

Int. J. Mol. Sci. 2017, 18, x; doi: FOR PEER REVIEW

Compound 22^d

Compound 25^d

Compound 23^d

Compound 24^d

Compound 26^d

Compound 27d

Compound 28^d

Compound 29e

Compound 30^e

Compound 31^e

Compound 35^e

C1

Compound 32^e

Compound 33e

Compound 34^e

Compound 36^e

Compound 37^f

-C1

Compound 39^f

Compound 41^f Compound 42^f

6 Figure S1. Structures of orthosteric and allosteric compounds which used to generate 7 pharmacophore of mGluRs.(a) Structures of 6 antagonists which used to generate orthosteric 8 pharmacophore of mGluR I; (b) Structures of 8 NAMs which used to generate allosteric 9 pharmacophore of mGluR I;(c) Structures of 7 agonists which used to generate orthosteric 10 pharmacophore of mGluRII;(d) Structures of 7 PAMs which used to generate allosteric 11 pharmacophore of mGluRII; (e) Structures of 7 agonists which used to generate orthosteric pharmacophore of mGluRIII; (f) Structures of 6 PAMS which used to generate allosteric 12 13 pharmacophore of mGluRIII.

14 15

Table S1. The results of orthosteric GALAHAD models of mGluR II.									
Model	Specificity N_HITS PARETP Energy Sterics HBONE						MOL-QRY		
Model 06ª	3.837	6	0	9.08	67.20	84.80	2.37		
Model 09	3.398	6	0	8.10	65.90	84.50	3.11		
model 10	2.863	7	0	13.74	66.20	85.10	0.35		
model 20	3.993	6	0	4.12	59.50	82.40	1.58		

^a Bold text refer to the optimal model.

Table S2. The results of allosteric GALAHAD models of mGluR II.

 Model	Specificity	N_HITS	PARETP	Energy	Sterics	HBOND	MOL-QRY
model 03	2.753	7	0	38.21	384.9	100	14.8
 model 09 ª	4.106	7	0	22.59	375.9	98.9	6.5

^a Bold text refer to the optimal model.

19

17

20

Table S3. The results of orthosteric GALAHAD models of mGluRIII.

Model	Specificity	N_HITS	Pareto	Energy	Sterics	Hbond	MOL-QRY
model 01	3.109	8	0	8.62	188	199.1	12.07
model 08	3.020	8	0	6.35	175	188.2	4.28
model 10	3.010	8	0	2621.4199	212.8	188.9	2.29
model 11	4.049	8	0	7.86	188	162.3	21.8
model 13	3.006	8	0	5.45	182.5	170.4	3.52
model 14	2.603	8	0	2.34	160.8	162.7	10.15
model 17 ^a	4.065	8	0	8.60	207.6	163.5	4.63

^a Bold text refer to the optimal model.

22

23

Table S4. The results of allthosteric GALAHAD models of mGluRIII.

Model	Specificity	N_HITS	PARETP	Energy	Sterics	HBOND	MOL-QRY
model 01	3.248	6	0	5.56	653.60	237.40	218.63
model 04 ª	4.666	6	0	4.08	587.90	229.60	173.15

model 05	4.415	6	0	5.09	533.90	243.50	182.88
model 08	3.397	6	0	4.52	583.30	239.90	141.91
model 09	4.426	6	0	3.67	569.20	208.50	160.27
model 10	4.400	6	0	6.38	670.00	229.80	140.23
model 19	3.462	6	0	3.32	479.90	205.50	130.44

^a Bold text refer to the optimal model.

25

Figure S2. The optimal pharmacophore model of mGluRs and mapped with the compounds which
 used to build model. (a)The optimal pharmacophore model of orthosteric site of mGluR II; (b)The
 optimal pharmacophore model of allosteric site of mGluR II; (C)The optimal pharmacophore model
 of orthosteric site of mGluRIII; (d)The optimal pharmacophore model of allosteric site of mGluRIII.

