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Abstract: The quantitative structure-activity relationship (QSAR) model searches for a reliable
relationship between the chemical structure and biological activities in the field of drug design and
discovery. (1) Background: In the study of QSAR, the chemical structures of compounds are encoded
by a substantial number of descriptors. Some redundant, noisy and irrelevant descriptors result in a
side-effect for the QSAR model. Meanwhile, too many descriptors can result in overfitting or low
correlation between chemical structure and biological bioactivity. (2) Methods: We use novel log-sum
regularization to select quite a few descriptors that are relevant to biological activities. In addition,
a coordinate descent algorithm, which uses novel univariate log-sum thresholding for updating
the estimated coefficients, has been developed for the QSAR model. (3) Results: Experimental
results on artificial and four QSAR datasets demonstrate that our proposed log-sum method has
good performance among state-of-the-art methods. (4) Conclusions: Our proposed multiple linear
regression with log-sum penalty is an effective technique for both descriptor selection and prediction
of biological activity.
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1. Introduction

The quantitative structure-activity relationship (QSAR) model searches for a reliable relationship
between chemical the structure and biological activities in the field of drug design and discovery [1].
In the study of QSAR, the chemical structure is encoded by a substantial number of descriptors, such as
thermodynamic, shape descriptors, etc. Generally, only a few descriptors that are relevant to biological
activities are of interest to the QSAR model. Descriptor selection aims to eliminate redundant, noisy
and irrelevant descriptors [2]. The flow diagram shows the process of QSAR modeling in Figure 1.

Generally, descriptor selection techniques can be categorized into four groups in the study
of QSAR: classical methods, artificial intelligence-based methods, miscellaneous methods and
regularization methods.

The classical methods have been proposed in the study of QSAR; as an example, forward selection
adds the most significant descriptors until none improves the model to a statistically-significant extent.
Backward elimination starts with all candidate descriptors, subsequently deleting descriptors without
any statistical significance. Generally, stepwise regression builds a model by adding or removing
predictor variables based on a series of F-tests or t-tests. The variable selection and modeling method
based on the prediction [3] uses leave-one-out cross-validation (Q2), predicted to select meaningful
and important descriptors. Leaps-and-bounds regression [4] selects a subset of descriptors based on
the residual sum of squares (RSS).
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Figure 1. The flow diagram shows the process of QSAR modeling. (1) Collecting molecular structures
and their activities; (2) calculating molecular descriptors, which can produce thousands of parameters
for each molecular structure; (3) removing redundant or irrelevant descriptors via descriptor selection;
(4) building the model with the optimum descriptor subset; (5) predicting the biological activity of a
new molecular structure using the established model. Different color blocks represent different values.

Recently, artificial intelligence-based methods have been designed for descriptor selection, such as
the genetic algorithm [5], which uses the code, selection, exchange and mutation operations to select
the important descriptors. Particle swarm optimization [6] has a series of initial random particles
and then selects the descriptors by updating the velocity and positions. Artificial neural networks [7]
are composed of many artificial neurons that are linked together according to a specific network
architecture and select input nodes (descriptors) to predict the output node (biological activity).
Simulated annealing [8] can be performed with the Metropolis algorithm based on Monte Carlo
techniques, which performs descriptor selection. Frank et al. [9] used Bayesian regularized artificial
neural networks with automatic relevance determination (ARD) in the study of QSAR. ARD has the
capacity to allow the network to estimate the importance of each input, neglects irrelevant or highly
correlated indices in the modeling and uses the most important variables for modeling the activity
data. The ant colony system [10], inspired by real ants, searches a path, which is connected to a number
of selected descriptors, between the colony and a source of food.

The miscellaneous methods used for descriptor selection in the development of QSAR include
K nearest neighbor (KNN) [11], the replacement method (RM) [12], the successive projections algorithm
(SPA) [13] and uninformative variable elimination-partial least squares (UVE-PLS) [14], just to name a
few. KNN uses a similarity measure (Euler distance) to select the descriptor and predict the biological
activity. RM has the capacity to find an optimal subset of the descriptors via the standard deviation.
SPA is a simple operation to eliminate collinearity to reduce the descriptors. UVE-PLS has been
proposed to increase the predictive ability of the standard PLS method via eliminating the variables
that cannot contribute to the model and to make a comparison between experimental variables and
added noise variables with respect to the degree of contribution to the model.

