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Abstract: Two-pore domain K+ (K2P) channels play essential roles in regulating resting membrane 

potential and cellular excitability. Although TWIK-1 (TWIK—tandem of pore domains in a weak 

inward rectifying K+ channel) was the first identified member of the K2P channel family, it is only 

in recent years that the physiological roles of TWIK-1 have been studied in depth. A series of reports 

suggest that TWIK-1 may underlie diverse functions, such as intrinsic excitability of neurons, 

astrocytic passive conductance, and astrocytic glutamate release, as a homodimer or heterodimer 

with other K2P isotypes. Here, we summarize expression patterns and newly identified functions 

of TWIK-1 in the brain. 

Keywords: TWIK-1; K2P; astrocyte; brain; heterodimerization 

 

1. Introduction 

Among the K+ channel families, two-pore domain potassium (K2P) channels are the most 

recently discovered. These K2P channels are major contributors to background potassium 

conductance, and control resting membrane potential and neuronal excitability [1]. In addition, these 

channels are modulated by a large number of physical and chemical stimuli, including temperature, 

membrane stretch, pH, polyunsaturated fatty acids, hormones, and neurotransmitters. Therefore, the 

15 members of the K2P channel family play diverse physiological roles (e.g., adrenal gland 

development, thermal and mechanical nociception, and sensitivity to volatile anesthetics) [1]. K2P1 

(KCNK1 or TWIK-1—tandem of pore domains in a weak inward rectifying K+ channel) was initially 

cloned from a human kidney cDNA library [2]. However, due to the low or absent functional 

expression of K2P1 in heterologous expression systems, the physiological significance of TWIK-1 has 

remained enigmatic [3].  

There have been two controversial hypotheses for the silencing mechanism of TWIK-1. One 

hypothesis is that TWIK-1 channels are present on or properly delivered onto the plasma membrane, 

but are silenced by a unique posttranslational modification, called sumoylation [3]. This was soon 

challenged by a report that TWIK-1 channels could not be sumoylated [4]. However, this “present 

but silent” hypothesis is still supported by a report that sumoylation of a single TWIK-1 subunit is 

sufficient to silence both TWIK-1 homodimeric and TWIK-1 heterodimeric channels [5,6]. The other 

hypothesis is that TWIK-1 channels are mainly located in intracellular compartments and are instead 

silenced by constitutive endocytosis and/or intracellular sequestration [7,8]. Because both hypotheses 

seem to be supported by convincing experimental data including mutagenesis at key residues, 

further investigations are needed to address the silencing mechanism of TWIK-1 channels. 
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Although the electrophysiological properties and functional roles of TWIK-1 are poorly 

understood due to nonmeasurable (or very small) TWIK-1 current in heterologous expression 

systems, the expression of TWIK-1 mRNA has been documented in various tissues, including the 

brain, heart, and kidney [2]. Mice deficient in TWIK-1 show defects in phosphate transport in the 

proximal tubule and water transport in the medullary collecting duct of the kidney, as well as 

deviations in the resting membrane potential of pancreatic β cells [9,10]. It has been also reported that 

TWIK-1 conducts inward leak Na+ currents during pathological hypokalemia in cardiomyocytes [11]. 

Interestingly, TWIK-1 knock-down zebrafish showed bradycardia and atrial dilation, which is 

consistent with atrial fibrillation identified in human TWIK-1 variants [12]. These previous 

observations strongly suggest the important physiological roles of TWIK-1 channels. Indeed, several 

recent studies have demonstrated unexpected roles of TWIK-1 in neurons and astrocytes. Here, we 

review emerging roles of TWIK-1 in the brain. 

2. Distribution of TWIK-1 in the Brain 

The original northern blot studies showed that TWIK-1 is highly expressed in the brain [13,14]. 

