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Abstract: The function of a protein is of great interest in the cutting-edge research of biological
mechanisms, disease development and drug/target discovery. Besides experimental explorations,
a variety of computational methods have been designed to predict protein function. Among these
in silico methods, the prediction of BLAST is based on protein sequence similarity, while that of
machine learning is also based on the sequence, but without the consideration of their similarity. This
unique characteristic of machine learning makes it a good complement to BLAST and many other
approaches in predicting the function of remotely relevant proteins and the homologous proteins
of distinct function. However, the identification accuracies of these in silico methods and their false
discovery rate have not yet been assessed so far, which greatly limits the usage of these algorithms.
Herein, a comprehensive comparison of the performances among four popular prediction algorithms
(BLAST, SVM, PNN and KNN) was conducted. In particular, the performance of these methods was
systematically assessed by four standard statistical indexes based on the independent test datasets
of 93 functional protein families defined by UniProtKB keywords. Moreover, the false discovery
rates of these algorithms were evaluated by scanning the genomes of four representative model
organisms (Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae and Mycobacterium tuberculosis).
As a result, the substantially higher sensitivity of SVM and BLAST was observed compared with
that of PNN and KNN. However, the machine learning algorithms (PNN, KNN and SVM) were
found capable of substantially reducing the false discovery rate (SVM < PNN < KNN). In sum, this
study comprehensively assessed the performance of four popular algorithms applied to protein
function prediction, which could facilitate the selection of the most appropriate method in the related
biomedical research.

Keywords: false discovery rate; machine learning; protein function prediction; support vector
machine; BLAST

1. Introduction

The function of a protein is of great interest in the current research of biological mechanisms [1],
disease development [2] and drug/target discovery [3–7], and a variety of databases is available
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for providing functional annotations from the perspectives of the sequence [8], protein-protein
interaction [9,10], the biological network [11–15] and many specific functional classes [16–22]. However,
a substantial gap is still observed between the total number of protein sequences discovered and that of
proteins characterized with known function [23]. To cope with this gap, thousands of high-throughput
genome projects are under study [24], and over 13 million sequences have been discovered, but only
1% of these validated by experimental annotation [25]. Apart from those experimental approaches,
many in silico methods have been designed and extensively used to discover protein functions [26].
These include clustering of sequences [27], gene fusion [28], sequence similarity [29,30], evolution
study [31], structural comparison [32], protein-protein interaction [33,34], functional classification
via the sequence-derived [35–38] and domain [39–43] feature, omics profiling [44–47] and integrated
methods, which collectively consider multiple methods and data to promote the performance of
function prediction [48–51].

Among these in silico methods [52], the basic local alignment search tool (BLAST) [53] revealing
protein functions based on excess sequence similarity [54] demonstrated great capacity and attracted
substantial interest from the researchers of this field [55,56]. Apart from BLAST, machine learning
algorithms have been frequently applied in recent years for functional prediction [57–62], and a variety
of online software tools based on machine learning was developed as predictors without considering
the similarity in sequence or structure [36,63]. This unique characteristic makes machine learning a
good complement to other in silico approaches in predicting the function of remotely relevant protein
and the homologous proteins of distinct functions [64,65].

So far, three machine learning algorithms, including K-nearest neighbor (KNN), probabilistic
neural network (PNN) and support vector machine (SVM), have been extensively explored to
classify proteins into certain functional families by analyzing the sequence-based physicochemical
property [64,65] and to assess protein functional classes collectively [63]. These algorithms are
recognized as powerful alternative methods for predicting the function of both proteins [66–70]
and other molecules [71]. However, over one third of the protein sequences in UniProt [26] are still
labeled as “putative”, “uncharacterized”, “unknown function” or “hypothetical”, and the difficulty in
discovering the function of the remaining proteins is reported to come mainly from the false discovery
rate of in silico algorithms [55,56,72]. Moreover, the identification accuracies of those approaches
still need to be further improved [55,56,73]. Thus, it is urgently needed to assess the identification
accuracies and false discovery rates among those different in silico approaches.

