 and G2/M cell cycle arrest. Our data show that
epirubicin induces G2/M cell cycle arrest in WHCO1 cells. That the tumor microenvironment and
the ECM are as important as the genotype of cells is becoming clearer with recent data showing the
importance of the ECM in breast cancers [151–157]. The three ECMs used in this study were observed
to be able to promote or induce resistance to chemotherapeutic drugs in esophageal cancer cell lines.
It is possible that in vivo many components of the tumor microenvironment act synergistically to
induce resistance to drugs and enable cancer cells to growth. That the microenvironment plays
a huge role in the development of cancer might explain why certain individuals are cancer-free
yet harbour oncogenic mutations. The dynamics of the relationship between cancer cells and their
microenvironment will determine whether oncogenic genes and mutations will exert their function.

It has also been shown that integrin signaling driven by cell-matrix adhesion play a huge role in the
development of resistance against chemotherapy-induced apoptosis and that a combination of integrin
signaling inhibition and chemotherapy can lead to an improvement in cytotoxic response [158–169].
It has been shown that the interaction between ECM proteins and integrins can enhance the resistance
of multiple myeloma and small cell lung cancer cells to chemotherapy [170,171]. Blocking of integrins
such as β1 has been shown to sensitise breast cancer cells to treatment [172–179]. Binding of integrins
to the ECM has been show to influence cell cycle progression. Several studies have shown that the
binding of integrins to the ECM influence DNA repair mechanisms, with binding causing increased
DNA damage repair, leading to a stable genome and cellular survival [180–182]. Previous studies have
shown that fibroblasts-secreted type I collagen, often upregulated in tumor microenvironments, can
decrease chemotherapeutic drug uptake in cancer cells thus affecting the response of the cancer
cells to the drugs [183,184]. Upregulation of fibronectin was found to increase human ovarian
cancer cell migration and invasion [185–187]. Several studies have shown that the presence of
fibronectin promotes therapeutic reagents resistance in vitro [158,159,188,189]. Indeed, these studies
have shown the mechanisms through which fibronectin influence carcinogenesis and chemoresistance.
The source of these ECM proteins could be both tumor cells and stromal cells present within the
tumor microenvironment. Small peptides that directly target the biosynthesis of ECM proteins such as
fibronectin have been developed [190]. When cancer cells adhere to certain ECM proteins it has been
shown they acquire chemoresistance through activation of certain survival pathways [191–194].

Our data show that the MEK-ERK and the PI3K/Akt pathways were significantly upregulated
when WHCO1 cells were cultured on the different ECMs. In the presence of cisplatin, however,
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the MEK-ERK signaling pathway remained significantly upregulated in WHCO1 cells plated on
all ECMs compared to plastic. In the presence of 5-flurouracil and epirubicin, both MEK-ERK
and PI3K/Akt remained upregulated in the WHCO1 plated on the ECMs compared to plastic.
Many signaling pathways such as PI3K/Akt, MEK-ERK, and the Rho/ROCK pathways have been
shown to be activated when cancer cells bind to the ECM [191,195–198]. The activation of these
signaling pathways could be a result of growth factors tethered on the ECMs. In breast cancer it has
been shown that resistance to 5-flurouracil, epirubicin and cyclophosphamide is largely dependent on
the protein composition of the stromal ECM [199]. Several cell cycle-associated proteins such as cyclin
D1 are known to be induced through the activation of the MEK-ERK and PI3K-Raf signaling pathways.
The activation of these Ras-mediated pathways induce the transcription of proteins such as cyclin
D1 and protect it from proteolytic degradation and also export from the nucleus. Our data show the
activation of the MEK-ERK and PI3K-Raf signaling pathways in the presence of ECMs. Thus, cyclin
D1 might be protected from degradation by the same pathways, resulting in its presence through
the G1/S/G2 cell cycle phases. The consequential effect being the protection of WHCO1 cancer cells
plated on ECMs from drug-induced apoptosis as opposed to those on plastic.