Subsequent in situ hybridization studies more clearly showed various expression patterns of TWIK-

1 mRNA in the brain [15,16]. During development, the embryonic brain (at E17 and E19) has very 

low expression of TWIK-1 mRNA. In contrast, expression gradually increases after birth. In the early 

postnatal brain, its expression is mainly restricted to hippocampal neurons (dentate granule cells and 

pyramidal neurons). Its strong expression in dentate granule cells remains at a quite constant level 

throughout postnatal development. In hippocampal pyramidal neurons, it is enriched in CA3 relative 

to CA1 at P0 and maintains this graded expression pattern throughout development. In the rest of 

the forebrain (e.g., neocortex, thalamus, and striatum), TWIK-1 emerges gradually over the first 

postnatal weeks. In the reticular thalamus, TWIK-1’s expression is low at P7 and moderate at P14 and 

thereafter. 

TWIK-1 is also expressed in cerebellar granule cells. Expression levels are low at P0; however, 

by P7, the external granule cell layer has moderate expression. By P14, when the external granule cell 

layer has greatly diminished in significance, there are still some TWIK-1 mRNAs present. In the 

internal granule cell layer, the TWIK-1 gene is not actually switched off between P14 and P28, and its 

mRNA is still present in the adult, but the level is decreased relative to the earlier expression in the 

same layer. Besides neuronal expression of TWIK-1, several studies reported that TWIK-1 is also 

expressed in astrocytes [17–20]. The expression of TWIK-1 mRNA in the astrocytes and neurons in 

various brain regions strongly suggests that TWIK-1 might be involved in diverse physiological roles 

in the brain.  

3. Heterodimerization between TWIK-1 and Other K2P Isotypes 

A previous biochemical study demonstrated that TWIK-1 subunits form homodimers in vitro, 

which are dissociated by treatment with β-mercaptoethanol, a reducing chemical agent. A disulfide 

bridge between the cysteines at residue 69 in the first extracellular loop links two subunits [21]. A 

recent report of the crystal structure also confirmed that TWIK-1 may assemble as a dimer via a 

disulfide bridge [22]. Although the disulfide bridge is critical for TWIK-1 homodimerization, it may 

not be required for homodimerization of other cysteine-containing K2P isotypes such as TWIK-2 and 

TWIK-related acid-sensitive K+ channel (TASK-2) [23,24]. In addition, TASK-1 and TASK-3, which 

lack the cysteine residue at these sites, can form functional channels as dimers [25,26]. Therefore, 

other unidentified mechanisms for dimerization of K2P channels seem possible.  

In addition to the homodimerization of TWIK-1 via a disulfide bridge, it has been shown that 

TWIK-1 can heterodimerize with TASK-1 or TASK-3, using fluorescence resonance energy transfer 

(FRET) and immunoprecipitation in heterologously expressed chinese hamster ovary (CHO) cells, 

without providing any detailed molecular mechanism [5]. Because there is no cysteine residue in the 

first extracellular loop of TASK-1 and TASK-3 [26], these TWIK-1-containing heterodimers may not 

be formed via a cysteine disulfide bridge between these K2P isotypes. Recently, we reported that 

TWIK-1 and TWIK-related K+ channel (TREK-1) form heterodimers via a cysteine disulfide bridge in 
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cultured astrocytes [20]. We also showed that TWIK-1 can form heterodimers with TREK-2 or TWIK-

related arachidonic acid-stimulated K+ channel (TRAAK) via a disulfide bridge. These data strongly 

suggest that diverse heterodimers might be formed between different K2P isotypes, because the 

conserved cysteines in the first extracellular loop are present in several K2P isotypes (e.g., TWIK, 

TREK, and TWIK-related alkaline pH-activated K channel (TALK) subfamilies). The disulfide bridge 

is critical for the heterodimerization between TWIK-1 and TREK subfamily members (TWIK-1/TREK-

1, TWIK-1/TREK-2, and TWIK-1/TRAAK heterodimers) [20]. Recent studies reporting heteromeric 

K2P channels (see Table 1) raised the possibility that many diverse K2P heterodimers might be 

assembled with or without the disulfide bridge, and their physiological functions will continue to be 

elucidated for years to come.  

Table 1. Heterodimers of two-pore domain potassium (K2P) channels. 