In this study, the performances of four popular functional prediction algorithms (BLAST,
SVM, KNN and PNN) were comprehensively evaluated from two perspectives. In particular,
the identification accuracies (measured by four standard statistical indexes) of various algorithms
were systematically evaluated based on the independent test data of 93 functional families.
Secondly, the false discovery rates of these algorithms were compared by scanning the genomes
of four representative model species (Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae and
Mycobacterium tuberculosis). In sum, these findings provided detailed information on the performances
of those algorithms that are popular for protein function prediction, which may facilitate the choice of
the appropriate algorithm(s) in the related biomedical research.

2. Results and Discussion

2.1. Assessment of the Identification Accuracies Measured by Four Popular Metrics

The statistical differences in sensitivity (SE) (Figure 1A), specificity (SP) (Figure 1B), accuracy
(ACC) (Figure 1C) and Matthews correlation coefficient (MCC) (Figure 1D) among four popular
functional prediction algorithms are illustrated. As illustrated in Figure 1A, the SE of BLAST measured
by the independent test dataset of 93 families was roughly equivalent to that of SVM, but statistically
higher than that of both PNN and KNN. In particular, the SE of 93 functional families was 50.00~99.99%
for SVM, 43.93~99.99% for BLAST, 65.52~99.99% for PNN and 51.09~99.99% for KNN, and the
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SE median values of BLAST, SVM, PNN and KNN equaled 90.59%, 90.52%, 84.38% and 76.54%,
respectively. As shown in Figure 1B, the majority of the SPs of all algorithms surpassed 98.00%; SPs of
93 functional families were 95.90~99.99% for SVM, 97.56~99.99% for BLAST, 98.87~99.99% for PNN
and 97.77~99.43% for KNN; and the SP median value of BLAST, SVM, PNN and KNN was 98.90%,
99.72%, 99.67% and 99.44%, respectively. These results revealed a relatively low level of false discovery
rates for all popular functional prediction algorithms.
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Figure 1. Statistical differences in the performance of four protein function prediction algorithms
(BLAST, SVM, PNN and KNN) assessed by four metrics: (A) sensitivity (SE); (B) specificity (SP);
(C) accuracy (ACC); and (D) Matthews correlation coefficient (MCC). Significant and moderately
significant differences were shown by a p-value of < 0.01 (**), respectively.

Due to the dominant number of negative samples in the independent test datasets, the statistical
difference in ACC was very similar to that of SP (Figure 1C). The majority of the ACCs of all algorithms
surpassed 97%. The ACCs of 93 functional families were between 95.61% and 99.99% for SVM, between
66.68% and 99.98% for BLAST, between 95.81% and 99.99% for PNN and between 81.39% and 99.77%
for KNN. Moreover, median values of ACCs of BLAST, SVM, PNN and KNN equaled 98.78%, 99.66%,



Int. J. Mol. Sci. 2018, 19, 183 4 of 17

99.61% and 99.16%, respectively. MCC was frequently applied to reflect the stability of the protein
function predictor and was considered as one of the most comprehensive parameters because of its
full consideration of TP, TN, FP and FN. As shown in Figure 1D, the MCC of both SVM and PNN
was better than that of BLAST and KNN. The majority of MCCs were over 0.6 and 0.4 for SVM-PNN
and BLAST-KNN, respectively. In particular, MCCs of 93 functional families were between 0.15 and
0.99 for SVM, between 0.22 and 0.94 for BLAST, between 0.11 and 0.97 for PNN and between 0.13 and
0.76 for KNN. The median values of MCCs for BLAST, SVM, PNN and KNN equaled 0.62, 0.74, 0.72
and 0.50, respectively. In sum, there were consistently low levels of the false discovery rate among all
algorithms as assessed by the metric SP. However, when the positive discovery rates (SEs) and the
stability of prediction (MCC) were considered, SVM, PNN and BLAST stood out as more powerful
algorithms for protein function prediction.