Therapies that target the ECM provide a promising approach to overcome chemoresistance
either by preventing ECM-conferred chemoresistance or by altering the ECM such that current
therapies can overcome physical treatment limits [200–204]. It has been shown that the dense ECM can
inhibit therapeutic drug penetration, diffusion and transport, thus the ECM acts as a barrier to drug
delivery [205–211]. A key finding of this study is that treatments that inhibit some ECM components
production such as fibronectin and type I collagen can help to achieve better drug delivery. In our
study, the ECM is clearly acting as a limiting factor on drug effectiveness and we suggest combination
therapy for cancer patients with one drug targeting the ECM components to aid in the diffusion of
cancer drugs. Future studies should use larger patient cohorts to strengthen the results. In conclusion,
we have advanced our understanding of cancer cell-ECM interaction through identifying that both
type I collagen and fibronectin are involved in the proliferation and migration of esophageal cancer
cells and that knocking down these two proteins can act in synergy with chemotherapeutic drugs in
reducing the growth and migration of cancer cells.

4. Materials and Methods

4.1. Clinical Tissue Collection

Twenty-one ESCC biopsy samples were collected over a period of 3 years at Groote Schuur
Hospital, Cape Town, South Africa. All patients attended the oncology clinic of Groote Schuur Hospital.
The biopsy samples were confirmed to be squamous cell carcinomas by a pathologist. Histological
parameters were determined according to the World Health Organisation criteria. Each ESCC biopsy
sample was taken together with corresponding adjacent normal tissue sample. Ethical approval
was obtained from the University of Cape Town/Groote Schuur Hospital Human Research Ethics
Committee (University of Cape Town, South Africa) and informed consent was obtained from all
patients according to institutional guidelines. All procedures were done according to the Declaration
of Helsinki guidelines. Patient biopsy samples in RNAlater solution (Qiagen, Hilden, Germany)
were stored at −80 ◦C. RNA extraction was done as described elsewhere in the manuscript.
Clinicopathological characteristics of the ESCC patients are shown in Table 1. The inclusion criteria
used for tumor samples required tumor samples to contain at least 50% tumor cells.

4.2. Esophageal Cancer Cell Lines and Treatments

WHCO1, WHCO5 and WHCO6 cell lines were derived from biopsies of ESCC from South African
patients [212]. KYSE180, KYSE450 and KYSE520 cell lines were derived from biopsies of ESCC from
Japanese patients [213]. CT-1 fibroblasts are transformed fibroblasts obtained after WI38 fibroblasts
are γ-radiated [91]. WI38 fibroblasts were obtained from American Type Culture Collection (USA).
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FG0, a normal skin fibroblasts were from the University of Cape Town. Cells were cultured in vitro at
37 ◦C in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% (v/v) fetal bovine
serum (FBS), 100 U/mL penicillin and 100 µg/mL streptomycin (complete media). All cells were
routinely tested for mycoplasma contamination. Preliminary data showed that the use of drug IC50:
5-fluorouracil (14.1 ± 3.8 µM), cisplatin (18.5 ± 6.4 µM) and epirubicin (12.8 ± 2.3 µM) would kill
a considerable amount of the cells. The IC50 was determined as the concentration of drug needed to kill
50% of cells over 24 h. Since we were interested in investigating early transcriptional gene expression
leading up to apoptosis and the response of cancer cells to chemotherapeutic drugs, we treated the
cells with less than half of the reported IC50. WHCO1, WHCO5, WHCO6, KYSE180, KYSE 450 and
KYSE 520 cells were grown overnight on plastic and on ECMs at the specified density and treated with
the following concentrations of drugs: 3.5 µM 5-fluorouracil; 4.2 µM cisplatin, 2.5 µM Epirubicin and
0.1% DMSO (control) [214].