K2P Dimer 
Validation 

Disulfide Bond Physiological Function Ref. 
In Vitro In Vivo 

TASK-1/TASK-3  Co-IP N.D. 

The heterodimeric channels mediate the 

pH and isoflurane-sensitive K+ currents in 

hypoglossal motoneurons. 

[26] 

TWIK-1/TASK-1 

(or TASK-3) 
FRET, Co-IP  N.D. 

The heterodimeric channels comprise the 

acid-sensitive K+ currents and response to 

halothane in cerebellar granule cells. 

[5] 

TWIK-1/TREK-1 Co-IP, BiFC, MY2H Co-IP, PLA 

Dependent 

(TWIK-1 C69/ 

TREK-1 C93) 

The heterodimeric channels mediate 

passive conductance and fast glutamate 

release in cortical astrocytes. 

[20] 

TWIK-1/TREK-2 Co-IP  
Dependent 

(TWIK-1 C69) 
N.D. [20] 

TWIK-1/TRAAK Co-IP  
Dependent 

(TWIK-1 C69) 
N.D. [20] 

THIK-1/THIK-2 FRET, PLA  N.D. N.D. [27] 

TRAAK/TREK-1 

(or TREK-2) 

SiMPull 

TIRF imaging 

FRET 

PLA 

 N.D. N.D. [28,29] 

TREK-1/TREK-2 Co-IP 
Single channel 

recording 
N.D. N.D. [30] 

TASK-1/TALK-2 BiFC, FRET, Co-IP TIRF imaging N.D. N.D. [31] 

FRET: Fluorescence resonance energy transfer, Co-IP: Co-immunoprecipitation, BiFC: Bimolecular 

fluorescence complementation, MY2H: membrane yeast two-hybrid,  SiMPull: single-molecule pull-

down, TIRF: Total internal reflection fluorescence, PLA: Proximity ligation assay,  N.D. = not 

determined. 

Because K2P heterodimeric channels are formed between two different isotypes, it is plausible 

that regulatory processes that are known to affect both subunits composing K2P heterodimers can 

also affect the activities of K2P heterodimers. For example, endocytosis or sumoylation could affect 

the activity of TWIK-1-containing heterodimers [3,6,8]. Indeed, TWIK-1/TREK-1 heterodimer 

channels appear to be actively regulated by endocytosis, although not by sumoylation [20]. In 

contrast, TWIK-1/TASK-1 and TWIK-1/TASK-3 heterodimers can be silenced by sumoylation [5]. 

Thus, new studies are required to better understand the regulatory mechanisms of various 

heterodimeric combinations of K2P channels.  

4. Neuronal Function of TWIK-1 

Although TWIK-1 is expressed in various types of neurons in the brain, its physiological roles 

in neurons are poorly understood. Only a few studies have shown neuronal functions of TWIK-1. 

Deng et al. reported that serotonin inhibits the excitability of stellate and pyramidal neurons in the 

entorhinal cortex by activating TWIK-1 [32]. The effects of serotonin are mediated via the serotonin 

1A receptor (5-HT1A) and require the function of the Gαi3 subunit and protein kinase A. Because the 

entorhinal cortex acts as the gateway to the hippocampus, serotonin-mediated activation of TWIK-1 
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in neurons in the entorhinal cortex results in an inhibition of hippocampal circuits. It has not been 

determined whether TWIK-1, with other K2P isotypes in the entorhinal cortex, acts as a homodimer 

or a heterodimer. 

In cerebellar granule neurons in which TWIK-1 is highly expressed [15,33], Plant et al. reported 

that TWIK-1 can form functional heterodimeric channels with TASK-1 or TASK-3 [5]. These 

heterodimer channels are regulated by sumoylation, halothane, or acids. Because the outward K+ 

current governs the response of cerebellar granule neurons to stimuli (e.g., volatile anesthetics and 

acids), these TWIK-1-containing heterodimer channels comprise the acid-sensitive and halothane-

sensitive outward K+ currents in cerebellar granule neurons. 

