SUPPLEMENTARY INFORMATION

Differential accumulation of anthocyanins in Dendrobium officinale stems with red and green peels

Zhenming Yu ${ }^{1,+}$, Yinyin Liao ${ }^{1,2,+,}$ Jaime A. Teixeira da Silva ${ }^{3}$, Ziyin Yang ${ }^{1,2}$, Jun Duan ${ }^{1,2, *}$
${ }^{1}$ Guangdong Provincial Key Laboratory of Applied Botany \& Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; zhenming311@scbg.ac.cn (Z.Y.); honey_yyliao@scbg.ac.cn (Y.L.); zyyang@scib.ac.cn (Z.Y.)
${ }^{2}$ University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
${ }^{3}$ P. O. Box 7, Miki-cho post office, Ikenobe 3011-2, Kagawa-ken, 761-0799, Japan; jaimetex@yahoo.com (J.T.)
† These authors contributed equally to this work.
* Correspondence: duanj@scib.ac.cn; Tel./Fax: +86-20-38072978

Materials and methods

1. Assessment of total flavonoids, anthocyanins and carotenoids in D. officinale stems

Total carotenoid content was determined according to previous reference [1,2]. Carotenoids were released from D. officinale stems $(2.0 \mathrm{~g})$ by cold 80% acetone, homogenized in the dark, and centrifuged at $10000 \times \mathrm{g}$ for 10 min . The resulting supernatant was spectrophotometrically assayed at 470, 646, and 663 nm with an UV-6000 spectrophotometer (Shanghai Metash Instruments Co., Shanghai, China). Total carotenoid content ($\mu \mathrm{g} / \mathrm{g}$) was quantified according to the following equations:
Chlorophyll $a=12.21 \times \mathrm{A}_{663 \mathrm{~nm}}-2.81 \times \mathrm{A}_{646 \mathrm{~nm}}$;
Chlorophyll $b=20.13 \times \mathrm{A}_{646 \mathrm{~mm}}-5.03 \times \mathrm{A}_{663 \mathrm{~mm}}$;
Carotenoids $=(1000 \times$ A 470 nm $-3.27 \times$ chlorophyll $a-104 \times$ chlorophyll $b) / 229$.

2. Compositional analysis of flavonoid and anthocyanin with UPLC-QTOF-MS

Compositional analysis used the reported protocol [3]. D. officinale green and red stems were pulverized into a fine powder with liquid nitrogen using a mortar and pestle. Powdered sample (1.0 g) was accurately weighed, exhaustively extracted by vortexing with 4 mL of 70% aqueous methanol (containing 0.1% formic acid) for 1 min, and followed by a 40 Hz ultrasonic extraction (SB-5200D, Ningbo Scientz Biotechnology Co., Ningbo, China) in ice-cold water for 30 min . The mixture was centrifuged at $10000 \times g$ for 10 min and the supernatant was subjected to UPLC-QTOF-MS analysis. "Extracts were analyzed at $40^{\circ} \mathrm{C}$ using the Waters ACQUITY UPLC System (Waters Corp., Milford, MA, USA) equipped with an ACQUITY UPLC HSS T3 column ($100 \AA, 2.1 \times 100$ $\mathrm{mm}, 1.8 \mu \mathrm{~m}$, Waters, Corp., USA)." Flavonoids were detected at 350 nm while anthocyanins were determined at 520 nm . Each flavonoid or anthocyanin was quantified based on absolute peak area. The mobile phase consisted of aqueous formic acid (0.1% in ultra-pure water, solvent A) and formic acid in acetonitrile (0.1%, v / v, solvent B). The initial condition was 90% solvent A and 10% solvent B. "The following linear gradient elution was performed: 0-12 min, 10-14 \% B; 12-17 min, 14-20 \% B; 17-25 min, 20-30 \% B; 25-25.1 min, 30-90 \% B; 25.1-30.1 min, 90% B." The flow rate and injection volume were set at $0.3 \mathrm{ml} / \mathrm{min}$ and $5 \mu \mathrm{l}$, respectively. Mass spectrometry was performed with a Xevo G2-XS QTOF (Waters MS Technologies, Manchester, UK) equipped with an electrospray ionization source and controlled by MassLynx software version 4.1 (Waters Corp., Milford, MA, USA). "Full MS scan was carried out in the range of $m / z 100-1500 \mathrm{Da}$ at a scan time of 0.5 s ." Cone voltage and capillary voltage were set at 40 V and 2500 V , respectively. De-solvation temperature and source temperature were $350^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, respectively. Nebulizer and de-solvation gas were nitrogen. The flow rates of cone and de-solvation gas were $50 \mathrm{~L} / \mathrm{h}$ and $650 \mathrm{~L} / \mathrm{h}$, respectively. "The low energy was set as 6 V , and high energy increased from 20 V to 35 V." Leucine enkephalin ($2 \mathrm{ng} / \mu \mathrm{l}$, Sigma-Aldrich, St. Louis, MO, USA) was used as the lock mass, with m / z 554.2615 for the negative mode and $m / z 556.2766$ for the positive mode.