The regularization is an effective technique in descriptor selection and has been used in QSRR [15],
QSPR [16] and QSTR [17] in the field of chemometrics. However, some individuals have poured their
interest and attention into the study of QSAR. For example, LASSO (L1) (least absolute shrinkage
and selection operator) [18] has the capacity to perform descriptor selection. Algamal et al. proposed
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the L1-norm to select the significant and meaningful descriptors for anti-hepatitis C virus activity of
thiourea derivatives in the QSAR classification model [19]. Xu et al. proposed L1/2 [20] regularization,
which has more sparsity. Algamal et al. proposed a penalized linear regression model with the
L1/2-norm to select the significant and meaningful descriptors [21]. Theoretically, the L0 regularization
produces better solutions with more sparsity [22], but it is an NP problem. Therefore, Candes et al.
proposed the log-sum penalty [23], which approximates the L0 regularization much better.

In this paper, we utilized the log-sum penalty, which is non-convex in Figure 2. A coordinate
descent algorithm, which uses novel univariate log-sum thresholding for updating the estimated
coefficients, has been developed for the QSAR model. Experimental results on artificial and four
QSAR datasets demonstrate that our proposed log-sum method has good performance among
state-of-the-art methods. The structure of this paper is organized as follows: Section 2 introduces a
coordinate descent algorithm, which uses novel univariate log-sum thresholding for updating the
estimated coefficients and gives a detailed description of the datasets. In Section 3, we discuss the
experimental results on simulated data and four QSRA datasets. Finally, we give some conclusions in
Section 4.
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Figure 2. L1 and LEN are convex, and SCAD, MCP, L1/2 and log-sum are non-convex. The log-sum
approximates to L0.

2. Methods

In this paper, there exists a predictor X and a response y, which represent the chemical
structure and corresponding biological activities, respectively. Suppose we have n samples,
D = (X1, y1), (X2, y2), ..., (Xn, yn), where Xi = (xi1, xi2,..., xip) is the i-th input pattern with
dimensionality p, which means Xi has p descriptors, and xij denotes the value of descriptor j for
the i-th sample. The multiple linear regression is expressed as:

yi = xi1β1 + ... + xipβp + β0 (1)

where β = (β0, β1, ..., βp) are the coefficients.
Given X and y, β0, β1, ..., βp are estimated based on an objective function. The linear regression of

the objective function can be formulated:
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min{ 1
2n
‖y− Xβ‖2} (2)

where y = (y1, ......, yn)T is the vector of n response variables, X = {X1,X2,......,Xn} is n× p matrix with
Xi = (xi1, ......, xip) and ||.|| denotes the L2-norm. When the number of variables is larger than the
number of samples (p� n), this can result in over-fitting. Here, we introduced a penalty function in
the objective function to estimate the coefficient. We have rewritten Equation (2):

min{ 1
2n
‖y− Xβ‖2 + Pλ(β)} (3)

where Pλ() is a penalty function indexed by the regularized parameter λ > 0.

2.1. Coordinate Decent Algorithm for Different Thresholding Operators

In this paper, we used the coordinate descent algorithm to implement different penalized
multiple linear regression. The algorithm is a “one-at-a-time” algorithm and solves β j, and other βk 6=j
(representing the parameters remaining after the j-th element is removed) are fixed [22]. Equation (3)
can be rewritten as:

R(β) = argmin{ 1
2n

(yi − (∑
k 6=j

xikβk + xijβ j))
2 + λ ∑

k 6=j
P(βk) + P(β j)} (4)

where k represents other variables except the j-th variable.
Take the derivative with respect to β j :

∂R
∂β j

=
n

∑
i=1

(−xij(yj −∑
k 6=j

xikβk − xijβ j)) + λP(β j) = 0 (5)

Denote ỹ(j)
i = ∑k 6=j xikβk, r̃(j)

i = yi − ỹ(j)
i , wj = ∑n

i=1 xij r̃
(j)
i where r̃(j)

i represents the partial
residuals with respect to the j-th covariate. To take into account the correlation of descriptors, Zhou et
al. have proposed elastic net (LEN) [24], which emphasizes a grouping effect. The LEN penalty function
is given as follows:

P(β) = (1− a)
1
2
‖β‖2

L2
+ a‖β‖L1 (6)

The penalty function of LEN is a combination of the L1 penalty (a = 1) and the ridge penalty
(a = 0). Therefore, Equation (5) is rewritten as follows:

∂R
∂β j

=
n

∑
i=1

(−xij(yj −∑
k 6=j

xikβk − xijβ j)) + λ(1− a)β j + λa = 0 (7)