Our latest study also showed that TWIK-1 is expressed and localized mainly in the soma and 

proximal dendrites of dentate granule cells, rather than in distal dendrites or mossy fibers [34]. Gene 

silencing using a specific shRNA against TWIK-1 mRNA demonstrated that TWIK-1-mediated 

currents exhibit outwardly rectifying potassium currents and act as a contributor to the intrinsic 

excitability of the dentate granule cells. Due to the fact that TASK-3 is also highly expressed in these 

cells [5,16,35,36], it is possible that TWIK-1 functions as a heterodimer with TASK-3, resulting in the 

outward currents of TWIK-1/TASK-3 heterodimers.  

5. TWIK-1 in Astrocytic Passive Conductance  

Besides the neuronal expression of TWIK-1, astrocytes also express TWIK-1 [7,18–20]. Compared 

to other cell types, interestingly, astrocytes have an unusually leaky membrane with an extremely 

low membrane resistance. This property, termed passive conductance, typically exhibits a linear 

current–voltage relationship, which implies the predominant expression of K+ channels that differ 

from conventional voltage-gated or leak K+ channels. However, the molecules responsible for this 

conductance have not been identified.  

Zhou et al. previously suggested that TWIK-1 and TREK-1 independently contribute to the 

passive conductance of astrocytes, based on comparative studies between biophysical and 

pharmacological properties of the passive conductance in astrocytes and of currents mediated by 

either a cloned TWIK-1 mutant (TWIK-1·K274E) or cloned TREK-1 channels in heterologous 

expression systems [18]. Interestingly, in a subsequent study, the same group concluded that the 

overall astrocytic passive conductance is not significantly altered in TWIK-1 knockout mice, although 

their experimental data showed that the astrocytic membrane properties were altered (membrane 

potential and rectification index of passive conductance) [6]. In contrast, our study showed that the 

passive conductance was dramatically reduced in astrocytes when endogenous TWIK-1 channels 

were ablated by TWIK-1-specific shRNA [20]. Accompanying biochemical and electrophysiological 

data showed that TWIK-1 forms a heterodimeric channel with TREK-1, and this TWIK-1/TREK-1 

heterodimer mediates the passive conductance in astrocytes. Due to these conflicting reports, further 

investigations will be required to determine the molecular identities of the passive conductance and 

the physiological role of TWIK-1 in astrocytes [7,20].  

6. TWIK-1 in Astrocytic Glutamate Release 

Astrocytes release glutamate upon activation of various GPCRs (G-protein coupled receptors) 

to modulate various types of synaptic transmissions and plasticity [37]. Although it is clear that 

neurons release glutamate via Ca2+-dependent exocytosis, the molecular mechanism of glutamate 

release from astrocytes is poorly understood. We demonstrated that TREK-1 and Bestrophin-1 (Best1), 

a Ca2+-activated Cl− channel, mediate fast and slow glutamate release respectively in astrocytes upon 

GPCR activation [37]. In this study, we also confirmed that TWIK-1/TREK-1 heterodimers act as the 

precise molecular entity responsible for the fast mode of glutamate release upon activation of Gαi-

coupled GPCRs (CB1 in particular) in astrocytes [20,37]. This TWIK-1/TREK-1 heterodimer is one of 

a few known cases of Gβγ binding to ion channels (e.g., inwardly rectifying K channels (GIRKs), some 

voltage-gated Ca2+ channels, and transient receptor potential melastatin channels [38–43]. 

Yeast two-hybrid screening data indicated that TWIK-1 can interact with the Gγ subunit directly 

through their cytosolic N- and C-termini, like TREK-1 [20]. In this study, the concatenated TWIK-1–
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TREK-1 channel was permeable to glutamate and potassium ions upon Gβγ application. These data 

imply that the pore region of the TWIK-1/TREK-1 heterodimer might be altered upon Gβγ application. 

Although the precise nature and characteristics of the glutamate-permeable pore within the TWIK-

1/TREK-1 heterodimer are unknown, the existence of unconventional pore domains (GLG or GFG 

motif) within TWIK-1 and TREK-1 may contribute to the mechanism underlying the dilation of the 

pore. To understand how TWIK-1/TREK-1 heterodimers can be transformed to glutamate-permeable 

channels upon GPCR activation, further studies are needed.  