2.2. Evaluating the Statistical Differences in SE and MCC among Four Metrics

For the machine learning algorithms (SVM, PNN and KNN), there was a significant statistical
difference in their SEs and MCCs. As shown in Figure 1A, the statistical difference in SEs between
SVM and PNN equaled 3.5 × 10−6, while that between SVM and KNN was 1.0 × 10−11. Moreover,
there was a significant statistical difference between PNN and KNN (p-value = 0.01). In particular,
the number of families with SEs of >90%, ≤90% and >80% and ≤80% for SVM equaled 49, 33 and 11,
respectively; the number of families with SEs of >90%, ≤90% and >80% and ≤80% for PNN equaled
17, 25 and 20, respectively; and the number of functional families with SEs of >90%, ≤90% and >80%
and ≤80% for KNN equaled 19, 13 and 45, respectively. Similar to the SE, the statistical difference in
MCC between SVM and PNN was 0.08, and that between SVM and KNN was 2.2 × 10−16. Moreover,
there was a clear statistical difference between PNN and KNN (p-value = 2.2 × 10−16). In particular,
the number of families with MCCs of >0.85, ≤0.85 and >0.7 and ≤0.7 for SVM was 26, 26 and 41,
respectively; the number of functional families with MCCs of >0.85, ≤0.85 and >0.7 and ≤0.7 for PNN
equaled 6, 29 and 27, respectively; and there were no protein families with MCCs over 0.7 for KNN.
In summary, there were clear ascending trends in both SE and MCC as shown in Figure 1A,D (from
KNN to PNN to SVM).

Similar to SVM, BLAST also demonstrated great performances in both SE and MCC. The statistical
differences (measured by p-value) in the SE and MCC between BLAST and SVM were 0.88 and
2.0 × 10−7, respectively. As demonstrated in Table 1 and Table S1, the SE of BLAST surpassed that of
SVM in 51 families, but was worse than that of SVM in 40 families. Moreover, the SEs’ median values
(90.52% for BLAST and 90.59% for SVM) and mean values (88.92% for BLAST and 89.08% for SVM)
indicated that the SE of SVM was slightly better than that of BLAST and significantly better than that
of PNN and KNN. Meanwhile, MCC of SVM was higher than that of BLAST in 68 families, but was
lower than that of BLAST in 20 families. The MCCs’ median values (0.62 for BLAST, 0.74 for SVM) and
mean values (0.61 for BLAST, 0.73 for SVM) indicated a slight improvement in prediction stabilities
by SVM.

The amphibian defense peptide family (KW-0878; KW, keyword) was the family with the highest
SE (99.99%) for SVM, BLAST and KNN, which was known to be a rich source of antimicrobial
peptides with a broad spectrum of antimicrobial activities against pathogenic microorganisms [74–76].
The superior SE of this family may come from its nature as a conserved element of the defense system
of various species [77].
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Table 1. The performance of four protein function prediction algorithms assessed by four popular metrics: sensitivity (SE), specificity (SP), accuracy (ACC) and
Matthews correlation coefficient (MCC).

UniProt
Keyword

Protein Functional
Family

GO
Category

BLAST SVM PNN KNN

SE % SP % AC % MCC SE % SP % AC % MCC SE % SP % AC % MCC SE % SP % AC % MCC

KW-0020 Allergen - 76.32 98.92 98.78 0.48 84.81 99.69 99.66 0.57 86.42 99.84 99.81 0.69 74.07 99.48 99.32 0.41

KW-0049 Antioxidant GO:0016209 94.15 99.23 99.20 0.60 89.00 99.76 99.73 0.67 86.00 99.84 99.80 0.71 69.00 99.42 99.24 0.43

KW-0117 Actin capping GO:0051693 94.55 99.08 99.07 0.35 93.98 99.75 99.74 0.70 91.18 99.80 99.78 0.71 73.53 99.42 99.22 0.43

KW-0147 Chitin-binding GO:0008061 86.96 98.96 98.94 0.34 91.75 99.72 99.68 0.78 75.36 99.61 99.47 0.63 93.84 98.57 98.05 0.37