4.3. Preparation of Decellularised ECMs and ECM Coatings

Decellularised ECMs were prepared from transformed CT-1 fibroblasts and WHCO1 esophageal
cancer cells as previously described [20,87,90,215]. All cells were cultured at 37 ◦C in complete media.
Ascorbic acid was added at a final concentration of 50 µg/mL every alternate day. Cells were
maintained up to 4 days post confluence. Decellularization was achieved by the addition of 20 mM
ammonium hydroxide for 1 min. The ECMs were incubated for an hour with DNAse I (10 U/mL).
The resulting ECMs were washed three times with sterile PBS. Sterilisation was achieved by exposing
the dishes to UV light. Dishes coated with decellularised ECMs were used immediately or stored
at 4 ◦C. Transformed CT1 fibroblasts produced transformed fibroblast-derived ECM (tfd-ECM),
WHCO1 cancer cells produced cancer-derived ECM (cd-ECM) and co-cultured transformed CT1
fibroblasts and WHCO1 cancer cells produced combinatorial ECM (combi-ECM). Decellularised ECMs
without fibronectin (ECM-FN) and without Type I collagen (ECM-COL) were produced by transfecting
transformed CT-1 fibroblasts and WHCO1 cells with either fibronectin siRNA or COL1A1 siRNA
during ECM synthesis. To maintain the knockdown of type I collagen and fibronectin during ECM
synthesis, subsequent transfection of cells with fibronectin siRNA and COL1A1 siRNA was done after
3 days. To characterise the ECMs, 5 M Guanidine-HCL in buffer was added to the ECM solution and
the resulting protein was run on a SDS-PAGE for an hour. Total protein was stained with Ponceau stain
and Coomassie stain. Human fibronectin and type I collagen were also loaded to serve as markers.

4.4. Cell Cytotoxicity Assay

Cell growth curves or proliferation rates after plating WHCO1 on decellularised ECMs and/or
treatment with cisplatin, 5-fluro-uracil and epirubicin drugs were determined using the Countess
Counter (Thermo Fisher Scientific, Waltham, MA, USA). WHCO1 cells (5 × 105) were plated on
the decellularised ECMs and/or treated with the drugs for the indicated time periods. Cells were
trypsinised and centrifuged at 1800 rpm for 5 min. Cells were suspended in 2 mL complete media
and 10 µL was mixed with Trypan Blue. In addition, WHCO1 cells were plated in 96-well plates with
or without the ECMs and allowed to grow for about 48–72 h in either drug-free medium or under
treatment with increasing concentrations of cisplatin, 5-fluro-uracil and epirubicin drugs. The IC50

for each cell population was measured using the MTT assay. Briefly, WHCO1 cells were plated
in 96-well plates with or without ECMs overnight. Drugs were added and incubation continued
for 24 h. The MTT reagent was added and the cells were shaken. Colour changes were read on
a microplate reader.

WHCO1 cancer cell doubling time (PD) is the time it takes the population of WHCO1 cells to
double and was calculated based on the following formula:

PD = t × ln2/ln (FCC/SCC)
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where t equals time in hours, ln represents the natural logarithm, FCC represents the final WHCO1
cancer cell number, and SCC represents the starting WHCO1 cancer cell number.

4.5. Quantitative Real Time RT-PCR

Fresh ESCC biopsy specimens were cut into pieces for RNA extraction using the Qiazol reagent
(BioRad, Munich, Germany) and the quality of the RNA was checked by electrophoresis on a 2%
agarose gel. For in vitro experiments, WHCO1 cells were treated as described above and RNA
was extracted using Qiazol reagent based on the procedure of Chomczynski and Sacchi [216].
Total RNA (100–500 ng) was used to synthesise complementary DNA (cDNA) using Improm II
reverse transcriptase (Promega, Madison, WI, USA). cDNA from triplicate samples were analyzed
using qRT-PCR reactions and monitored using a Light Cycler 480 II machine. Thermocycling was
performed under standard conditions with an initial denaturation step of 5 min at 95 ◦C, 30–40
cycles of denaturation, annealing and extension at 72 ◦C. Primers used in the study are listed in
Supplemental Table S8. The 2−∆∆Ct method was used to compute the relative gene expression for each
sample by comparing to control cells [217]. Differences in gene expression for biopsy samples are
shown as fold changes in tumor tissues (T) compared to the corresponding normal tissues (N) (given
as 1, red line) from the same patient. GAPDH was used as a normaliser for both biopsy specimens
and in vitro experiments. The Mann-Whitney test (2-tailed, non-parametric) was used to compare
significance differences in gene expression between tumor and normal tissues. p value was set at
p < 0.05 to be considered statistically significant.