30Figure S3. The crystal structures of the extracellular domain of mGluRs and the ramachandran plot31results of them. (a)mGluR4; (b) mGluR8

(a)

180

180

180

(b)

(c)

(d)

(e)

- Figure S4. The crystal structures of the 7TMD domain of mGluRs and the ramachandran plot results
 of them. (a) mGluR2; (b) mGluR3; (c)mGluR4; (b) mGluR7; (e) mGluR8
- 35

_

 Table S5. The flavors results of source TCMs corresponding orthosteric site of mGluRs I

Latin Name (Chinses pinyin name)	sour	bitter	sweet	pungent	salty
Abrus cantoniensis Hance(Ji Gu Cao)	0	1	1	0	0
A.Sativam L. var. Viviparum Regel(Da Suan)	0	0	0	1	0
Mylabris(Ban Mao)	0	0	0	1	0
Semen Trigonellae(Hu Lu Ba)	0	1	0	0	0
Fructus Mori(Sang Shen)	0	0	1	0	1
Juncus effusus L.(Deng Xin Cao)	0	0	1	0	0
Radix Aucklandiae(Mu Xiang)	0	1	0	1	0
Folium Isatidis(Da Qing Ye)	0	1	0	0	0
Fructus Lycii(Gou Qi Zi)	0	0	1	0	0
Caulis Piperis Kadsurae(Hai Feng Teng)	0	1	0	1	0
Reynoutria japonica Houtt.(Hu Zhang)	0	1	0	0	0
Atractylodes lancea (Thunb.) DC.(Cang Zhu)	0	1	0	1	0
Cortex Albizziae(He Huan Pi)	0	0	1	0	0
Veneum Bufonis(Chan Su)	0	0	0	1	0
Zingiber officinale Rosc.(Sheng Jiang)	0	0	0	1	0
Semen Gingko(Bai Guo)	0	1	1	0	0
<i>Dolichos lablab</i> L.(Bai Bian Dou)	0	0	1	0	0
Litchi chinensis Sonn(Li Zhi He)	0	1	1	0	0
Codonopsis pilosula (Franch.) Nannf.(Dang Shen)	0	0	1	0	0
Total	0	9	9	7	1

36 37

 Table S6. The flavors results of source TCMs corresponding orthosteric site of mGluR II

Latin Name (Chinses pinyin name)	sour	bitter	sweet	pungent	salty
Mylabris(Ban Mao)	0	0	0	1	0
Areca catechu Linn.(Bing Lang)	0	1	0	1	0
Angelica sinensis (Oliv.) Diels(Dang Gui)	0	0	1	1	0
Codonopsis pilosula (Franch.) Nannf.(Dang Shen)	0	0	1	0	0
Cortex Albizziae(He Huan Pi)	0	0	1	0	0
Semen Ricini Ricinus communis L.(Bi Ma Zi)	0	0	1	1	0
Veneum Bufonis(Chan Su)	0	0	0	1	0
Uncaria rhynchophylla (Miq.) Miq. ex Havil.(Gou	0	0		0	0
Teng)	0	0	1	0	0
Fructus Mori(Sang Shen)	0	0	1	0	1
Folium Artemisiae Argy(Ai Ye)	0	1	0	1	0
Total	0	2	6	6	1

38 39

Table S7. The flavors results of source TCMs corresponding orthosteric site of mGluRIII

Latin Name (Chinses pinyin name) sour bitter sweet pungent salty

Cortex Albizziae(He Huan Pi)	0	0	1	0	0
Portulaca oleracea Linn.(Ma Chi Xian)	1	0	0	0	0
Semen Trigonellae(Hu Lu Ba)	0	1	0	0	0
Apis cerana(Feng Mi)	0	0	1	0	0
Total	1	1	2	0	0

Table S8. The flavors results of source TCMs corresponding allosteric site of mGluRs I