Donoho et al. proposed the univariate solution [25] for a LEN-penalized regression coefficient
as follows:

β j = fLEN (wj, λ, a) =
S(wj, λa)

1 + λ(1− a)
(8)

where S(wj, λa) is the soft thresholding operator for the L1 if a is equal to one; Formula (8) can be
rewritten as follows:

β j = So f t(wj, λ) =


wj + λ if wj < −λ

wj − λ if wj > λ

0 if −λ ≤ wj ≤ λ

(9)
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Fan et al. have proposed the smoothly clipped absolute deviation (SCAD) [26], which can produce
a sparse set of solutions and approximately unbiased coefficients for large coefficients. The penalty
function is shown as follows:

pλ,a(β) =


λβ if β 6= λ
aλβ− 1

2 (β2+λ2)
a−1 if λ < β < aλ

λ(a2−1)
2(a−1) if β > aλ

(10)

Additionally, the SCAD thresholding operator is given as follows:

β j = fSCAD(wj, λ, a) =


S(wj, λ) if |wj| < 2λ
S(wj ,aλ/(a−1))

1−1/(a−1) if 2λ < |wj| ≤ aλ

wj if |wj| > aλ

(11)

Similar to the SCAD penalty, Zhang et al. have proposed the maximum concave penalty
(MCP) [27]. The formula of the penalty function is shown as:

pλ,a(β) =

{
λβ if β ≤ γλ
1
2 γλ2 if β > γλ

(12)

Additionally, the MCP thresholding operator is given as follows:

β j = fMCP(wj, λ, γ) =


S(wj ,λ)
1−1/γ if |wj| ≤ γλ

wj if |wj| > γλ
(13)

where γ is the experience parameter.
Xu et al. proposed L1/2 regularization [20]. Formula (3) can be rewritten:

min{ 1
2n
‖y− Xβ‖2 + λ

p

∑
j
|β j|

1
2 } (14)

and the univariate half thresholding operator for a L1/2-penalized linear regression coefficient is
as follows:

β j = Hal f (wj, λ) =

 2
3 wj(1 + cos

2(π−φλ(wj))
3 ) if |wj| > 3

4 (λ)
2
3

0 otherwise
(15)

where φλ(w) = λ
8 (
|w|
3 )−

3
2 .

In this paper, we applied the log-sum penalty to the linear regression model. We could rewrite
Formula (3) as follows:

min{ 1
2n
‖y− Xβ‖2 + λ

p

∑
j

log(|β j|+ ε)} (16)

where ε > 0 should be set arbitrarily small, to make the log-sum penalty closely resemble the L0-norm.
Equation (16) has a local minimal. The proof is given in the Appendix A:

β j = flog−sum(wj, λ, ε) = D(wj, λ, ε) =

{
sign(wj)

c1+
√

c2
2 if c2 > 0

0 if c2 ≤ 0
(17)

where λ > 0, 0 < ε <
√

λ, c1 = ωj − ε and c2 = c2
1 − 4(λ− wjε).
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According to different thresholding operators, we can define three properties for to satisfy the
coefficient estimator, unbiasedness, sparsity and continuity, in Figure 3.
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Figure 3. Plot of thresholding functions for: (a) L1; (b) LEN ; (c) SCAD; (d) MCP; (e) L1/2; and (f) log-sum.

2.2. Dataset

2.2.1. Simulated Data

In this work, we constructed the simulation. The process of the construction was given as follows:
Step I: The simulated dataset was generated from multiple linear regression using the normal

distribution to produce X. Here, the number of row is sample n and the number of column is variable p.

y = Xβ +

intercept︷︸︸︷
σε , ε ∼ N(0, 1) (18)

where y = (y1, ..., yn)T is the vector of n response variables, X = {X1, X2, ..., Xn} is the generated matrix
with Xi = (xi1, ..., xip), ε = (ε1, ..., εn)T is the random error and σ controls the signal to noise.

Step II: Add a different correlation parameter ρ to the simulation data.

xij = ρ× x11 + (1− ρ)xij, i ∼ (1, ..., n), j ∼ (2, 3, 4, 5, 6) (19)

Step III: In order to get a high quality model and variable selection, the coefficients (20) are set in
advance from 1–20.