Table S1 UPLC-QTOF-MS identification of flavonoid compounds identified from pooled D. officinale green and red stems.

Adducts	m / z	Retention time (min)	Max fold change	Accepted Description	Formula
$\mathrm{M}+\mathrm{H}$	281.08	0.61	2.52	5-Hydroxy-2-[(2R,3S)-3-phenyl-2-oxiranyl]-4H-chromen-4-one	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{4}$
$\mathrm{M}+\mathrm{Na}$	421.11	5.46	56.84	4-O-sinapoylquinic acid	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{10}$
$\mathrm{M}+\mathrm{Na}$	483.15	5.46	84.64	Paeonolide	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{12}$
$\mathrm{M}+\mathrm{H}, \mathrm{M}+\mathrm{Na}$	381.24	14.32	2.79	16-Butyl-3-methoxy-estra-1,3,5(10)-triene-16- $\beta, 17$ - β-diol	$\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3}$
$\mathrm{M}+\mathrm{H}, \mathrm{M}+\mathrm{Na}$	395.26	17.25	3.69	Cervonoyl ethanolamide	$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{3}$
$\mathrm{M}+\mathrm{H}, \mathrm{M}+\mathrm{Na}$	363.26	20.42	3.01	12-[(Cyclohexylcarbamoyl)amino] dodecanoic acid	$\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3}$
$\mathrm{M}-\mathrm{H}, \mathrm{M}+\mathrm{Cl}$	359.11	2.63	3.54	Acalyphin	$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{9}$
M-H	623.16	4.55	12.41	Chrysoeriol 7-O-gentiobioside	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{16}$
M-H	563.14	4.71	3.65	$7-O-[\beta-\mathrm{D}-\mathrm{arabinopyranosyl-(1} \mathrm{\rightarrow 6)-} \beta$-D-glucosyl] apigenin	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{14}$
M-H	595.16	4.73	11.89	Butrin	$\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{15}$
M-H	593.15	4.95	3.35	Genistin 7-O-gentiobioside 6-O- β-D-glucopyranosyl- β-D-glucopyranoside	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{15}$
M-H	563.14	5.18	3.99	$7-O-[\beta$-D-arabinopyranosyl-(1 $\rightarrow 6)$ - β-D-glucosyl]apigenin	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{14}$
M-H	577.16	5.46	13.34	1,3,6-trihydroxy-2-methyl-9,10-anthraquinone-3-O- α-L-rhamnopyranosyl $-(1 \rightarrow 2)-\beta$-D-glucopyranoside	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{14}$
M-H	565.19	5.59	2.51	3-(β-D-Glucopyranosyloxy)-5-[(Z)-2-(4-methoxyphenyl)vinyl]phenyl β-D-glucopyranoside	$\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{13}$
M-H	607.16	5.81	348.34	5,7-Dihydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-3-yl 6-O-(6-deoxy- α-L-mannopyranosyl)- β-D-glucopyranoside	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{15}$
$\mathrm{M}-\mathrm{H}, \mathrm{M}+\mathrm{Cl}$	581.22	5.98	39.11	(-)-Lyoniresinol-3- α-O- β-glucopyranoside	$\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{13}$

Table S2 Primers used for quantitative real-time PCR (qRT-PCR) analysis in this study.

Gene	Gene ID	Forward $\left(5^{\prime} \rightarrow 3^{\prime}\right)$	Reverse $\left(5^{\prime} \rightarrow 3^{\prime}\right)$
PAL1	Unigene0108630	CTACATGAAGGTGGCGAAGAA	CTTGGTTGCTGCACGAATTAC
PAL2	Unigene0016044	GGTTTCAAGGGAGCAGAGATAG	CGCTCTGCACATGGTTAGT
PAL3	Unigene0158609	TACCTTGTCGGAATGCTCAC	CTCCCATCCGAGATGAGATAGA
PAL4	Unigene0103006	TTCGCTGCAGTCAGAACTC	GACTAGGCATTATTCGGGTCAA
C4H1	Unigene0158049	CAACTCCTCCCTCCAATCATTTA	GGGCAGTTCAGTCTCCATATAC
C4H2	Unigene0083313	CCAGTTTCTTCCTCTCCTCAAC	TACGGCGATTTCATCCCTATTC
C4H3	Unigene0125244	GAAGTTCGGCGATATCCTTCTC	CAAATTCGACTCCCTGGGTATG