Latin Name (Chinses pinyin name)	sour	bitter	sweet	pungent	salty
Glycine max (L.) Merr.(Hei Dou)	0	0	1	0	0
Glycyrrhiza uralensis Fisch.(Gan Cao)	0	0	1	0	0
Semen Trigonellae(Hu Lu Ba)	0	1	0	0	0
Paeonia lactiflora (Bai Zhi)	0	0	0	1	0
Cortex Meliae(Ku Lian Pi)	0	1	0	0	0
Radix Paeoniae Alba(Bai Shao)	1	1	0	0	0
Psoralea corylifolia Linn.(Bu Gu Zhi)	0	1	0	1	0
Uncaria rhynchophylla (Miq.) Miq. ex Havil.(Gou Teng)	0	0	1	0	0
Artemisia capillaris (Yin Chen)	0	1	0	1	0
Fritillaria thunbergii(Zhe Bei Mu)	0	1	0	0	0
Magnolia liliiflora Desr(Xin Yi)	0	0	0	1	0
Notopterygium incisum(Qiang Huo)	0	0	0	1	0
Vitex trifolia L. (Man Jing Zi)	0	1	0	1	0
Uriospora capillipes Gagnep(Jin Guo Lan)	0	1	0	0	0
Total	1	9	3	9	0

Table S9. The flavors results of source TCMs corresponding allosteric site of mGluR II

Latin Name (Chinses pinyin name)	sour	bitter	sweet	pungent	salty
Corydalis decumbens (Thunb.) Pers.(Xia Tian Wu)	0	1	0	1	0
Aconitum carmichaelii Debx.(Fu Zi)	0	0	1	1	0
Ferula sinkiangensis K. M. Shen (A WEI)	0	1	0	1	0
Hyoscyamus niger L.(Tian Xian Zi)	0	1	0	1	0
Atropa belladonna L.(Dian Qie Cao)	0	1	0	1	0
Corydalis bungeana Turcz(Ku Di Ding)	0	1	0	0	0
Bfoussonetia papyri fera (L.)Vent (Chu Shi Zi)	0	0	1	0	0
Psoralea corylifolia Linn.(Bu Gu Zhi)	0	1	0	1	0
Aconitum carmichaelii Debx.(Chuan Wu)	0	1	0	1	0
Aconitum kusnezoffii Reichb.(Cao Wu)	0	1	0	1	0
Vigna angularis (Willd.) Ohwi et Ohashi(Chi Xiao Dou)	1	0	1	0	0
Murraya exotica L. Mant.(Jiu Li Xiang)	0	1	0	1	0

vodia rutaecarpa (Juss.) Benth.(Wu Zhu Yu)	0	1	0	1	0
Allium macrostemon Bunge(Xie Bai)	0	1	0	1	0
Corrydalis yanhusuo W. T.W a n g(Yan Hu Suo)	0	1	0	1	0
Corydalis decumbens (Thunb.) Pers.(Xia Tian Wu)	0	1	0	1	0
Glycyrrhiza uralensis Fisch.(Gan Cao)	0	0	1	0	0
Picrasma quassioides (D. Don)Benn.(Ku Mu)	0	1	0	0	0
Total	1	13	4	12	0

Table S10. The flavors results of source TCMs corresponding allosteric site of mGluRIII

Latin Name (Chinses pinyin name)	sour	bitter	sweet	pungent	salty
Zingiber officinale Rosc.(Sheng Jiang)	0	0	0	1	0
Murraya exotica L. Mant.(Jiu Li Xiang)	0	1	0	1	0
Picrasma quassioides(D. Don)Benn. (Ku Mu)	0	1	0	0	0
Allium macrostemon Bunge(Xie Bai)	0	1	0	1	0
Paeonia lactiflora (Bai Zhi)	0	0	0	1	0
Cortex Meliae(Ku Lian Pi)	0	1	0	0	0
Total	0	4	0	4	0

46 47

Table S11. The top 10 most frequent efficiencies.

	mGluR I		mGluR II	mGluR II		mGluR III	
	Zhi Tong	5	Zhi Tong	3	Jie Du	1	
Orthosteric	Jie Du	3	Xiao Zhong	2	Zhi Tong	1	
	Qu Shi	3	Huo Xue	2	Huo Xue	1	
	Qing Re	3	Gong Du	2	Xiao Zhong	1	
	Jian Pi	3	Jie Du	1	Jie Yu	1	
	San Jie	2	Kai Qiao	1	An Shen	1	
	Zhi Ke	2	Xi Feng	1	Lian Chuang	1	
	Zhu Yang	2	Zhi Xue	1	Sheng Ji	1	
	Bu Shen	2	Hua Yu	1			
	Xing Qi	2	Ba Du	1			
Allosteric	Zhi Tong	7	Zhi Tong	7	Qu Shi	2	
	Qu Feng	4	Qu Shi	4	Zhi Tong	2	
	San Han	4	Qu Feng	3	San Han	2	
	Qing Re	2	Xing Qi	3	Hua Tan	2	
	Qu Shi	2	Huo Xue	3	Jie Biao	2	
	Xiao Zhong	2	Jie Du	2	Xing Qi	2	
	Jie Du	2	Qing Re	2	Jie Du	1	
	Wen Shen	2	Zhu Yang	2	Huo Xue	1	
	Jie Biao	2	Ping Chuan	2	Qu Feng	1	
	Xiao Ji	2	San Jie	2	Qing Re	1	