β =

2000︷ ︸︸ ︷
2,−2,−1, 1.5, 3, 2.5, 3, 2, ..., 2,︸ ︷︷ ︸

20

0, 0, 0, ..., 0︸ ︷︷ ︸
1980

(20)

where β is the coefficient.
Step IV: We can get y from Equations (18)–(20).
In the simulation study, we firstly generated 100 groups of data with different sample sizes

n = 100 and n = 200. Secondly, the correlation coefficient ρ = 0.2, 0.4 and the noise control
parameter σ = 0.3, 0.9, were considered in the model. Thirdly, the coefficients (20) are set in advance.
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Fourthly, the multiple linear regression with different penalties to select variables and build the model,
including our proposed method, was used. Finally, due to the generation of 100 groups of data, the
results obtained by different methods need to be averaged.

2.2.2. Real Data

We could obtain four public QSAR datasets, including the global half-life index [28], endocrine
disruptor chemical (EDC) estrogen receptor (ER)-binding [29], (Benzo-)Triazoles toxicity in Daphnia
magna [30] and apoptosis regulator Bcl-2 [31]. A brief description of these datasets is shown in Table 1.
We utilized random sampling to divide datasets into training datasets and test datasets (80% for the
training set and 20% for the test set [32]). Six commonly-used parameters in regression problems
are employed to evaluate the model performance, including the square correlation coefficients of the
leave-one-out cross-validation (Q2

LOO), the root mean squared error of cross-validation (RMSECV), the
square correlation coefficients of fitting for the training set (R2

train), the root mean squared error for the
training set (RMSEtrain), the square correlation coefficients of fitting for the test set (R2

test) and the root
mean squared error for the test set (RMSEtest). According to existing literature [33], we have learned
that the value of Q2

LOO is not the best measure for QSAR model evaluation. Therefore, we poured
more interest and attention into (R2

test) and (RMSEtest).

Table 1. A brief description of four public datasets used in the experiments.

Dataset Name No. of Samples No. of Descriptors No. of Samples (Training) No. of Samples (Test)

BTAZD 97 1083 78 19
EDCER 129 1089 104 25
GHLI 250 1120 200 50
BCL2 508 1562 407 101

Algorithm: A coordinate descent algorithm for log-sum penalized multiple linear regression.

Step 1: Initialize all β j(m) = 0(j = 1, 2, 3, ..., p), λ, ε,set m = 0;
Step 2: Calculate the function (16) based on β(m)

Step 3: Update each β j(m) and cycle j = 1, 2, 3, ..., p

Step 3.1: r̃(j)
i (m) = yi(m)− ỹ(j)

i (m) = yi(m)−∑k 6=j xikβk(m)

and wj(m) = xij(ri(m)− r̃(j)
i (m))

Step 3.2: Update β j(m) = D(wj, λ, ε)

Step 4: Let m← (m + 1),β(m + 1)← β(m)

Step 5: Repeat Steps 2 and 3 until β(m) converges

3. Results

In this work, five methods are compared to our proposed method, including multiple linear
regression with LEN , L1, SCAD, MCP and L1/2 penalties, respectively.

3.1. Analyses of Simulated Data

Tables 2 and 3 describe the number of variables that are selected (non-zero coefficient) by different
methods within 2000 variables and within pre-set variables (20), respectively. For example, when
n = 200, ρ = 0.4 and σ = 0.9, the average number of variables selected is 23.73 within 2000 variables
by the log-sum in Table 2. In pre-set variables (20), we got 19.95 variables by the log-sum in Table 3.
Therefore, we could calculate the average accuracy (19.95÷ 23.73× 100% = 84.07%) for the simulation
datasets obtained by log-sum in Table 4. From Tables 2–4, for example, when the correlation parameter
ρ and the noise control parameter σ decrease, the average accuracy of log-sum improves. When n = 100
and σ = 0.9, the average accuracy of log-sum is from 83.77–98.7%, where the correlation parameter ρ
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is from 0.4–0.2. When n = 200 and ρ = 0.4, the results obtained by log-sum are 84.07% and 86.39%
with the noise control parameter σ =0.9, 0.3. In addition, compared to other methods, the average
accuracy obtained by our proposed log-sum method is better, for example when n = 200, ρ = 0.4 and
σ = 0.9, the result of the log-sum is 84.07% higher than 3.19%, 20.20%, 49.20%, 83.22% and 81.74% of
the LEN , L1, SCAD, MCP and L1/2. In other words, our proposed log-sum method has the capacity to
obtain good performance in the simulation dataset.

Table 2. The average number of variables selected in total by LEN , L1, SCAD, MCP, L1/2 and log-sum.
In bold, the best performance is shown.