KW-0157 Chromophore GO:0018298 96.70 98.54 98.51 0.70 93.83 99.74 99.68 0.86 86.91 99.66 99.52 0.80 89.38 99.48 98.53 0.59

KW-0195 Cyclin GO:0061575 89.34 98.92 98.89 0.44 97.96 99.78 99.78 0.60 89.80 99.84 99.83 0.62 75.51 99.63 99.53 0.39

KW-0251 Elongation factor GO:0003746 99.51 98.57 98.60 0.83 96.72 99.67 99.62 0.92 84.14 99.67 99.29 0.85 95.84 99.46 97.21 0.63

KW-0339 Growth factor GO:0008083 94.05 98.99 98.95 0.65 84.30 99.69 99.62 0.76 86.01 99.81 99.72 0.80 76.54 99.66 99.16 0.61

KW-0343 GTPase activation GO:0005096 76.06 98.57 98.40 0.47 92.45 99.67 99.65 0.66 86.73 99.82 99.78 0.72 61.95 99.44 99.25 0.46

KW-0344 Guanine-nucleotide
releasing factor GO:0005085 74.09 98.57 98.44 0.39 83.33 99.72 99.69 0.57 89.74 99.64 99.62 0.56 93.59 99.15 98.95 0.31

KW-0396 Initiation factor GO:0003743 96.88 98.92 98.86 0.83 91.36 99.66 99.50 0.87 74.21 99.82 99.32 0.81 77.64 99.45 97.98 0.65

KW-0497 Mitogen GO:0051781 89.25 98.98 98.96 0.40 92.74 99.73 99.66 0.85 83.60 99.61 99.45 0.75 85.22 99.62 98.78 0.62

KW-0505 Motor protein GO:0098840 93.38 98.96 98.91 0.63 89.47 99.75 99.72 0.69 80.70 99.86 99.80 0.72 64.04 99.45 99.25 0.46

KW-0514 Muscle protein - 94.22 98.95 98.92 0.57 95.38 99.75 99.73 0.74 89.23 99.69 99.65 0.67 80.00 99.60 99.32 0.51

KW-0515 Mutator protein GO:1990633 97.65 98.97 98.97 0.42 83.82 99.79 99.76 0.60 77.94 99.84 99.80 0.61 70.59 99.45 99.32 0.38

KW-0568 Pathogenesis related
protein GO:0009607 92.86 98.98 98.97 0.29 93.36 99.78 99.74 0.89 94.87 99.63 99.58 0.84 91.20 99.71 98.72 0.64

KW-0734 Signal transduction
inhibitor GO:0009968 81.25 98.97 98.94 0.31 84.62 99.71 99.69 0.45 84.62 99.68 99.66 0.43 87.18 99.63 99.54 0.34

KW-0786 Thiamine
pyrophosphate binding - 97.08 98.95 98.93 0.71 96.04 99.73 99.70 0.85 87.70 99.89 99.79 0.87 74.76 99.43 98.80 0.58

KW-0830 Ubiquinone binding - 98.37 98.50 98.49 0.87 94.07 99.72 99.56 0.92 82.58 99.46 98.98 0.82 91.47 99.73 97.20 0.68

KW-0847 Vitamin C binding GO:0031418 94.21 98.96 98.94 0.46 91.89 99.79 99.78 0.53 97.30 99.69 99.69 0.48 81.08 99.64 99.56 0.35
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2.3. In-Depth Assessment of the False Discovery Rate by Genome Scanning