4.6. Immunoblot Analysis

Immunoblot analysis was done according to standard protocols. Cell lysates were obtained
by lysing cells with RIPA buffer in the presence of protease inhibitor cocktail. Total protein
concentration was determined using the BCA kit and BSA as a standard. Cell lysates (50 µg)
were separated by electrophoresis on a 10% polyacrylamide/SDS gels under reducing conditions
(50 mM β-mercaptoethanol). Proteins were transferred to a nitrocellulose membranes for 1 h
at 4 ◦C. Membranes were blocked with 5% fat-free milk in Tris Buffered Saline (TBS) containing
Tween-20. The membranes were incubated overnight at 4 ◦C with the following primary antibodies:
anti-Ki67 antibody, anti-PCNA antibody, anti-Cyclin D1 antibody, anti-p-ERK1/2 (Thr202/Tyr204),
anti-ERK2, anti-Akt, anti-p-Akt, anti-p21, anti-p53, anti-Bcl-2, anti-Bcl-xL antibody, anti-MMP-2
antibody, anti-MMP-9 antibody, anti-ITGα2 antibody, anti-type I collagen antibody, anti-fibronectin
antibody, anti- ITGα3 antibody, anti- ITGα11 antibody, anti-ITGβ1 and anti-GAPDH antibody.
Three washes were done using TBS-Tween buffer and then the membranes were incubated with
secondary antibodies conjugated to horse radish peroxidase (HRP). Detection was done using Lumiglo
substrate (KPL, Gaithersburg, MD, USA). All experiments were done in triplicates and repeated at
least twice.

4.7. Cell Cycle and Colony Formation Assay

WHCO1 cancer cells (5 × 105) were cultured on plastic and on decellularised ECMs and treated
with drugs for the indicated incubation times. Cells were then dissociated from culture plates using
trypsin-EDTA and processed for flow cytometry analysis. Cells were washed twice with cold PBS and
fixed with 70% ethanol for 30 min at 4 ◦C. Washing was done twice with PBS and RNase A (10 µg/mL)
was also added for 3 h at 4 ◦C. Cells were stained with propidium iodide solution (1 mg/mL) and
analyzed with a FACScan cell sorter (BD Biosciences, Franklin Lakes, NJ, USA). Ten-thousand cells
were collected and the cell cycle profiles were calculated using the Cellquest Software. For colony
formation, WHCO1 cells were plated on plastic and on decellularised ECMs in 6-well plates at 500 cells
per well and incubated for 10 days. Methanol (100%) was used to fix the cells and cells were stained
with 0.5% crystal violet. Colonies were counted using UVP software (Upland, CA, USA) and the
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numbers were plotted on a graph. Images were taken using a camera. The experiments were performed
at least three times.

4.8. Annexin V/Propidium Iodide Assay for Apoptosis

WHCO1 cell apoptosis was evaluated using double staining with Annexin V conjugated
to Fluorescein isothiocyanate (FITC) and Propidium Iodide (PI). After incubation, cells were
washed in PBS from each treatment setup and the Annexin binding buffer was used
for re-suspension. Cells were stained with Annexin V conjugated to FITC and PI following the
manufacturer’s instructions. Annexin binding buffer was used to wash cells and resuspension
was done in 4% paraformaldehyde (PFA). Cells were incubated for 15 min at 25 ◦C in the dark.
Flow cytometric analysis was done using a Beckman Coulter Flow Cytometer (Beckman Coulter,
Life Sciences, Indianapolis, IN, USA). Data acquisition (2 × 104 events per treatment condition) was
performed using the Cellquest software (Version 5.1, Becton Dickinson, Franklin Lakes, NJ, USA).