Sample Size LEN L1 SCAD MCP L1/2 Log-Sum

ρ = 0.2, σ = 0.3 n = 100 381.60 92.92 19.09 23.36 19.13 19.00
n = 200 498.81 34.18 19.03 19.00 19.09 19.00

ρ = 0.2, σ = 0.9 n = 100 382.24 93.26 27.74 25.79 21.77 21.54
n = 200 499.49 95.83 36.48 23.65 23.83 23.15

ρ = 0.4, σ = 0.3 n = 100 378.96 93.98 19.26 24.67 19.98 19.11
n = 200 495.66 97.51 40.87 24.04 24.42 23.79

ρ = 0.4, σ = 0.9 n = 100 379.35 93.46 29.22 26.08 22.48 22.04
n = 200 495.64 98.97 40.61 23.95 24.43 23.73

Table 3. The average number of variables selected with a pre-set value (20) obtained by LEN , L1, SCAD,
MCP, L1/2 and log-sum.

Sample Size LEN L1 SCAD MCP L1/2 Log-Sum

ρ = 0.2, σ = 0.3 n = 100 12.23 14.45 19.09 18.81 19.13 19.00
n = 200 16.22 20.00 19.03 19.00 19.09 19.00

ρ = 0.2, σ = 0.9 n = 100 12.24 14.30 19.93 19.42 19.74 19.81
n = 200 16.26 20.00 20.00 20.00 20.00 20.00

ρ = 0.4, σ = 0.3 n = 100 11.84 13.57 18.88 18.40 18.65 18.88
n = 200 15.79 19.99 19.97 19.93 19.96 19.93

ρ = 0.4, σ = 0.9 n = 100 11.88 13.55 19.48 18.81 19.14 19.00
n = 200 15.80 19.99 19.98 19.93 19.97 19.95

Table 4. The average accuracy (%) for the simulation data sets obtained by LEN , L1, SCAD, MCP, L1/2

and log-sum. In bold, the best performance is shown.

Sample Size LEN L1 SCAD MCP L1/2 Log-Sum

ρ = 0.2, σ = 0.3 n = 100 3.20% 15.55% 100.00% 80.52% 100.00% 100.00%
n = 200 3.25% 58.51% 100.00% 100.00% 100.00% 100.00%

ρ = 0.2, σ = 0.9 n = 100 3.12% 14.44% 98.03% 74.58% 93.34% 98.80%
n = 200 3.19% 20.50% 48.86% 82.90% 81.74% 83.77%

ρ = 0.4, σ = 0.3 n = 100 3.20% 15.33% 71.85% 75.30% 90.68% 91.97%
n = 200 3.26% 20.87% 54.87% 84.57% 83.93% 86.39%

ρ = 0.4, σ = 0.9 n = 100 3.19% 20.50% 48.86% 82.90% 81.74% 83.77%
n = 200 3.19% 20.20% 49.20% 83.22% 81.74% 84.07%

3.2. Analyses of Real Data

As shown in Table 5 and Figures 4 and 5, the R2
train and RMSEtrain of the L1, L1/2 and MCP are

0.87, 0.87, 0.88 and 0.64, 0.62, 0.27, better than the values of 0.85, 0.86, 0.88 and 0.69, 0.63, 0.28 of the
log-sum for the GHLI, EDCER and BATZD datasets, respectively. However, our proposed log-sum
method is the best in terms of Q2 and RMSECV . In the BATZD dataset, the RMSECV obtained by
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log-sum is 0.23, lower than the values of 0.30, 0.30, 0.30, 0.28 and 0.26 of other methods. In the BCL2
dataset, the Q2 obtained by log-sum is 0.75, higher than the 0.51, 0.57, 0.73, 0.73 and 0.67 of other
methods. Moreover, a small subset of descriptors was selected by our proposed method; for example,
for the EDCER dataset, the result of log-sum is 10, lower than the 47, 36, 17, 11 and 12 of LEN , L1,
SCAD, MCP and L1/2. Furthermore, for R2

Test and RMSEtest, for the GHLI dataset, the best method
is log-sum (0.75 and 0.88); LEN and L1 are second (0.74 and 0.90); MCP is third (0.73 and 0.91); L1/2
is fourth (0.72 and 0.92); and the last is SCAD (0.72 and 0.93). Therefore, our proposed method is
better than the other methods. In addition, we gave the experimental and predicted values for the
four datasets.
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Figure 4. The value of residual (|y− ypred|) on different datasets.
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Table 5. Experimental results on the four datasets (the results are emphasized by our proposed method
in bold and italic).