4CL1	Unigene0112398	TAGAGAGGGACTTGATGGAGAG	CCCTCCGAAATCCTCAAACA
4CL2	Unigene0118305	CCAGGATGGGTCGATAGAATTT	GCTGGTCTACGTGGTTGATAG
4CL3	Unigene0015559	CATCATCACCCACTCCATCTT	TGAACGGAAGGCAGGATTT
4CL4	Unigene0131993	AGTGAGGACTACTCCCTTAACC	ATTCGCCTCTCCCTCCATTA
CHS1	Unigene0150238	GCTCGTGGTGCAGAATATGA	AGGCAAGAGGTCGCAATAAG
CHS2	Unigene0076676	GTAGGCGAGTGAGTTGGTAATC	CCAGACGAGCCATCAAAGAA
CHS3	Unigene0134375	GCTGGTGGTGCAGAAGATTA	CAAGACATAGTGGTCACCGAAG
CHI1	Unigene0116452	GGCTCACAATATGGCGTACA	GTGCTTCTTCTTCCTCCTCTTC
CHI2	Unigene0116451	GTGCTTCTTCTTCCTCCTCTTC	GGCTCACAATATGGCGTACA
DFR1	Unigene0104804	CAGCCCTCAGCTCTATTTCTAC	CGAGGATGTTCCGGCTTATT
DFR2	Unigene0157250	GAGTGAAGACCATCCCAAGTT	CGTCCATAGGTTTGAGGAAGAG
DFR3	Unigene0149794	CGAGAGAGATAGAGAGAGAGAGATG	TGTTCCGTTGACCTTGTATCC
DFR4	Unigene0022383	GAGATAGCAGCAAGAGAGAATGG	TCACAAGCCAGGAAGCAATAA
F3H1	Unigene0124945	GAGTACAGCGCCAAGCTAAT	CGACCAATTTCTGGTCCATTTC
F3H2	Unigene0109511	TCAACGACCACAACTCATTCA	CTTCTCTCCTCTTCCGACAAATC
F3'H1	Unigene0142709	TACTCGCAGAATGGGCTTTAG	CTTGGAGCAGAGGAAGGTTAG
F3'H2	Unigene0127406	CCGGAAGGCTAATGTCTCATC	GACGGCTACCTCATTCCTAAAG
F3'5'H1	Unigene0103961	GGGCTTCATCTCTGACCTATTC	GTCGGAGGATTGATGGGTTT
F3'5'H2	Unigene0138824	CTGAATCCGCACAAGAGTTAAAG	GGAGCCAAGAAAGGGAAGAA
F3'5'H3	Unigene0147368	CCGGCGATTAGATCCTGTATTAT	GTTGACGTCCTCCTTCAGTT
FLS1	Unigene0157397	AATCAACCCAGGCCTTCTTC	TCGCAGGAGGAGAAGGATAA
FLS2	Unigene0109511	AGCTTAGGGCTCGATGAAAG	GGAGTATCCGAATGAGCAGATAG
ANS	Unigene0101519	CTCCTTACTCTCTCTCGGTCTC	CAGCGTGGGTAGTAGTTGATTT
UFGT1	Unigene0142333	TCTTCCGGCCTCGTACTATT	GGTGACCTGGCCGTTATTT
UFGT2	Unigene0117481	GGGTTCCCGTTAGCGTTATT	GGAGTTTGTCAGCATGAGTAGG
MYB1	Unigene0012491	GGCTTCTCGGATGAAGAAGATAG	CAGGAAGATGCGCAGCTATAA
MYB2	Unigene0101304	AGGCTCAGGTGGACAAATTAC	TGTTACCAAGCAGAGCATGAA
MYB3	Unigene0116668	CTGTTCCTCCTGCATGCTAAA	CCTAACAAAGCTGGCCTACAA
MYB4	Unigene0135347	CTGCAGGCTTAGGTGGATAAA	CTGAGACCATCTGTTTCCAAGA
MYB5	Unigene0155688	AGAACTCCATGCTGTGATAAGG	CCACCTGTTCCATACTTCTCTATG
Actin	JX294908	TCCCAAGGCAAACAGAGAAA	GGCCACTAGCATATAGGGAAAG

D. officinale actin (GenBank accession no. JX294908) was obtained from NCBI. Primer Premier 5.0 software (Premier Biosoft International, Palo Alto, CA, USA) was used to design primers for this study.