4.9. siRNA Transfection Assay

Short interfering RNAs (siRNAs) were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). siRNAs were dissolved in transfection diluent according to the
manufacturer’s protocols. Transformed CT1 fibroblasts and WHCO1 cancer cells were transfected
with COL1A1 and Fibronectin siRNAs using Transfectin reagent (BioRad, Hercules, CA, USA) and
ECM synthesis continued for the indicated period. To maintain knockdown efficiency, subsequent
transfections were carried out every 3 days for the duration of the ECM synthesis. In a separate
experiment, type I collagen knockdown was achieved by removing ascorbic acid during ECM synthesis
with a similar result compared to the use of COL1A1 siRNA. Cells were cultured in 6-well plates with
or without the addition of ascorbic acid and ECM synthesis was continued for the duration indicated
above [218]. Confirmation of type I collagen and fibronectin knockdowns was done using immunoblot
and SDS PAGE analysis.

4.10. Immunofluorescence

ECMs were synthesised on glass coverslips as described before. Cells were then plated
on the ECM for the duration indicated elsewhere. Fixing of the cells was achieved using 3%
paraformaldehyde solution. Permeabilisation of the cells was done using 0.1% Triton X-100
(Sigma Aldrich Chemie, Steinheim, Germany) in PBS. Blocking of cells was done using 1% BSA
for 1 h at room temperature and then incubated with various primary antibodies overnight at 4 ◦C.
Cells were then washed three times with PBS. Secondary antibodies were conjugated to FITC and
Fluor 488. DAPI was added in order to visualise the nucleus. Fluorescence was observed using a Zeiss
Inverted Microscope with a 20× objective. Acquisition of images was achieved using the CellSens
Imaging System (Olympus, Tokyo, Japan). Proteoglycan composition within the ECMs was detected
by staining the ECMs with 1% Alcian blue after preparation using a standard protocol. Briefly ECM
synthesis and preparation was done on coverslips. ECMs were incubated with 1% Alcian Blue solution
for 20 min and washed three times. Images were observed and photographed using a light microscope
(Olympus CKX41 with SC30 camera). Images were taken at 100× magnification.

4.11. Migration Assay

Confluent cells were trypsinised and neutralised by adding DMEM supplemented with 10% FCS
and Penicillin and streptomycin. Centrifugation was done at 1800 rpm for 5 min at 25 ◦C and cells
were resuspended in DMEM. The Countess Cell Counter was used for cell counting to give a final cell
density of 5000 cells per microliter. Cellular foci of 4 µL containing a total of 20,000 cells were added
to plastic dishes or to the ECMs. To prevent cell death due to evaporation of media, an extra 100 µL
of DMEM media was added to the cellular foci and incubation continued for 2 h. A further 3 mL of
DMEM with 10% FCS was then added and incubation continued for 24 h. In a separate experiment,
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cells were incubated with anti-α2 integrin blocking antibody for 30 min before plating. Images were
taken at 0 h and at 24 h with a microscope. Image J (version 1.52g, National Institutes of Health;
Bethesda, MD, USA) was then used to measure the area of migrating mass of cells. Migration on ECMs
was normalised to that on plastic dishes.

4.12. Immunohistochemistry

Formalin-fixed, paraffin-embedded whole sections of esophageal tumor and normal samples were
used to quantify type I collagen. Sections were of 4 µm thickness and standard histological analysis
was carried out. Paraffin slides were deparaffinised in xylene and rehydration was achieved through
the use of graded alcohols. Slides were heated in 0.01 M citrate buffer (pH 6.0) in a bath for 20 min
at 97 ◦C for antigen retrieval. Slides were allowed to cool and were rinsed in TBS; the endogenous
peroxidase was inactivated with 3% hydrogen peroxide. After protein block, incubation of slides
with a primary antibody against human type I collagen was done for 1 h. TBS was used to rinse
sections and incubation was done for 20 min with biotinylated secondary antibodies. Sections were
rinsed with TBS and incubated with streptavidin-HRP. Peroxidase reactivity was visualised using
a 3,3-diaminobenzidine (DAB). Counterstaining of sections was done with haematoxylin. Sections were
mounted and images were obtained using a light microscope. Whole tissue sections from tumor and
normal blocks were stained and compared by visual inspection. Results were evaluated independently
by two observers.