Genome scanning has been frequently used to evaluate the false discovery rate of function
prediction tools [78,79]. To have a comprehensive understanding of methods’ false discovery rate,
the genomes of four model organisms representing four kingdoms (Homo sapiens from Animalia,
Arabidopsis thaliana from Plantae, saccharomyces cerevisiae from Fungi and Mycobacterium tuberculosis
from Bacteria) were collected. As demonstrated in Table 2 and Table S2, the genome scanning revealed
that the number of proteins in any of those 93 studied families predicted by SVM, PNN and KNN did
not exceed 10% of the total number of proteins in the whole genome, and this was the same situation
for the majority (82%) of the 93 studied families by BLAST. The higher number of proteins predicted for
a certain functional family may indicate a higher false discovery rate [78,79]. For the human genome,
the number of proteins identified by SVM was equivalent to or was slightly higher than that of both
PNN and KNN, but was significantly lower than that of BLAST (Figure 2a). In addition, the proteins
identified by PNN were lower than that of KNN in 11 families and higher in 20 families.
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Table 2. The false discovery rate assessed by the percentage of proteins identified from human and thaliana genomes by different algorithms.

UniProt
Keyword Protein Functional Family

Homo Sapiens Arabidopsis Thaliana

UniProt (%) SVM (%) BLAST (%) PNN (%) KNN (%) UniProt (%) SVM (%) BLAST (%) PNN (%) KNN (%)

KW-0117 Actin capping 0.09 0.12 0.72 0.10 0.10 0.05 0.07 0.11 0.05 0.05
KW-0020 Allergen 0.02 0.18 3.68 0.11 0.04 0.01 0.17 6.22 0.07 0.09
KW-0049 Antioxidant 0.07 0.09 0.50 0.08 0.07 0.09 0.16 1.11 0.12 0.13
KW-0147 Chitin-binding 0.02 0.16 0.36 0.02 0.10 0.08 0.24 3.57 0.08 0.18
KW-0157 Chromophore 0.07 0.15 2.10 0.07 0.10 0.28 0.38 0.88 0.23 0.30
KW-0195 Cyclin 0.16 0.24 0.40 0.18 0.19 0.33 0.36 0.61 0.34 0.34
KW-0251 Elongation factor 0.08 0.11 0.45 0.08 0.09 0.15 0.19 0.48 0.14 0.16
KW-0339 Growth factor 0.65 0.93 2.50 0.71 0.73 0.12 0.18 0.24 0.13 0.14
KW-0343 GTPase activation 0.97 1.19 5.47 0.93 1.02 0.28 0.24 1.36 0.21 0.23
KW-0344 Guanine-nucleotide releasing factor 0.73 0.86 5.37 0.73 0.75 0.18 0.20 2.12 0.17 0.19
KW-0396 Initiation factor 0.24 0.39 1.70 0.26 0.25 0.26 0.38 1.71 0.24 0.28
KW-0497 Mitogen 0.20 0.65 4.37 0.30 0.35 0.00 0.07 0.52 0.01 0.02
KW-0505 Motor protein 0.66 0.75 4.07 0.67 0.67 0.59 0.45 2.14 0.34 0.42
KW-0514 Muscle protein 0.31 0.42 4.35 0.37 0.39 0.00 0.17 1.26 0.11 0.13
KW-0515 Mutator protein 0.01 0.02 0.05 0.01 0.01 0.01 0.01 0.05 0.01 0.01
KW-0568 Pathogenesis-related protein 0.00 0.08 0.09 0.04 0.05 0.13 0.20 0.91 0.15 0.16
KW-0734 Signal transduction inhibitor 0.22 0.23 1.22 0.21 0.21 0.01 0.01 0.74 0.01 0.01
KW-0786 Thiamine pyrophosphate binding 0.06 0.07 0.13 0.06 0.06 0.12 0.15 0.28 0.13 0.14
KW-0830 Ubiquinone binding 0.08 0.71 0.12 0.19 0.60 0.13 0.25 0.42 0.17 0.18
KW-0847 Vitamin C binding 0.10 0.12 0.18 0.10 0.09 0.07 0.11 0.53 0.07 0.08
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Moreover, 15 protein families only existing in plants, microbes or viruses (Table S3, not existing in
the human genome) were collected for assessing the false discovery rate of each algorithm. For example,
the covalent protein-RNA linkage family (KW-0191) contained proteins attaching covalently to the
RNA molecules in virus [80], and the storage protein (KW-0758) included the proteins as a source
of nutrients for the development or growth of the organism in plants. For these families (Table S3),
SVM did not identify any proteins from the human genome, while 0.06% and 0.25% of the proteins in
the human genome were falsely assigned by BLAST to the family of covalent protein-RNA linkage
protein and storage protein, respectively. As illustrated in Figure 3, several other families (such as
plant defense, virulence) also demonstrated a significantly higher false discovery rate by BLAST than
that of SVM.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  8 of 17 