Figure S1 UPLC-ESI/MS/MS of anthocyanins in the peels of pooled D. officinale green and red stems. Precursor-ion analysis of (A) delphinidin 3,5-O-diglucoside; (B) pelargonidin 3-O-rutinoside; (C) pelargonidin 3,5-O-diglucoside; (D) cyanidin 3-O-galactoside; (E) cyanidin 3-O-glucoside; (F) peonidin 3,5-O-diglucoside; (G) malvidin 3-O-glucoside.

Figure S2 Phylogenetic analysis of D. officinale DoANS with reported ANSs from other plants. Neighbor-joining phylogenetic analysis was conducted using MEGA5.0 with 1000 bootstrap replicates. ANS proteins used for phylogenetic profiling alignment are: AcANS (Allium серa, EF192475), AtANS (Arabidopsis thaliana, JF681791), BjANS (Brassica juncea, EU927147), BnANS (Brassica napus, KF250411), ChANS (Cymbidium dayanum, KM186177), LcANS (Lycoris chinensis, KC131464), OhANS (Oncidium hybridum, EF570114), PsANS (Prunus salicina, JN560957) and VvANS (Vitis vinifera, EU156063).

Figure S3 Sequence alignment of D. officinale DoANS with known ANSs from other plants using ClustalX
multiple alignment tool. Residues framed in a rectangle are postulated to be the $2 \mathrm{OG}-\mathrm{Fe}(\mathrm{II})$ oxygenase domain. Red circles indicate residues for ferrous-iron coordination. Blue circles indicate residues for a binding site of 2-oxoglutarate. Purple arrow-head indicates residue for substrate binding. ANS proteins used for phylogenetic profiling alignment are: AcANS (Allium cepa, EF192475), AtANS (Arabidopsis thaliana, JF681791), BjANS (Brassica juncea, EU927147), BnANS (Brassica napus, KF250411), ChANS (Cymbidium dayanum, KM186177), LcANS (Lycoris chinensis, KC131464), OhANS (Oncidium hybridum, EF570114), PsANS (Prunus salicina, JN560957) and VvANS (Vitis vinifera, EU156063).

Figure S4 The structural characteristics of D. officinale anthocyanin synthase (DoANS). (A) Conserved functional domain annotation; (B) Secondary protein structure of DoANS: α-helix, extended strand and random coil are represented by the longest, second longest and shortest vertical bars, respectively; (C) Tertiary structure of the characteristic functional region, showing the OG-Fe(II) oxygenase domain in the form of a carbon frame.

Figure S5 Conserved functional domain of UDP-glucose flavonoid 3-O-glucosyl transferase proteins in D. officinale. (A) Conserved domain annotation of DoUFGT1; (B) Conserved domain annotation of DoUFGT2.

Figure S6 Sequence alignment of D. officinale DoUFGT1 and DoUFGT2 with known UFGTs from other plants using ClustalX multiple sequence alignment tool. UF3GT indicates glucosylation of the anthocyanidins at the 3-O-position, while UF5GT indicates glucosylation of the anthocyanidins at the 5-O-position. UFGT proteins used for phylogenetic profiling alignment are: AcUFGT (Allium cepa, KY273099); GtUFGT (Gentiana triflora, Q96493); IhUFGT (Iris hollandica, AB113664); MdUFGT (Malus domestica, AF117267); PfUFGT (Perilla frutescens, AB013596); PhUFGT (Petunia hybrida, AB027455); PpUFGT (Prunus persica, JX149550); SmUFGT (Solanum melongena, Q43641); VhUFGT (Verbena hybrida, AB013598); VvUFGT (Vitis vinifera, DQ513314).

References

1. Wrolstad, R.E.; Putnam, T.P.; Varseveld, G.W. Color quality of frozen strawberries: effect of anthocyanin, pH, total acidity and ascorbic acid variability. J Food Sci 1970, 35, 448-452.
2. Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls A and B of leaf extracts in different solvents. Biochem Soc Trans 1983, 11, 591-592.
3. Fu, X.M.; Cheng, S.H.; Liao, Y.Y.; Huang, B.Z.; Du, B.; Zeng, W.; Jiang, Y.M.; Duan, X.W.; Yang, Z.Y. Comparative analysis of pigments in red and yellow banana fruit. Food Chem 2018, 239, 1009-1018.