Datasets Methods R2
train RMSEtrain Q2

LOO RMSEcv R2
test RMSEtest

GHLI

LEN 0.87 0.65 0.74 0.68 0.74 0.90
L1 0.87 0.64 0.75 0.67 0.74 0.90

SCAD 0.84 0.71 0.82 0.62 0.72 0.93
MCP 0.85 0.68 0.80 0.65 0.73 0.91
L1/2 0.82 0.75 0.81 0.62 0.72 0.92

log-sum 0.85 0.69 0.84 0.57 0.75 0.88

EDCER

LEN 0.81 0.74 0.70 0.70 0.64 1.23
L1 0.82 0.73 0.73 0.68 0.63 1.25

SCAD 0.86 0.63 0.74 0.69 0.70 1.12
MCP 0.83 0.70 0.74 0.69 0.65 1.21
L1/2 0.87 0.62 0.75 0.65 0.64 1.24

log-sum 0.86 0.63 0.79 0.62 0.70 1.12

BATZD

LEN 0.87 0.28 0.73 0.30 0.60 0.52
L1 0.88 0.28 0.74 0.30 0.60 0.52

SCAD 0.86 0.30 0.77 0.30 0.62 0.51
MCP 0.88 0.27 0.83 0.29 0.64 0.50
L1/2 0.86 0.29 0.84 0.26 0.64 0.50

log-sum 0.88 0.28 0.88 0.23 0.68 0.47

BCL2

LEN 0.75 0.57 0.51 0.53 0.61 0.67
L1 0.74 0.58 0.58 0.51 0.61 0.67

SCAD 0.72 0.59 0.73 0.45 0.59 0.69
MCP 0.74 0.57 0.73 0.46 0.58 0.70
L1/2 0.73 0.60 0.68 0.48 0.57 0.70

log-sum 0.68 0.64 0.75 0.43 0.65 0.63

First of all, in Tables 6–9, the number of top-ranked informative descriptors identified by LEN , L1,
SCAD, MCP, L1/2 and log-sum is 9, 10, 8 and 6 based on the value of the coefficients. Secondly, the
common descriptors are emphasized in bold. Thirdly, as shown in Table 10, the number of descriptors
is from the class of 2D. Then, the majority of descriptors are belong to the atom-type electrotopological
state and autocorrelation of descriptors types. Finally, the name of the descriptors obtained by the
log-sum method is exhibited in Table 11.

Table 6. The 9 top-ranked descriptors identified by LEN , L1, SCAD, MCP, L1/2 and log-sum from the
GHLI dataset (the common descriptors are emphasized in bold).

Rank
GHLI

LEN L1 SCAD MCP L1/2 Log-Sum

1 JGI7 JGI7 Mp JGI7 minsCl ATSC4c
2 ETA_Eta_B_RC ETA_Eta_B_RC MDEC-44 ATSC4c ATSC1e GATS1e
3 BCUTc-1l BCUTc-1l GATS1e GATS1e minaaN ATSC1p
4 Mv Mv ATSC1p AATS0e WPOL MATS8m
5 ATSC4c MDEN-23 GGI9 meanI nHdsCH maxwHBa
6 MDEN-23 ATSC4c maxHBa nHdsCH ALogP maxHBa
7 GATS1e GATS1e maxwHBa maxHBa nFG12Ring ATSC7s
8 ETA_Epsilon_3 ETA_Epsilon_4 MATS8m ATSC7s AATS6i AATS0v
9 ETA_Epsilon_4 minHCsatu SIC1 ATS4v AATSC8m ATS4p
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Table 7. The 10 top-ranked descriptors identified by LEN , L1, SCAD, MCP, L1/2 and log-sum from the
EDCER dataset (the common descriptors are emphasized in bold).

Rank
EDCER

LEN L1 SCAD MCP L1/2 Log-Sum

1 JGI10 JGI10 JGI10 JGI10 JGI10 JGI10
2 VE2_Dt VE2_Dt MATS1i JGI6 GATS1c MATS1c
3 JGI7 JGI6 AATSC2s AATSC2s GATS2s hmax
4 AATSC8p AATSC8p hmax AATSC8p hmax nssO
5 JGI6 JGI7 JGI6 hmax GATS5v piPC6
6 hmax hmax nBase nHBint2 nTG12Ring nFG12HeteroRing
7 SpMin4_Bhm SpMin4_Bhm GATS8p nHBd nssO maxaaCH
8 GATS5v GATS5v nFG12HeteroRing maxaaCH maxaaCH SHBint2
9 GATS2s GATS2s MATS5v C3SP2 ETA_Beta_ns_d TIC1
10 SpMin5_Bhs nAcid maxaaCH SHBint8 MDEC-24 AATSC8m

Table 8. The 8 top-ranked descriptors identified by LEN , L1, SCAD, MCP, L1/2 and log-sum from the
BATZD dataset (the common descriptors are emphasized in bold).