 

Moreover, 15 protein families only existing in plants, microbes or viruses (Table S3, not existing 
in the human genome) were collected for assessing the false discovery rate of each algorithm. For 
example, the covalent protein-RNA linkage family (KW-0191) contained proteins attaching 
covalently to the RNA molecules in virus [80], and the storage protein (KW-0758) included the 
proteins as a source of nutrients for the development or growth of the organism in plants. For these 
families (Table S3), SVM did not identify any proteins from the human genome, while 0.06% and 
0.25% of the proteins in the human genome were falsely assigned by BLAST to the family of covalent 
protein-RNA linkage protein and storage protein, respectively. As illustrated in Figure 3, several 
other families (such as plant defense, virulence) also demonstrated a significantly higher false 
discovery rate by BLAST than that of SVM. 

 
Figure 3. The false discovery rates reflected by the percentage of proteins of 15 protein families only 
existing in plants, microbes or viruses, but not existing in the human genome identified from the 
genomes of Homo sapiens. 

For the other three genomes, their situation was similar to the human genome. Take the 
Arabidopsis thaliana genome as an example: proteins identified by SVM were equivalent to or slightly 
higher than those by PNN and KNN in all protein families, but lower than that of BLAST in 77 
families, and the number of protein discovered by PNN was lower than that of KNN in 26 families. 
In summary, the level of false discovery rate (Figure 2b–d) could be ordered as BLAST > SVM > PNN 
and KNN. These results revealed that BLAST was more prone to generate a false discovery rate than 
the other three machine learning methods (SVM > PNN ≈ KNN). 

As reported [81–85], an open web-server is recognized as useful for constructing effective 
methods and tools. A variety of web-servers have increasing impacts on medical sciences [86], driving 
medicinal chemistry to an unprecedented revolution [87], and efforts will be further made to develop 
web-based services for the performance assessment discussed in this study. 

Figure 3. The false discovery rates reflected by the percentage of proteins of 15 protein families only
existing in plants, microbes or viruses, but not existing in the human genome identified from the
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For the other three genomes, their situation was similar to the human genome. Take the
Arabidopsis thaliana genome as an example: proteins identified by SVM were equivalent to or slightly
higher than those by PNN and KNN in all protein families, but lower than that of BLAST in 77 families,
and the number of protein discovered by PNN was lower than that of KNN in 26 families. In summary,
the level of false discovery rate (Figure 2b–d) could be ordered as BLAST > SVM > PNN and KNN.
These results revealed that BLAST was more prone to generate a false discovery rate than the other
three machine learning methods (SVM > PNN ≈ KNN).

As reported [81–85], an open web-server is recognized as useful for constructing effective methods
and tools. A variety of web-servers have increasing impacts on medical sciences [86], driving medicinal
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chemistry to an unprecedented revolution [87], and efforts will be further made to develop web-based
services for the performance assessment discussed in this study.

3. Materials and Methods

To construct a valid statistical model for a biology problem based on protein sequences [88–97],
a rule of five steps is needed [98]. Firstly, a valid construction of datasets for both training and testing
the model is required. Secondly, an effective conversion of the sequence to the digital feature vector is
asked to represent their targeted properties. Thirdly, a powerful statistical method should be designed
for the functional prediction. Fourthly, the accuracies of the constructed statistic model should be
validated correctly. Fifthly, a web-server based on the constructed model may be further developed
for public access. The corresponding methods and steps adopted in this study are provided and
described below.