7. Implication of TWIK-1 in the central nervous system (CNS)/Brain Diseases 

In a whole-genome microarray study using monozygotic twins discordant, TWIK-1 expression 

was increased more than two-fold in lymphoblastoid cells from people with bipolar disorders [44]. 

Except for this study, there is no report relating TWIK-1 with CNS diseases. However, the link between 

TWIK-1 and GPCR activation suggests that TWIK-1 could be involved in brain diseases. For example, 

activation of PAR1 (protease-activated receptor-1) in astrocytes by high levels of thrombin at the site of 

a brain lesion could activate glutamate release through the TWIK-1/TREK-1 heterodimer 

[20,37,39,40,44,45]. It will be also intriguing to see whether the neuroprotective effect of targeting 5-

HT1a receptors in striatal astrocytes is caused by inhibition of TWIK-1/TREK-1 channel activity in 

Parkinson’s disease [8,46]. In addition, targeting mGlu3 receptors in astrocytes to ameliorate 

neurotoxicity of amyloid β (Aβ) in Alzheimer’s disease may act through TWIK-1/TREK-1 heterodimeric 

channels [47]. 

8. Perspectives  

The physiological roles of TWIK-1, the first identified K2P channel, have not been characterized. 

A series of pathfinding studies showed that TWIK-1 displays diverse functions such as intrinsic 

excitability of neurons, astrocytic passive conductance, and astrocytic glutamate release in the brain. 

Based on the distinct expression patterns of TWIK-1 in the brain and accumulating evidence for 

TWIK-1-containing heterodimers (Figure 1), it is possible that different combinations of TWIK-1-

containing heterodimers exist. Furthermore, signaling pathways for the regulation of TWIK-1 

heterodimeric channels is important. Upon TWIK-1 heterodimerization with other K2P channels, we 

believe that TWIK-1 modulators involved in sumoylation, endocytosis, and GPCR-mediated 

signaling of TWIK-1 regulate TWIK-1 heterodimeric channels [5,20]. We also believe that modulators 

of TWIK-1 partners regulate TWIK-1 heterodimeric channels. For example, a neuropeptide, 

neurotensin, inhibits TASK-3 [48], and we have observed that neurotensin also inhibits TWIK-

1/TASK-3 heterodimer channels (data not shown) [49]. We expect that further research will uncover 

numerous and diverse functions of TWIK-1 in the brain.  
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Figure 1. Heterodimeric K2Ps in the brain. Expression pattern of mouse TWIK-1 (TWIK—tandem of 

pore domains in a weak inward rectifying K+ channel) from Allen Brain Atlas database. In situ 

hybridization of TWIK-1 is shown in a sagittal section of mouse brain at P56. Shown are higher 

magnification of cortex (top left), hippocampus (bottom left), cerebellum (top right), and medulla 

(bottom right) from serial sections. Scale bar: 419 μm. Note that TWIK-1 can function as either a 

homodimeric or heterodimeric channel. Based on the reports that TWIK-1 heterodimeric channels 

function in three brain regions [20,26,35], we believe TWIK-1 acts as heterodimeric channels with 

other K2P partners in other brain regions. Functional heterodimerization of TREK-1/TWIK-1 in 

cortical astrocytes [20], TWIK-1/TASK-1/-3 in cerebellar granule cells [26], and TWIK-1/TASK-3 [35] 

in dentate granule neurons have been reported. 
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Abbreviations 

TWIK tandem of pore domains in a weak inward rectifying K+ channel 

TREK TWIK-related K+ channel 

TASK TWIK-related acid-sensitive K+ channel 

TRAAK TWIK-related arachidonic acid-stimulated K+ channel 

TALK TWIK-related alkaline pH-activated K channel 

THIK tandem pore domain halothane-inhibited K+ channel 

CHO chinese hamster ovary 

5-HT1A serotonin 1A receptor 

CNS central nervous system 

Aβ amyloid β 
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