Rank
BATZD

LEN L1 SCAD MCP L1/2 Log-Sum

1 JGI4 JGI4 VE2_Dze SpMax1_Bhi SpMax1_Bhi SpMax1_Bhi
2 VE2_Dze VE2_Dze JGI3 MATS5m GATS1p GATS1v
3 MATS5v ndS ndS GATS3s ndS GATS3s
4 SdS MATS5v CrippenLogP C4SP3 GATS3m GATS8c
5 CrippenLogP CrippenLogP nHother CrippenLogP GATS3s naaS
6 mindS MDEO-22 minddssS ALogP LipoaffinityIndex AATSC4i
7 MDEO-22 nF9Ring GATS4m nHother nHsOH LipoaffinityIndex
8 maxdS ETA_Epsilon_4 nF9Ring ATSC8i ATSC8i SpDiam_Dzp

Table 9. The 6 top-ranked descriptors identified by LEN , L1, SCAD, MCP, L1/2 and log-sum from the
BCL2 dataset (the common descriptors are emphasized in bold).

Rank
BCL2

LEN L1 SCAD MCP L1/2 Log-Sum

1 JGI7 AATSC8p AATSC4s JGI7 MATS4s AATSC8p
2 VE2_D MATS4s IC2 MATS4s IC2 IC2
3 AATSC8p MATS5m MDEN-13 IC2 E3m GATS4s
4 MATS5m IC2 minHsNH2 E3m MDEN-13 maxHBint2
5 MATS4s MDEN-13 maxHBint2 GATS8p maxHBint2 minsOH
6 IC2 SpMax1_Bhi nT8Ring MDEN-13 minsOH SwHBa

Table 10. The detailed information of the descriptors obtained by the log-sum method.

Descriptor Type Class Descriptor

Autocorrelation 2D
AATS0v; AATSC4i; AATSC8m; ATS4p; ATSC1p;

ATSC4c; ATSC7s; GATS1e; GATS1v; GATS3s;
GATS8c; MATS1c; MATS8m; AATSC8p; GATS4s

Atom-type electrotopological state 2D Hmax; LipoaffinityIndex; maxaaCH; maxHBa; maxwHBa;
naaS; nssO; SHBint2; maxHBint2; minsOH; SwHBa

Barysz matrix 2D SpDiam_Dzp

Burden modified eigenvalues 2D SpMax1_Bhi

Information content 2D TIC1

Path counts 2D piPC6

Ring count 2D nFG12HeteroRing

Topological charge 2D JGI10

Information content 2D IC2
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Table 11. The name of the descriptors obtained by the log-sum method.

Descriptor Name

AATS0v Average Broto–Moreau autocorrelation-lag 0/weighted by van der Waals volumes
AATSC4i Average centered Broto–Moreau autocorrelation-lag 4/weighted by first ionization potential
AATSC8m Average centered Broto–Moreau autocorrelation-lag 8/weighted by mass
ATS4p Average centered Broto–Moreau autocorrelation-lag 1/weighted by polarizabilities
ATSC1p Centered Broto–Moreau autocorrelation-lag 1/weighted by polarizabilities
ATSC4c Average centered Broto–Moreau autocorrelation-lag 4/weighted by charges
ATSC7s Average centered Broto–Moreau autocorrelation-lag 7/weighted by I-state
GATS1e Geary autocorrelation-lag 1/weighted by Sanderson electronegativities
GATS1v Geary autocorrelation-lag 1/weighted by van der Waals volumes
GATS3s Geary autocorrelation-lag 3/weighted by I-state
GATS8c Geary autocorrelation-lag 8/weighted by charges
hmax Maximum H E-state
JGI10 Mean topological charge index of order 10
LipoaffinityIndex Lipoaffinity index
MATS1c Moran autocorrelation-lag 1/weighted by charges
MATS8m Moran autocorrelation-lag 8/weighted by mass
maxaaCH Maximum atom-type E-state: :CH:
maxHBa Maximum E-states for (strong) hydrogen bond acceptors
maxwHBa Maximum E-states for weak hydrogen bond acceptors
naaS Count of atom-type E-state::C:-
nFG12HeteroRing Number of >12-membered fused rings containing heteroatoms (N, O, P, S or halogens)
nssO Count of atom-type E-state: -O-
piPC6 Conventional bond order ID number of order 6 (ln(1 + x)
SHBint2 Sum of E-state descriptors of strength for potential hydrogen bonds of path length 2
SpDiam_Dzp Spectral diameter from Barysz matrix/weighted by polarizabilities
SpMax1_Bhi Largest absolute eigenvalue of Burden-modified matrix - n 1/weighted by the relative first ionization potential
TIC1 Total information content index (neighborhood symmetry of 1-order)
SwHBa Sum of E-states for weak hydrogen bond acceptors
AATSC8p Average centered Broto–Moreau autocorrelation-lag 8/weighted by polarizabilities
IC2 Information content index (neighborhood symmetry of 2-order)
GATS4s Geary autocorrelation-lag 4/weighted by I-state
maxHBint2 Maximum E-State descriptors of strength for potential Hydrogen Bonds of path length 2
minsOH Minimum atom-type E-state: -OH