3.1. Collecting the Protein Sequences of Different Functional Families

Table 1 provides a full list of 93 protein families collected from UniProt [43], and the performances
of the popular protein function prediction methods (BLAST, KNN, PNN, SVM) were measured via
independent test datasets (the way to generate an independent dataset is shown in the following
Section 2.2). These 93 included 12 families of binding molecules (e.g., sodium-, potassium-, SH3- and
RNA-binding), 15 ligand families (e.g., plastoquinone ligand, vitamin C ligand and ubiquinone ligand),
58 families defined by Gene Ontology (40 molecular functions and 18 biological processes) and 8 broad
families defined by UniProt [43]. All families were contained in the keyword categories of UniProt,
and the majority (82.7%) of these 93 families were able to be mapped to GO terms (Table 1). Protein
entries that have not been manually annotated and reviewed by UniProtKB curators in a keyword
category were not considered for analysis in this study. As a result, 107~49,517 protein-entries from
93 families were collected.

3.2. Construction of the Training and Testing Datasets

The independent test dataset was frequently constructed to evaluate the performances of protein
function predictors in recent years [99–104]. To construct a valid set of data for building the predictor
of each family, the datasets of the training, testing and independent test were generated by a strictly
defined process after the data collection described in Section 2.1. Firstly, all proteins of different
sequences in a specific family are assigned randomly with a number, which is within the range of
the total number of proteins in that family. Secondly, these sequences in each protein function family
were sequentially selected based on the number assigned and then iteratively added to the training,
testing and independent test datasets. Samples in these datasets are all known as the positive samples.
Thirdly, the Pfam families [16] of the proteins of a certain functional family were retrieved from the
Pfam database [16] for generating negative samples. The Pfam family with protein(s) of this functional
family was defined as the “positive” one, and the remaining families were grouped into the “negative”
ones. Finally, 3 representatives were randomly picked out of the negative families and sequentially
added to the training, testing and independent test datasets, and samples in these datasets are thus
known as the negative samples. It is necessary to emphasize that there was no overlap among the
datasets of the training, testing and independent test [60,61].

To assess the false discovery rate among algorithms, the genomes of four model organisms
representing four kingdoms (Homo sapiens from Animalia, Arabidopsis thaliana from Plantae,
Saccharomyces cerevisiae from Fungi and Mycobacterium tuberculosis from Bacteria) were collected
from UniProt. The protein entries without any manual annotation and review by the UniProtKB
curators were not taken into consideration. In total, 20,183, 15,169, 6721 and 2166 protein sequences
in FASTA format were collected for human, Arabidopsis thaliana, Saccharomyces cerevisiae and
Mycobacterium tuberculosis, respectively.
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3.3. Feature Vectors Used for Representing the Protein Sequence

The conversion of the protein sequence into the digital feature vector was conducted
based on properties of each residue within that protein. These properties include: (1) charge;
(2) polarizability; (3) polarity; (4) surface tension; (5) amino acid (AA) composition; (6) van der
Waals volume via normalizing; (7) hydrophobicity; (8) solvent accessibility; and (9) protein secondary
structure [36,105–107]. Then, 3 features were applied to describe each property [36]. These features
contained: (a) composition (No. of AAs of a particular property over the total No. of AAs; (b) transition
(the percentage of AAs with a certain property was followed by AAs with a different property); and (c)
distribution (the sequence lengths within which the first, one fourth, half, three-quarters and all of
the AAs of specific property were localized). The detailed procedure for generating the feature vector
from the sequence was described in previous publications [36,65]. These features have already been
successfully applied to facilitate the prediction of enzyme functional [108] and structural classes [107].

3.4. Functional Prediction of Protein Constructed by Machine Learning

To construct the prediction model, the parameters of machine learning methods were optimized
using the testing dataset for each training process. Once suitable parameters were discovered,
a new training set was constructed by combining the original training and testing datasets, and the
corresponding parameters were directly accepted for training a new model. To assess the performance
of the constructed models and detect possible over-fitting, the independent test set was further
applied. It is necessary to emphasize that all duplicates in the protein sequence were removed during
datasets’ construction.