4.13. Mass Spectrometry

The proteomic profiles of the 3D ECMs were assessed using mass spectrometry. Mass spectrometry
analysis was performed on duplicate ECM samples. The samples were prepared by filter aided
sample preparation (FASP) according to Wisniewski et al. [219]. Reduced and alkylated protein
samples were tryptically digested at a 1:50 enzyme to sample ratio overnight for 16 h in a wet
chamber at 37 ◦C. For each sample, 10 µg aliquots of the resulting tryptic peptides were acidified
in 0.1% formic acid and desalted using in-house produced C18 stage tips. The samples were
dried in a vacuum concentrator, and reconstituted in 2% acetonitrile with 0.1% formic acid prior
to LC-MS/MS analysis. Samples were analysed on a Thermo Scientific Dionex Ultimate 3000 UHPLC
(Thermo Fisher Scientific, Waltham, MA, USA) coupled to a Thermo Scientific Q Exactive hybrid
quadrupole Orbitrap mass spectrometer. The samples were loaded onto a 2 cm Luna C18 100 µM
internal diameter fused silica pre-column, packed in-house, and then separated on a 40 cm Aeris
peptide C18 75 µM internal diameter analytical column, packed in-house. A total of 400 ng of each
sample was analysed on a 70 min gradient from 6–40% acetonitrile with a flow rate of 400 nL/min
at 40 ◦C. The nanoelectrospray voltage was set to 2.2 kV, and the capillary temperature was 320 ◦C.
The Q Exactive was operated in data-dependent mode, with full scan MS spectra (m/z 300–1750)
acquired in the Orbitrap analyser after accumulation to an AGC target of 3e6 or an injection time
of 250 ms at a resolution of 70,000. The 10 most intense peptide ions were sequentially isolated and
fragmented by HCD and acquired at a resolution of 17,500. Dynamic exclusion was enabled after
30s and for a repeat count of one. The raw files were processed using MaxQuant version 1.2.7.429
(Computational Systems Biochemistry, Martinsried, Germany) and the MS/MS spectra were searched
using the Andromeda search engine against the Uniprot human protein database. The initial maximal
allowed mass tolerance was set to 20 ppm for the first search and then to 4.5 ppm in the main search,
and 20 ppm for fragment ions. Enzyme specificity was set to trypsin with a maximum of two missed
cleavages. Carbamidomethylation of cysteine was set as a fixed modification, and oxidation of
methionine and protein N-terminal acetylation were selected as variable modifications. The minimum
peptide length was set to seven amino acids. Label-free protein quantification was performed using
the label-free quantification (LFQ) algorithm implemented in the MaxQuant software (version 1.1.1.25,
Computational Systems Biochemistry, Martinsried, Germany) with a 2 min window for matching
between runs and, a maximum 1% peptide and 1% protein false discovery rate. Protein intensity values
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were normalized automatically using the LFQ algorithm to identify differentially expressed proteins.
Bioinformation analyses of the data were performed using Perseus v.1.2.7.4 software. Reverse and
“only identified by site” entries were excluded. LFQ intensity values were log2 transformed, and the
dataset was filtered to contain only entries with two minimum valid values in at least one group.
Statistical significance was assessed using Student’s t-test to identify differentially expressed proteins
between the groups.

4.14. Statistical Analysis

Statistical analysis was performed using GraphPad Prism software. The Mann-Whitney test
(2-tailed, non-parametric) was used to compare significance differences in gene expression between
tumor and normal tissues. p value was set at p < 0.05 to be considered statistically significant.
Evaluation of statistical significance between control cells and cells plated on plastic or ECM/treated
with chemotherapeutic drugs was done using the paired Student’s t test. p value was set at p < 0.05
to be considered statistically significant. Correlation coefficients were determined using Pearson’s
correlation coefficient in Microsoft Excel. Pearson’s correlation coefficients were calculated to determine
a point estimate of the strength of the association between the different ECM preparations.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/19/10/
2861/s1.
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