4. Conclusions

In the field of drug design and discovery, only a few descriptors are of interest to the QSAR
model. Therefore, descriptor selection plays an important role in the study of QSAR. In this paper, we
proposed univariate log-sum thresholding for updating the estimated coefficients and developed a
coordinate descent algorithm for log-sum penalized multiple linear regression.

Both experimental results on artificial and four QSAR datasets demonstrate that our proposed
multiple linear regression with log-sum penalty is still better than L1, LEN , SCAD, MCP and L1/2.
Therefore, our proposed log-sum method is the effective technique in both descriptor selection and
prediction of biological activity.

In this paper, we introduced random sampling, which is easy to use, for QSAR data preprocessing.
However, this method does not take into account additional knowledge. Therefore, we plan to
integrate a self-paced learning mechanism, which learns easy samples first and then gradually takes
into consideration complex samples, making the model more and more mature, with our proposed
method in future work.
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Abbreviations

QSAR Quantitative structure-activity relationship
QSRR Quantitative structure-(chromatographic) retention relationships
QSPR Quantitative structure-property relationship
QSTR Quantitative structure-toxicity relationship
MLR Multiple linear regression
MCP Maximum concave penalty
SCAD Smoothly clipped absolute deviation
L1 LASSO
BTAZD (Benzo-)Triazoles toxicity in Daphnia magna
EDCER EDC estrogen receptor binding
GHLI Global half-life index
BCL2 Apoptosis regulator Bcl-2

Appendix A. Proof

We first consider the situation β j > 0:

∂R
∂β j

=
n

∑
i=1

(−xij(yi −∑
k 6=j

xijβk − xijβ j)) + λ
1

β j + ε
= 0 (A1)

Based on Equation (A1), the gradient of the log-sum regularization at β j can be expressed as:

∂R
∂β j

= β j −ωj + λ
1

β j + ε
= 0 (A2)

Denote ỹ(j)
i = ∑k 6=j xikβk, r̃(j)

i = yi − ỹ(j)
i , wj = ∑n

i=1 xij r̃
(j)
i , which is equivalent to:

β2
j − (ωj − ε)β j + (λ−ωjε) = 0 (A3)

β j =
ωj − ε±

√
(ωj − ε)2 − 4(λ−ωjε)

2
(A4)

let: c1 = ωj − ε,c2 = c2
1 − 4(λ−ωjε) Thus, we have:

(1) if c2 < 0, Equation (A3) has no real solution.
(2) if c2 = 0, Equation (A3) has the solution β j =

c1
2 .

(3) if c2 > 0, Equation (A3) has the two solutions β j1 =
c1−
√

c2
2 and β j2 =

c1+
√

c2
2 :

c2 = (ωj − ε)2 − 4(λ−ωjε)

= ω2
j − 2ωjε + ε2 − 4λ + 4ωjε

= (ωj + ε)2 − 4λ > 0

ωj + ε > 2
√

λ

ωj − ε > 2
√

λ− 2ε

c1 > 0

Thus, β j2 > β j1 > 0, and it is then easy to obtain that f ′(β j) > 0 when 0 < β j < β j1 or β j2 > β j
and f ′(β j) < 0 when β j1 < β j < β j2. Therefore, Equation (16) has a local minimum. For β j < 0, we
can prove it in a similar way.
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