mGlu	R2 mGluR3	mGluR4	mGluR7
Gly6	12 Gly621	Gly632	Gly635
Val6	13 Val622	Ile633	Ile636
Cys6	16 Ser625	Cys636	Cys639
Phe6	23 Phe632	Met643	Met646
Arg6	35 Arg644	Arg655	Arg658
Leu6	39 Leu648	Leu659	Leu662
Phe6	43 Phe652	Met663	Met666
Try6	47 Try656	Try667	Try670
Met7	28 Met737	Leu753	Ile756
Ser7	31 Ser740	Leu756	Ser759
Leu7	32 Leu741	Leu757	Leu760
Asn7	35 Asp744	Ser760	Ser763
Ile73	9 Val748	Met764	Met762
Thr7	59 Thr778	Thr794	Thr797
Ile77	2 Ile781	Val797	Val800
Trp7	73 Trp782	Trp798	Trp801
Phe7	76 Phe785	Phe801	Phe804
Phe7	80 Phe789	Phe805	Phe808
Met7	94 Met803	Leu822	Leu825
Ser7	97 Ser806	Ser825	Ser828
Val7	98 Val807	Val826	Met829
Ser8)1 Ser810	Ser829	Ser832

/	9	
8	0	

Table S13 The detailed parameters of protomol.

Domian	Target	Threshold	Bloat
	mGluR1	0.6	0
	mGluR2	0.5	0
Fytracellular	mGluR3	0.5	0
Damain	mGluR4	0.5	0
Domain	mGluR5	0.5	0
	mGluR7	0.5	0
	mGluR8	0.5	0
	mGluR1	0.6	0
	mGluR2	0.5	0
71MD	mGluR3	0.5	0
	mGluR4	0.5	0

mGluR5	0.4	0
mGluR7	0.5	0
mGluR8	0.5	0

Figure S5. Pharmacophore mapping results and molecular docking results of S-Propyl-L-cystein
 (orthosteric site of mGluR5)

Figure S6. Pharmacophore mapping results and molecular docking results of Azedarachin C(orthosteric site of mGluR2)

87 Figure S7. Pharmacophore mapping results and molecular docking results of D-Rhodoic acid88 (orthosteric site of mGluR3)

Figure S8. Pharmacophore mapping results and molecular docking results of Dopa (orthosteric site of mGluR4)

91 Figure S9. Pharmacophore mapping results and molecular docking results of Leptopinine92 (orthosteric site of mGluR7)

93 Figure S10. Pharmacophore mapping results and molecular docking results of Theanine (orthosteric94 site of mGluR8)

95 Figure S11. Pharmacophore mapping results and molecular docking results of Rhinacanthin B96 (allosteric site of mGluR5)

97 Figure S12. Pharmacophore mapping results and molecular docking results of Neobavaisoflavone98 (allosteric site of mGluR2)

99 Figure S13. Pharmacophore mapping results and molecular docking results of Hypecorine (allosteric100 site of mGluR3)

101Figure S14. Pharmacophore mapping results and molecular docking results of Schinindiol102(allthosteric site of mGluR4)

104Figure S15. Pharmacophore mapping results and molecular docking results of Broussonetine U1105(allthosteric site of mGluR7)

107Figure S16. Pharmacophore mapping results and molecular docking results of1087-(5',6'-Dihydroxy-3',7'-dimethylocta-2',7'-dienyloxy)-coumarin (allthosteric site of mGluR8)