3.5. Construction of Protein Functional Prediction Model Based on Sequence Similarity

Sequence similarity was assessed by the NCBI Protein-Protein BLAST (Version 2.6.0+) [53,54].
Firstly, the combined training and testing dataset was adopted to form the BLAST database, and the
sequences in the independent test dataset were used as queries. The BLAST E-value and percentage
sequence identity were usually applied to represent the level of similarity between sequences [109].
The functional variation between proteins was reported to be rare when their sequence identity was
more than 40% [110,111]. Thus, an E-value of 0.001 and a sequence identity of 40% were adopted as
the cutoffs in this study to assess the functional conservation of BLAST hits.

3.6. Assessing the Identification Accuracies of the Studied Methods

The performance of protein function prediction algorithms was systematically assessed by four
popular metrics, sensitivity (SE), specificity (SP), accuracy (ACC) and Matthews correlation coefficient
(MCC), based on the independent test datasets generated from the 93 studied families (Supplementary
Materials Table S1). All 4 metrics were widely used in assessing the performance of protein function
predictors [112–117]. In particular, SE is defined by the percentage of true positive samples correctly
identified as “positive” [118,119] (shown in Equation (1)):

SE =
TP

TP + FN
(1)

SP indicates the proportion of true negative samples that were correctly predicted as
“negative” [118,119] (in Equation (2)):

SP =
TN

TN + FP
(2)

ACC refers to the number of true samples (positive plus negative) divided by the number of all
samples studied (shown in Equation (3)):

ACC =
TP + TN

TP + FN + TN + FP
(3)
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The MCC was an important metric reflecting the stability of a protein function predictor, which
described the correlation between a predictive value and an actual value [118,119]. It has been
considered as one of the most comprehensive parameters in any category of predictors due to its full
consideration of all four results. In particular, the MCC could be calculated by Equation 4:

MCC =
(TP ∗ TN − FP ∗ FN)√

(TP + FN) ∗ (TP + FP) ∗ (TN + FP) ∗ (TN + FN)
(4)

In particular, those four results were TP (No. of true positive samples), TN (No. of true negative
samples), FP (No. of false positive samples) and FN (No. of false negative samples) [118,119]. It is
very important to emphasize that these four metrics are applicable to the single-class situations
(each protein is grouped into just one family). For the multi-class situations frequently observed
in complicated biological networks [81–84] and biomedical researches [84,89,117], different metrics
should be defined [120].

3.7. The Rates of False Discovery of the In Silico Methods Studied Here

As reported, genome scanning was a comprehensive method to evaluate the capacity of protein
functional prediction tools in identifying and classifying protein families [78,79]. In this paper,
an evaluation of the false discovery rate of the studied protein function predictors was performed by
scanning the genomes of 4 model organisms representing 4 kingdoms (Homo sapiens from Animalia,
Arabidopsis thaliana from Plantae, Saccharomyces cerevisiae from Fungi and Mycobacterium tuberculosis
from Bacteria). The false discovery rates were assessed by reconstructing the prediction models of those
in silico algorithms. In particular, the sequences of proteins in a certain functional family were all put
into the reference database for BLAST scanning and were also used to reconstruct the machine learning
models using the optimized parameters obtained in Section 3.4. In reality, the total amount of proteins
not belonging to a certain family should be much larger than that of proteins in that family. Therefore,
a tiny reduction in the value of SP may lead to a significant discovery of false positive hits, which
reminded us to use SP as an effective indicator when evaluating the model’s false discovery rates.

4. Conclusions

This study discovered substantially higher sensitivity (SP) and stability (MCC) of BLAST and
SVM than that of PNN and KNN. However, the machine learning algorithms (PNN, KNN and SVM)
were found capable of significantly reducing the false discovery rate (with PNN and KNN performed
the best). In conclusion, this study comprehensively assessed the performances of popular algorithms
applied to protein function prediction, which could facilitate the selection of the appropriate method
in the related biomedical research.

Supplementary Materials: The Supplementary Materials are available online at www.mdpi.com/1422-0067/19/
1/183/s1.
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